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Passive Transfer of Virus-Specific Antibodies Confers Protection against Reproductive
Failure Induced by a Virulent Strain of Porcine Reproductive and Respiratory

Syndrome Virus and Establishes Sterilizing Immunity

F. A. Osorio,*,1 J. A. Galeota,* E. Nelson,† B. Brodersen,* A. Doster,* R. Wills,*,2 F. Zuckermann,‡ and W. W. Laegreid§

*Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0905; †Department of Veterinary
Science, South Dakota State University, Box 2175, Brookings, South Dakota 57007; ‡Department of Veterinary Pathobiology, University of Illinois,

Urbana, Illinois 61801; and §US Meat Animal Research Center, USDA/ARS, Clay Center, Nebraska 68933-0166

Received January 25, 2002; returned to author for revision May 6, 2002; accepted May 21, 2002

Immune mechanisms mediating protective immunity against porcine reproductive and respiratory syndrome virus (PRRSV)
are not well understood. The PRRSV-specific humoral immune response has been dismissed as being ineffective and
perhaps deleterious for the host. The function of PRRSV antibodies in protective immunity against infection with a highly
abortifacient strain of this virus was examined by passive transfer experiments in pregnant swine. All of a group of pregnant
gilts (n � 6) that received PRRSV immunoglobulin (Ig) from PRRSV-convalescent, hyperimmune animals were fully protected
from reproductive failure as judged by 95% viability of offspring at weaning (15 days of age). On the other hand, the totality
of animals in a matched control group (n � 6) receiving anti-pseudorabies virus (PRV) Ig exhibited marked reproductive failure
with 4% survival at weaning. Besides protecting the pregnant females from clinical reproductive disease, the passive transfer
of PRRSV Ig prevented the challenge virus from infecting the dams and precluded its vertical transmission, as evidenced by
the complete absence of infectious PRRSV from the tissues of the dams and lack of infection in their offspring. In summary,
these results indicate that PRRSV-Igs are capable of conferring protective immunity against PRRSV and furthermore that
these Igs can provide sterilizing immunity in vivo. © 2002 Elsevier Science (USA)

Key Words: PRRSV; swine arterivirus; antibodies; protective immunity.

INTRODUCTION

Porcine reproductive and respiratory syndrome virus
(PRRSV) is a member of the genus Arterivirus, together
with equine arteritis virus (EAV), lactate-dehydrogenase-
elevating virus (LDV), and simian hemorrhagic fever virus
(SHFV) (Meulenberg et al., 1993). The infection of domes-
tic swine by PRRSV is characterized by respiratory dys-
function, late-term abortion, and a high incidence of
stillborn, mummified, and debilitated newborn pigs.
PRRSV is currently considered to cause the most eco-
nomically significant infectious disease of swine (Na-
tional Pork Producers, 2000). As is characteristic of
arteriviruses, PRRSV is a small enveloped RNA virus
which replicates primarily in macrophages. The PRRSV
particle is 50 to 65 nm in diameter, with a central iso-
metric nucleocapsid of approximately 30 to 35 nm in
diameter (Meulenberg et al., 1993). The genome of
PRRSV is a single-stranded polyadenylated RNA of 15 kb
in length which contains eight open-reading frames

(ORFs). Of these, ORF-7 is known to code for the nucleo-
capsid protein, and ORFs 2, 3, 4, 5, and 6 are likely to
code for envelope proteins (Meulenberg and den Besten,
1996). The replication and gene expression of arteri-
viruses, involving a 3�-coterminal nested set of sub-
genomic mRNAs, is similar to that of coronaviruses
(Cavanagh, 1997; Plagemann, 1996).
Very little is known about the components of the im-

mune response that are effective in the protective re-
sponse of the pig to PRRSV infection. It is known that a
certain degree of immune protection is conferred by
some vaccines (Gorcyca et al., 1995; Osorio et al., 1998;
Plana-Duran et al., 1997b) or selected antigens of PRRSV
(Pirzadeh and Dea, 1998; Plana-Duran et al., 1997). Im-
portantly, PRRS-convalescent animals show specific pro-
tective immunity (Gorcyca et al., 1993; Labarque et al.,
2000; Lager et al., 1997a,b). This protection seems to be
preferentially strain specific, although a certain level of
heterologous protection to other strains of PRRSV ap-
pears to exist (Lager et al., 1999). Although the existence
of this PRRSV-specific protective immunity is recognized,
the molecules or cells that mediate this protection have
not been clearly identified. It has been postulated that
the main role in protection against PRRSV centers on the
cell-mediated response. Infected pigs develop a tran-
sient T-cell-mediated PRRSV-specific lymphoproliferative
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response, starting at 4 weeks postinfection, lasting from
9 (Bautista and Molitor, 1997) to 14 weeks (Lopez Fuertes
et al., 1999) after this event. Virus-infected pigs also
develop a delayed-type hypersensitivity response to the
virus (Bautista and Molitor, 1997). The viral matrix protein
and the envelope glycoprotein GP5 have been identified
as targets of the lymphoproliferative response (Bautista
et al., 1999). The PRRSV-specific immune response ap-
pears to be characterized by an unusual delay in respon-
siveness observed in both the humoral and cellular com-
ponents of the host response (Meier et al., 2000). The
response by PRRSV-specific �-interferon-producing cells
attains detectable levels not sooner than 4 weeks postin-
fection (Meier et al., 2000). Likewise, the humoral im-
mune response is characterized by the early appearance
of a vigorous PRRSV-specific antibody that does not
contain neutralizing activity until at least 3 or 4 weeks
into the infection (Labarque et al., 2000; Yoon et al.,
1994).
One important challenge for PRRSV research has

been the identification of a model that would accurately
represent protective immunity to PRRSV. Several different
experimental challenge models have been used to eval-
uate protective immunity in PRRSV, including viremia
(Pirzadeh and Dea, 1998) and quantitation of lesions
postinfection: ranging from histopathological scoring in
lungs (Halibur et al., 1995) to the level of enlargement of
lymph nodes (Mengeling et al., 1996). Nonetheless, the
evaluation of reproductive failure in pregnant females
infected at the time at which the animals are most sen-
sitive to PRRSV transplacental infection (i.e., 90 days of
gestation) is an objective and sensitive indicator of
PRRSV pathogenicity, thus ideal for evaluation of protec-
tive immunity against PRRSV (Gorcyca et al., 1995; Lager
et al., 1999; Mengeling et al., 1996; Mengeling et al., 1998;
Osorio et al., 1998; Plana-Duran et al., 1997a,b).
There are contrasting opinions about the protective

significance of antibodies in PRRSV infections, specifi-
cally about the significance of the PRRSV-specific neu-
tralizing antibody response that, as we noted, does not
appear until at least 4 weeks PI. The absence of a
detectable PRRSV-neutralizing activity during the first
few weeks of infection plus the seemingly simultaneous
detection of neutralizing antibodies and infectious
PRRSV in the blood of infected animals lead several to
postulate that neutralizing antibodies do not play a role
in protection against this viral infection (Albina, 1997;
Collins, 1998; Loemba et al., 1996; Molitor, 1993; Molitor
et al., 1997; Rossow, 1998; Snijder and Meulenberg,
2001). In addition, the observation that antibodies could
enhance the PRRSV replication in macrophages (Yoon et
al., 1996) is considered to be an additional argument for
the hypothesis that the PRRSV antibodies constitute a
deleterious, nonprotective response. However, in direct
contrast with these observations, some authors have
reported on the protective effect of passive maternal

immunity that can be transferred to the piglets in the
colostrum, which would result in protection of piglets
against development of clinical symptoms and curtail-
ment of the viremia (Gorcyca et al., 1996). Importantly, the
protective effect for piglets seems to disappear when
colostral antibodies become undetectable (Albina, 1997;
Morrison et al., 1996). Alternatively, it has been postu-
lated that the protection conferred by the colostrum is not
based on its antibodies but on its cell content instead
(Bautista and Molitor, 1997; Molitor et al., 1997). Never-
theless, there have been some reports in which DNA
vaccination with the immunogenic PRRSV ORF-5 product
(the gp 5 of 25 kdDa MW) was accompanied by appear-
ance of PRRSV-specific neutralizing antibodies and the
concomitant establishment of protective immunity in
young pigs (Pirzadeh and Dea, 1998). Likewise, there is
a report that antibodies passively transferred to pigs at a
sizable concentration (1:8 titer) cleared viremia of PRRSV
effectively (Yoon et al., 1996), while another report sug-
gests that neutralizing antibodies would clear PRRSV
from the lung during acute infection (Labarque et al.,
2000). Therefore, an assessment of the real role that
antibodies may have in protective immunity against
PRRS seems to be in order. To define the role of anti-
bodies in conferring protective immunity and in modulat-
ing the infection of PRRSV in the natural host, we con-
ducted passive transfers of PRRSV Igs obtained from
hyperimmunized animals with high PRRSV-neutralizing
titers. Our studies involving passive transfer of antibod-
ies used the most definitive model of PRRSV pathogen-
esis: induction of reproductive failure by oronasal inoc-
ulation of PRRSV in 90-day-gestation pregnant females.
Results of these experiments clearly indicate that pas-
sive transfer of PRRSV-Igs enriched in PRRSV-neutraliz-
ing activity fully prevented the transplacental infection of
offspring and completely precluded the infection of
PRRSV in the pregnant gilts.

RESULTS

Passive transfer of PRRSV-specific Igs fully prevents
PRRSV-induced reproductive failure

As explained under Materials and Methods (Passive
transfer experiments), three homogeneous groups of six
pregnant gilts each received Igs: Group I received PRV
Igs, Group II received PRRSV Igs, and Group III received
normal (PRRSV and PRV antibodies free) Igs. Of these,
only Groups I and II were challenged with PRRSV 3 days
after passive transfer of Igs.
The clinical consequences of the challenge of preg-

nant females with virulent PRRSV at Day 90 of gestation
are shown in Tables 1 and 2. The appearance of clinical
signs followed one of two clearly distinct patterns among
groups. There was no significant clinical alteration in
Groups II and III. The animals in these groups main-
tained their normal appetite and alertness during the
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remainder of gestation and did not show any abnormal
clinical signs. On the other hand, the six animals of
Group I (PRV Abs-treated group) presented significant
clinical alterations starting at 24 h after PRRSV chal-
lenge. All of the animals in this group were clearly le-
thargic, lacked appetite, and presented mild fever for
7–10 days and a rough appearance for the rest of the
gestation period. In this group three of the farrowings
were advanced by 7, 6, and 5 days of the anticipated due
date, respectively (see Table 1 for viability scores).
Upon challenge with PRRSV, the scores of offspring

viability at birth and at weaning (Table 1) clearly show a
statistically significant difference (Table 2) between
Group I (18% of piglets born alive and 4% alive by Day 15

of age) on one side and Groups II (95% born alive and
95% alive by Day 15 of age) and III (95% born alive and
90% alive by Day 15 of age) on the other side. Group I,
which had received the unrelated (PRV) antibody, exhib-
ited unequivocal signs of reproductive failure which are
the hallmark of infection with the highly virulent PRRSV
strain that we used as viral challenge (Osorio et al.,
1998). The six gilts of Group I (specially those three that
presented advanced farrowings at 5–7 days prior to
estimated due date) delivered most of their litters dead
(decomposed � stillborns) with just a few piglets surviv-
ing for a few (1–3) days. In addition to the significant
mortality at birth, the overall survival of piglets born alive
in this group was dramatically low (Table 1). The pres-
ence of PRRSV was confirmed in all of the pigs in the
aborted litters by immunohistochemistry in thymus and
other lymphoid tissue samples, as well as viral isolation
or PCR on the thoracic fluid of the fetuses. The three
piglets from this group that were still alive at weaning
time (two piglets from gilt No. 229 and one from gilt No.
230, Table 1) were necropsied at the time of weaning.
These piglets had pronounced pneumonitis, with their
lymph nodes significantly enlarged and hemorrhagic,
characteristic of PRRS in young pigs. PRRSV was iso-
lated from several tissues of these animals and detected
by immunohistochemistry in their lymphoid tissues (data
not shown).
Piglets in Group II (PRRSV antibody-treated group) did

not exhibit significant pre- or postnatal mortality, and the
size and appearance of the litters exhibited no significant
differences from the nonchallenged Group III (normal
Ig-treated group, Tables 1 and 2). The few sporadic
perinatal deaths observed in these two groups were due
to routine factors that cause mortality in these animals
(i.e., mechanical trauma caused by the dam, high num-
ber of pigs in the litter). No evidence of PRRSV infection
was found in any of the four piglets born dead in Group
II or in any of the three piglets born dead in Group III
(Table 1). The survival of the piglets born alive was 100%
in the PRRSV antibody-treated Group II and 95% in the
Unchallenged Control Group III.

TABLE 1

Offspring Viability Scores at Birth and at 15 Days
of Age (Weaning Time)

Group

Abs used
for passive
transfer

Gilt
No.

Viability at birth Viability
at 15 days
of ageDead Live

I PRV 229 9 2 2
230 11 1 1
231 7 3 0
232 10 4 0
233 9 2 0
241 13 1 0

II PRRSV 234 0 14 14
235 1 13 13
236 1 10 10
237 1 13 13
238 1 11 11
239 0 5 5

III Normal Igs 244 1 10 10
248 0 10 10
249 2 11 9
242 0 16 14
243 0 12 12
250* N/A

a Animal No. 250 (Group III) was withdrawn from experiment be-
cause of misdiagnosis of pregnancy status (open female detected at
farrowing time).

TABLE 2

Summary Statistics

Group I Group II Group III

Mean 95% CI Mean 95% CI Mean 95% CI

Total piglets born 12.0a 10.24–13.75 11.7a 7.99–15.34 12.4a 9.54–15.25
Proportion born alive 0.18a 0.08–0.29 0.95b 0.90–0.99 0.95b 0.86–1.00
Proportion alive 15 days 0.04a 0.00–0.12 0.95b 0.90–0.99 0.90b 0.74–1.00

Note. The average values and 95% confidence intervals for each group are presented. Values in a row with different superscripts are significantly
different (P � 0.01) (Donner, 1991).
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The intraperitoneal instillation of swine immunoglobulins
per se does not cause reproductive failure

Group III, which received, via ip route, a dose of
normal swine Ig equivalent to that received by the other
two challenged groups (70 mg/ml of Ig in a 1.5-L volume)
without receiving infectious challenge, did not exhibit
any clinical abnormality. Importantly, such normal per-
centage of viability and survival observed in Group III
rules out any concern that might be raised in relation to
the protocol used for ip transfer of Igs as a possible
cause of flaws in the viability scores observed in the
different experimental groups.

Passive transfer of PRRSV-specific Igs precludes PRRSV
infection of the dams and transfer of infection
to offspring

Table 3 shows the kinetics of appearance of viremia in
serum samples obtained from the pregnant females of
the three groups. To minimize stress to the pregnant
females which could possibly distort the offspring viabil-
ity results in all the groups, we collected serum samples
only at weekly intervals, starting at 7 days pi until Day 28
pi. In the clinically affected Group I, viremia was evident
in all of the dams, being detectable for the first week PI
by infectivity assays and for a longer period (up to third
week PI) by RT/PCR (Table 3). In contrast, the clinically
normal Group II did not exhibit PRRSV viremia either by

infectivity assays or by RT/PCR at any point. Likewise,
the unchallenged Group III did not exhibit PRRSV viremia
at any point, which was expected as this group had not
been challenged with PRRSV and had been maintained
under appropriate isolation throughout the experiment.
At Day 15 postbirth, immediately after weaning of the

offspring, the dams were killed and necropsied. The
tissues from the dams were used to confirm whether
PRRSV infection could be detected in those groups in
which a typical viremia had not been detected (Groups II
and III). RT/PCR and inoculation of MARC 145 cells were
used to attempt PRRSV detection or isolation in individ-
ual, not-pooled, samples of tonsils, lung, lung lavage,
and lymph nodes (including bronchial lymph nodes) in
each of the gilts from Groups II and III. In all of these
cases the viral isolation and RT/PCR assays were neg-
ative (data not shown). Negative results from Group III
were expected as this group had not been challenged
with PRRSV. It became important, however, to further
verify, at the highest level of sensitivity, if PRRSV was
absent from the tissues of the dams in the nonviremic,
PRRSV-challenged Group II. Therefore pools of tissues of
each of the 6 gilts from Group II were used to inoculate
individual young PRRSV-free pigs to attempt isolation of
infectious PRRSV by the highly sensitive bioassay pro-
cedure. No PRRSV sero-conversion or viremia could be
detected in any of the six bioassay inoculates throughout
a complete observation period of 28 days (data not
shown).
The PRRSV serologic profiles observed in Groups I

and II after the passive transfer of Igs and subsequent
PRRSV challenges are shown in Fig. 1. These profiles are
represented by the mean virus-neutralizing (VN) titers
and Idexx ELISA S/P (signal to positive) ratios. The trans-
ferred PRRSV antibodies (Group II) followed a continuous
decline starting from the initial titer of 1:16, which was
reached immediately after transfer. The VN activity de-
cayed to undetectable levels in the gilts at the time of
farrowing, with a concomitant increase in colostrum (i.e.,
with VN titers reaching up to 1:128 in colostrum and milk
and subsequent transfer to the piglets) (data not shown).
The S/P of ELISAs, while decaying more slowly, reached
near negligible levels at the end of the observation pe-
riod in the dams (at weaning of the offspring at Day 15 of
age) (Fig. 1). The decline of passively acquired pseudo-
rabies virus (PRV)-neutralizing antibodies in the animals
of Group I, which occurred at a kinetics equivalent to the
decay of the PRRSV antibodies in the animals of Group II,
is not shown in Fig. 1.
The PRRSV antibody response (VN and ELISA) in

Group I, which received unrelated (PRV) antibodies and
developed full clinical symptoms of PRRS, conforms to a
typical primary response upon exposure to PRRSV (Fig.
1). This primary response is characterized by the prece-
dence of the ELISA response over a more delayed VN
response. The dams from Group III did not develop

TABLE 3

Viremia in Gilts

Days PI

Group
Gilt
No.

7 14 21 28

Infecta
RT/
PCR Infect

RT/
PCR Infect

RT/
PCR Infect

RT/
PCR

I 229 4.7* � �1.2 � �1.2 � �1.2 �
230 5.2 � �1.2“ � �1.2 � �1.2 �
231 4.7 � �1.2 � �1.2 � �1.2 �
232 5.2 � �1.2 � �1.2 � �1.2 �
233 4.7 � �1.2 � �1.2 � �1.2 �
241 4.2 � �1.2 � �1.2 � �1.2 �

II 234 �1.2 � �1.2 � �1.2 � �1.2 �
235 �1.2 � �1.2 � �1.2 � �1.2 �
236 �1.2 � �1.2 � �1.2 � �1.2 �
237 �1.2 � �1.2 � �1.2 � �1.2 �
238 �1.2 � �1.2 � �1.2 � �1.2 �
239 �1.2 � �1.2 � �1.2 � �1.2 �

III 244 �1.2 � �1.2 � �1.2 � �1.2 �
248 �1.2 � �1.2 � �1.2 � �1.2 �
249 �1.2 � �1.2 � �1.2 � �1.2 �
242 �1.2 � �1.2 � �1.2 � �1.2 �
243 �1.2 � �1.2 � �1.2 � �1.2 �
250 �1.2 � �1.2 � �1.2 � �1.2 �

a Infectivity is expressed as log10 of PRRSV titer expressed in
TCID50/ml of serum.
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PRRSV serologic status at any moment throughout the
experiment (data not shown).
As noted above, the PRRSV infection status of the

offspring born from Group I was readily confirmed as
positive by both RT/PCR and viral isolation when necrop-
sied at weaning time (two piglets from gilt No. 229 and
one from gilt No. 230, Table 1). Importantly, serologic and
virologic assays indicated that the offspring born from
the dams of Group II were free of PRRSV infection. Half
of the offspring weaned by Group IIs females (N � 33)
were necropsied at 15 days of age and their tissues used
for virologic detection of PRRSV. The remaining half of
Group II’s weaned offspring were maintained in isolation
until Day 65 of age. During that time all the animals were

periodically sampled to ascertain their PRRSV serologic
profile and possible viremia. At Day 65 of age the ani-
mals were killed and the tissues used for viral isolation
and RT/PCR. As shown in Fig. 2, the antibody levels
obtained by colostrum ingestion progressively declined
until becoming negative (by either VN or ELISA assays)
at approximately Days 28 and 42 postbirth. No subse-
quent rise in antibodies by either ELISA or VN (which
would typically indicate active immunity due to continu-
ous infection with PRRSV upon disappearance of mater-
nal antibodies) was detectable at any point through nec-
ropsy of these animals at Day 65 of age (Fig. 2). Pools of
tissues (lung, lymph nodes, tonsils, and spleen) of the
totality of the offspring weaned from Group II (N � 66)

FIG. 1. PRRSV antibody profile in the dams of challenged Groups I and II: mean (n � 6) of ELISA (S/P) and SN titers. Solid arrow indicates average
time for farrowing.

FIG. 2. Mean PRRSV antibody profile in offspring of Group II (group passively transferred with PRRSV antibodies). N � 66 for samples collected
at Day 15 of age and N � 33 for samples collected on Days 28, 42, 56, and 65 of age. Ranges for VN individual values were Day 15, 1:8–1:2; Day
28, 1:4–�1:2; Days 42, 56, and 65, no range. Range for ELISA S/P individual values were Day 15, 1.235–0.69; Day 28, 0.978–0.301; Day 42, 0.234–0.000;
Day 56, 0.090–0.000; and Day 65, 0.050–0.000. S/P: signal to positive ratio of the commercial ELISA.

13HUMORAL PROTECTIVE IMMUNITY AGAINST PRRSV



were scored negative by both RT/PCR and viral isolation
in MARC 145 cells (data not shown).

DISCUSSION

The results of these passive transfer experiments in
pregnant gilts unambiguously indicate that the sole
transfer of immunoglobulins specific for PRRSV con-
ferred complete protection against reproductive failure
induced by this virus. This total protection was first evi-
denced by complete absence of viremia in the chal-
lenged animals, which consequently suggests that the
PRRSV-immunoglobulins were able to block the transpla-
cental infection which is known to occur approximately 7
days after a pregnant female is infected with PRRSV at
Day 90 of gestation (Mengeling et al., 1996). Furthermore,
and more importantly, the complete protection conferred
by antibodies alone is confirmed by the normal viability
at birth and survival of the piglets born from the gilts
which received PRRSV Igs but not from those that re-
ceived unrelated (anti-PRV) Igs. In addition, the passive
administration of PRRSV Igs prior to challenge appears
to have precluded the establishment or stopped the
progress of the PRRSV infection in the gilts. This is
evidenced by the absence of viremia in the PRRSV-Ig-
protected gilts, the absence of infectious virus from
these females’ tissues at 45 days post challenge, and the
lack of transmission of infection to the offspring, which
remained PRRSV-free until their necropsy at Day 65 of
age.
Regarding the basis for this humoral passive transfer

of protection, it is important to note that our protective Ig
stock solution had been prepared from individual hyper-
immune sera with a high content of PRRSV-neutralizing
antibodies. Therefore PRRSV-neutralizing antibodies
were highly represented in the Ig stock solution that was
passively transferred as well as in the circulation of the
gilts shortly upon transfer and prior to challenge (Fig. 1).
We believe that the PRRSV-neutralizing Igs may have a
significant role in the protective effect of the passive
transfer of Igs. Previous reports from several laborato-
ries, including ours, support the notion that an associa-
tion exists between in vitro neutralizing capacity and
protection in vivo against PRRSV infection (Gorcyca et al.,
1995; Gorcyca et al., 1996; Labarque et al., 2000; Morri-
son et al., 1996; Osorio et al., 1998; Pirzadeh and Dea,
1998). Investigators that described the sequential ap-
pearance of non-PRRSV-neutralizing followed by PRRSV-
neutralizing antibodies during the response of pigs to
PRRSV infection have not described any protective effect
conferred by the nonneutralizing fraction of PRRSV Igs
(Labarque et al., 2000; Yoon et al., 1996). Instead, in those
experiments the transfer or appearance of PRRSV-neu-
tralizing antibodies protected pigs against viremia (Yoon
et al., 1996) and cleared the lung of infection (Labarque
et al., 2000). Likewise, immunization of pigs with PRRSV

ORF5 DNA conferred protection that seemed to correlate
closely with the appearance of PRRSV-neutralizing anti-
bodies (Pirzadeh and Dea, 1998). Moreover, we have
previously reported (Osorio et al., 1998) that in gilts which
had received an attenuated PRRSV vaccine there was an
anamnestic VN response shortly after challenge of the
vaccinated animals with virulent PRRSV. This anamnestic
VN response correlated closely with protection against
PRRSV-induced reproductive failure (Osorio et al., 1998).
In summary, our current results on passive transfer of
immunity and those of other researchers suggest that
passively transferred anti-PRRSV Igs alone will protect
swine against PRRSV infection and that such protection
may be caused by the PRRSV-neutralizing activity of
these antibodies. The PRRSV-neutralizing antibodies
would then represent a significant component of the
homologous protective immune response to PRRSV and
the first bona fide correlate of protective immunity to be
defined for PRRSV. The capacity to arise PRRSV-neutral-
izing antibodies against one or several reference strains
could therefore help to estimate the efficacy of a PRRSV
vaccine.
Despite the body of evidence suggesting that PRRV-

neutralizing antibodies would confer protection in vivo,
we cannot rule out a possible contribution of nonneutral-
izing (but protective) antibodies on this effect. We know,
from other viral systems, that protective antibodies may
function not only by virus neutralization, but also by other
mechanisms such as antibody-dependent cell-mediated
cytotoxicity, or complement-dependent antibody-medi-
ated cell lysis (Lindsay and Oldstone, 1996). Interestingly,
it has been demonstrated that nonneutralizing antibod-
ies directed against the nonstructural glycoprotein NS1
of the flavivirus tick-borne encephalitis virus (TBEV) can
mediate and passively transfer protective immunity (Kreil
et al., 1998).
One result of our experiments that is particularly re-

markable is that passively acquired PRRSV antibodies
conferred sterilizing immunity to the gilts when these
animals were challenged with PRRSV. This phenomenon
could be the consequence of the preexisting antibodies
precluding the mucosal spread of the PRRSV challenge,
thus stopping the progress of the infection. It is well
documented that antibodies alone can confer protection
against clinical disease in many other viral infections,
including several of the most economically significant
infections of swine (Onisk et al., 1994; Terpstra and
Wenswoort, 1988; Marchioli et al., 1988). Antibodies me-
diate this function primarily by providing a major barrier
for virus spread between cells and tissues and restrict-
ing virus spread by blood. However, it is commonly
accepted that complete elimination of a virus infection
cannot be achieved by antibodies alone, and that other
effector mechanisms of the immune response, namely
cell-mediated immunity, are needed for complete viral
clearance. A typical example of this situation would be
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the infections by pseudorabies virus, a member of the
alphaherpesvirus subfamily. In this case neutralizing
PRV-antibodies are known to be very effective in prevent-
ing initial infection, and in restricting the infection to the
mucosal portal of entry. However, the ability of PRV to
establish neurotropic latency allows this virus to bypass
the protective circulating antibodies and perpetuate the
infection in the form of neural latency (Mettenleiter,
1996). Despite the common perception that antibodies
may prevent but not fully clear viral infections, there is
now documented evidence for complete, sterilizing im-
munity being mediated exclusively by antibodies to HIV-1
(Gauduin et al., 1997; Shibata et al., 1999). Several mech-
anisms have been proposed to explain the absolute in
vivo HIV-1 neutralization observed in these passive
transfer experiments which involved either SCID mice
(Gauduin et al., 1997) or pig-tail macaques (Shibata et al.,
1999). Of these putative mechanisms, the strong binding
of antibody to highly conformational epitopes in virions
or in oligomeric gp120 expressed on the surface of
infected cells remains the best explanation for this ster-
ilizing capacity of anti-HIV antibodies (Cho et al., 2000).
We can speculate on the possible mechanism for the

occurrence of the sterilizing immunity produced by the
passive transfer of PRRSV antibodies herein reported.
The primary target of PRRSV infection is known to be
macrophages, specifically the alveolar macrophages
(Rossow et al., 1995). It is well accepted that either by
airborne route or by mucosal spread of the oro-nasal
inoculum, the PRRSV reaches the macrophages of the
alveolae where the primary replication of PRRSV takes
place prior to the viremic and lymphoid dissemination of
the infection to other tissues (Collins, 1998; Rossow et
al., 1995). In our experiments, the PRRSV-neutralizing
antibodies obtained by hyperimmunization, precipitated
by ammonium sulfate treatment, and transferred to the
gilts were mostly of the IgG type, as demonstrated by the
swine isotype-specific ELISA that we used to quantitate
the precipitated immunoglobulins. The IgG is known to
act as a major surface immunoglobulin in the lung of
domestic species, including swine (Tizard, 2000). High
titers of IgG perfuse into the alveolae by simple transu-
dation (Nathanson, 1997). It is then conceivable that the
high-titered anti-PRRSV IgG, translocating into the alve-
olar lumen or surface might be a major factor in preclud-
ing the macrophage-to-macrophage progress of the in-
fection, leading then to conclusion of the infection.
It might be argued that the high content of PRRSV-

specific antibodies of the solution of Igs used for these
experiments may have created a condition of “antibody
saturation” in the tissues of the passively transferred
animals. According to this logic, the VN titers obtained by
our passive transfer would therefore be artificially higher
than the normal antibody levels that could be achieved
by regular active immunization procedures. However, it
must be born in mind that the maximum levels of VN

antibodies that we observed in the females upon passive
transfer, immediately prior to PRRSV challenge (serum
titers at 1:16), are consistent with the VN levels obtained
upon active immunizations as reported by different au-
thors (Gorcyca et al., 1995; Osorio et al., 1998; Pirzadeh
and Dea, 1998). Such VN titers, attained by active immu-
nization (Gorcyca et al., 1995) or as a result of an anam-
nestic increase after challenge of vaccinated animals
with a heterologous PRRSV strain, showed close corre-
lation with protective immunity (Osorio et al., 1998; Pir-
zadeh and Dea, 1998).
Considering that PRRSV strains exhibit a high degree

of genetic variability and that PRRSV-neutralizing activity
has been reported to be strain specific, it would have
been of interest to determine the degree of protective
immunity achieved had we used a different challenge
strain (i.e., one not used for hyperimmunization of the
donor animals). If we accept that that in vitro VN can be
used as a correlate of protective humoral immunity, Table
4 can then provide some interesting predictors of immu-
nity. In that table are shown the endpoints obtained in the
in vitro VN assay when different homologous and heter-
ologous strains of PRRSV were used as challenge for the
assay. It is interesting that strains which were not used in
the hyperimmunization exhibit a sizable VN endpoint titer
similar to that attained by the homologous challenge
strain used for repeated immunizations of the donor
animals. This suggests that broadly cross-reactive neu-
tralizing epitopes exist in the PRRSV antigenic composi-
tion. Identifying these broadly cross-reactive neutralizing
epitopes will be of great value for the design of “new
generation,” protective vaccines against PRRSV. In this
respect, an important point that remains to be elucidated
is the antigenic specificity of the protective antibodies
that mediate the passive protection herein reported. It is

TABLE 4

In Vitro VN Endpoint of the Protective PRRSV Ig Stock Solution
Used in the Passive Transfer Experiment Described in Table 1,
against Several Isolates of PRRSV

Year of
isolation

Strain used
for VN assay

Endpoint
VN titer

1996 IA 977895a 256
1997 16244Bb 256
1990 VR2332b 256
1995 12068c 128
1993? MICH-1c 256
1990 Lelystadc 64

a Strain used several times for inoculation of the animals during
preparation of hyperimmune serum and also as challenge for protec-
tive immunity assessment (homologous strain).

b Strains used once for inoculation of the animals during preparation
of hyperimmune serum.

c Strains not used for inoculation of animals during preparation of
hyperimmune serum. These strains are included to check cross-reac-
tivity of the Ig solution.
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known that most of the neutralizing epitopes would re-
side in the envelope glycoprotein 5, the product of
PRRSV ORF5 (Pirzadeh and Dea, 1997; Pirzadeh and
Dea, 1998; Weiland et al., 1999; Yang et al., 2000). In
addition, at least one other neutralizing epitope has been
identified by a monoclonal antibody in the envelope
glycoprotein 4 (Yang et al., 2000) and another one in the
M envelope protein coded for by ORF6 (Yang et al., 2000).
We should also bear in mind the recent reports demon-
strating that antibodies against viral nonstructural pro-
teins such as the cell-secreted glycoprotein NS1 of tick-
borne encephalitis (Kreil et al., 1998) and the NSP4 of
rotavirus (Estes et al., 2001) have great significance for in
vivo protective immunity. In the case of PRRSV, one non-
structural glycoprotein in certain strains of PRRSV, the
glycoprotein 3, which seems to be secreted from virus-
infected cells, has been reported to be protective but not
an inducer of neutralizing antibodies (Plana-Duran et al.,
1997b). The possible significance of nonstructural
PRRSV proteins in protection is also highlighted by a
recent publication by Oleksiewicz et al., which locates
the majority of a group of immunodominant B-cell
epitopes, identified by phage display mapping of the
PRRSV genome, in the NSP2 nonstructural gene of
PRRSV (Oleksiewicz et al., 2001).

MATERIALS AND METHODS

Animals

Adult female swine of mixed breed (Landrace � Du-
roc), which weighed about 300 lb each, were used for
hyperimmunization with the goal of obtaining PRRSV-
neutralizing or PRV-neutralizing Igs. The animals were
purchased from a specific-pathogen-free herd that had
certified records of absence of PRRSV and PRV infection.
Normal swine Igs were obtained from serum collected
from animals purchased from this same herd, killed, and
bled out to harvest the maximum amount of serum pos-
sible.
For passive transfer experiments, mixed breed (Land-

race� Duroc) gilts were obtained from the swine farm of
the Animal Science Department of the University of Ne-
braska at Lincoln. These animals are free of PRV or
PRRSV infection (as determined by clinical history and
frequent serology) and show minimal incidence of clini-
cal disease. The animals had been impregnated by arti-
ficial insemination and confirmed pregnant by ultrasound
test at 56 days of gestation. The anticipated farrowing
dates for all these pregnant gilts clustered within a time
period of 48 h.

Virus strains and cells

We used in these experiments the following PRRSV
isolates: (i) PRRSV IA 97-7895 (Allende et al., 2000b;
GenBank Accession No. AF325691) which had been iso-

lated by the Diagnostic Virology Unit of NVSL USDA/
APHIS in a farm located in S.E. Iowa in December 1996.
This strain corresponded to one of the cases of exacer-
bated reproductive failure (also called “atypical PRRSV”)
that affected the region. This highly abortifacient strain
had been previously used by our lab for the evaluation of
PRRS vaccines by challenge in pregnant swine (Osorio
et al., 1998), (ii) PRRSV 16244B, which is a strain isolated
in 1997 in Nebraska from a field investigation for “atypical
PRRS” (Allende et al., 2000a; GenBank Accession No.
AF046869), (iii) PRRSV NVSL strain (provided by NVSL,
USDA, APHIS/Ames, IA), (iv) The American prototype
PRRSV strain VR-2332 (American Type Culture Collec-
tion), (v) The modified-live vaccine strain RespPRRS
(NOBL Labs., Ames, IA), and (vi) the modified-live vaccine
virus Prime PacPRRS (Schering Plough Animal Health,
Elkorn, NE). All these strains were propagated and ti-
trated in MARC-145 cells (Kim et al., 1993). These cells
were grown in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% fetal calf serum (FCS).
None of the strains were propagated more than twice in
MARC 145 cells after the last isolation from infected
tissues (wt strains) or after retrieving from the commer-
cial vaccine vial (MLV strains).

Preparation of PRRSV antibodies from
hyperimmunized animals

A total of 13 PRRSV-free female swine, of about 300 lb
of body weight each, were initially infected by oro-nasal
inoculation with 6 � 106 TCID50 of the PRRSV IA strain
97-7895. At 5 weeks PI, the animals were super infected
with a mixture of 5 additional PRRSV strains, which
included 16244B, 2332 (ATTC), NVSL, RespPRRS, and
Prime PacPRRS strains. Each strain was given at a dose
of 5 � 106 TCID50 through oro-nasal inoculation. After 4
weeks following this exposure to multiple PRRSV strains,
each of the animals received a dose of 105 TCID50 of
strain PRRSV IA strain 97-7895, emulsified in 2 ml of
Freund’s (complete) adjuvant via intramuscular route. At
intervals of month and a half thereafter, the animals
received a similar dose of PRRSV IA strain 97-7895
emulsified in 2 ml of Freund (incomplete) adjuvant for a
range of 3 to 6 applications. The PRRS VN antibody titers
in the peripheral blood of the immunized animals against
the primary inoculation strain (PRRSV IA 97-7895) were
monitored by a rapid neutralization assay of fluorescent
foci on MARC 145 cells and was confirmed by a regular
4-day VN assay on Marc-145 and porcine alveolar mac-
rophages as well. This VN endpoint titer gradually in-
creased in each of the hyperimmunized animals. Within
a period of time that ranged from 7 months (including 3
applications of virus � incomplete Freund’s) to 14
months (including 6 applications of virus � incomplete
Freund’s), all of the 13 animals reached a final endpoint
titer that ranged between 1:32 and 1:128, with most of the
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animals exhibiting an endpoint VN titer of �1:64. This
point was considered to be the end of the hyperimmu-
nization process and the animals were killed and exsan-
guinated, all of their sera individually collected, and se-
rum Igs precipitated and concentrated by NH2 SO4 treat-
ment (Onisk et al., 1994). The concentrated Igs from
individual animals were consolidated in a single Ig stock
solution to be used for passive transfer experiments.

Preparation of PRV-Igs from hyperimmunized animals

Hyperimmunization for preparation of PRV Igs was
initiated by vaccinating each of 8 PRRSV-free female
swine with a PRV-modified live virus vaccine (Syntrovet
Marker Blue, Syntrovet, Lennexa, KS) followed 3 weeks
later by intranasal and conjunctival inoculation with wt
PRV (Becker) strain. Two months post-wt PRV infection
all of the animals had reached a 1:32/1:128 range in their
PRV VN endpoint titers. The animals were then killed and
exsanguinated, and the PRV Ig NH2 SO4 precipitated as
previously described for the preparation of PRRSV-spe-
cific antibodies.

Preparation of normal Igs

Normal Igs collected from animals of the SPF herd
(PRRSV and PRV-free) were prepared following the same
procedures as described for anti-PRRSV and PRV Igs.

Standardization of the Igs stocks

The total content of swine Igs in each of the three
concentrates of Igs (PRRSV-antibodies, PRV antibodies,
and normal Igs) was determined by an indirect ELISA
specific for swine IgG (Bethyl Laboratories Inc., Mont-
gomery, TX). The level of endotoxin contamination in
each of the three Ig solutions was determined in all of the
three master Igs solutions using a commercially avail-
able detection kit based on Limulus amebocyte lysate
(Associates of Cape Cod Inc., Falmouth, MA). Likewise,
the possible interferon activity contained in the three
solutions of Igs was measured by a vesicular stomatitis
virus/porcine kidney cells interferon assay (Mawie,
1996), using genetically expressed porcine �-interferon
as positive control (source: Dr. F. A. Zuckermann, College
of Veterinary Medicine, University of Illinois). In all of the
cases, the level of viral interference activity was negligi-
ble and identical in the three stock solutions of Igs. The
endpoint of PRRSV-neutralizing activity attained for the
resulting master stock solution was 1:256, while the
resulting stock with PRV-neutralizing activity reached
1:512 by regular PRV VN assay. The three stocks were
confirmed by RT/PCR as free of contaminant PRRSV. No
titer against PRRSV was evident in the PRV Ig stock
solution. Likewise, neither titer against PRRSV or PRV
was evident in the normal Ig stock solution.

Passive transfer experiments

The Ig solutions prepared and standardized as de-
scribed above were used for passive intraperitoneal
transfer into pregnant gilts. In a typical experiment, the
gilts received the ip instillation in the left flank, at Day 87
of gestation, in standing position, with subcutaneous
local anesthesia at the point of injection, using an atrau-
matic teat cannula. Typically, the time of instillation for an
entire dose of Ig stock solution was 10–15 min/gilt. The
dilution of the Igs in the body of recipient gilts was
evaluated and compared using as a reference the end-
point dilution of VN antibodies. Prior to the transfer ex-
periment, the PRRSV- and PRV-neutralizing stock solu-
tions were tested using two pregnant gilts in each case.
In these initial trials, intraperitoneal instillation of 1.5
liters of Ig stock solution containing 70 mg/ml of Igs and
a PRRSV-neutralizing endpoint of 1:256 consistently lead
to the establishment of a PRRSV-neutralizing titer in pe-
ripheral blood of 1:16 by Day 89 of gestation. Likewise, at
Day 89 of gestation, upon instillation of 1.5 liters of PRV
master stock Ig solution containing 60–70 mg/ml of Igs
and a PRV-neutralizing endpoint of 1:512, the gilts exhib-
ited a peripheral PRV-neutralizing titer of 1:32/1:64. Once
the required transfer dose of Igs was determined in each
case, the main passive transfer experiment was carried
out as follows: Three homogeneous groups of 6 pregnant
gilts each were intraperitoneally instilled with 1.5 liters of
Ig stock solutions at Day 87 of gestation. Group I re-
ceived PRV Igs (Control of Ab Specificity Group) and the
resulting PRV-neutralizing titer in their peripheral circu-
lation was, 48 h later, 1:64. Group II (Principal Group)
received PRRSV Igs and the resulting PRRSV-neutralizing
titer in the peripheral circulation of any of these animals
was, 48 h later, 1:16. Finally Group III received normal
(PRRSV and PRV antibody-free) Igs (Control of the Safety
of the ip Instillation Procedure). At 3 days after ip instil-
lation (Day 90 of gestation) Groups I and II (Ab Specificity
Control and Principal Groups) were challenged oro-na-
sally with 2 ml containing 10 5.4TCID50 of PRRSV IA strain
97-7895 (second passage in MARC 145). Group III (Group
for Control of Safety of the ip Instillation Procedure) was
just mock-infected receiving 2 ml of DMEM through oro-
nasal instillation. The three groups were maintained in
isolation from each other during the entire experiment.

Evaluation of protection against PRRSV-induced
reproductive failure

A clinical and virological evaluation of the level of
protection attained in the gilts that had been passively
transferred with different Igs was conducted by: (i) num-
ber and proportion of viable offspring at birth, (ii) number
and proportion of viable offspring at Day 15 of age (wean-
ing time), (iii) measurement of viremia in the dams at 7,
14, 21, and 28 days after challenge, (iv) isolation of PRRSV
from the tissues of the gilts in the principal group upon
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necropsy conducted at weaning time, and (v) evaluation
of the infection status of the offspring by (va) PRRSV
detection in tissues of offspring (half of which were killed
at weaning time and the other half at Day 65 of age) by
RT/PCR and by viral isolation on MARC 145 cells and (vb)
analysis of the kinetics of the PRRSV ELISA antibody
response (Idexx PRRSV ELISA, Portland, ME) present in
the sera of the offspring maintained alive until Day 65 of
age.

Detection of PRRSV in tissues and blood

The tissues collected from the offspring at necropsy
were analyzed for the presence of PRRSV by infectivity
assays on MARC 145 cells, by immunohistochemistry,
and by RT/PCR. The protocols for viral isolation and
immunohistochemistry were reported previously (Sur et
al., 1998). The samples assessed included tonsil, serum,
lymph nodes (retropharyngeal and bronchial lymph
nodes), serum, and lung. Likewise, samples of serum
collected from all of the dams of the two PRRSV-chal-
lenged groups at 7, 14, 21, and 28 days postchallenge
were used to titrate viremia in MARC 145 cells and detect
PRRSV RNA by RT/PCR. For tissues and blood from gilts
or piglets we used a protocol of nested RT-PCR using
primers capable of directing the amplification of 403- and
150-bp fragments of ORF6 of the PRRSV IA 97-7895 strain
(GenBank Accession No. AF325691), which was used for
challenge of the passively transferred females. The
sense and antisense primers for the outer PCR were
5�-AGGTGCTCTTGGCGTTCTCTATT-3� (nucleotides 14424
to 14447) and 5�-GCTTTTCTGCCACCCAACACG-3� (nucle-
otides 2848 to 2869), respectively. Primer sequences for
the nested PCR were 5�-CCTCCAGATGCCGTTTGTG-
CT-3� (nucleotides 14661 to 14682) and 5�-TGCCGTTGA-
CCGTAGTGGAGC-3� (nucleotides 14790 to 14811). Cy-
cling parameters for both PCRs were 95C 1 min, 60C 1
min, 72C 1 min in standard PCR mix with 4 mM MgCl2 for
a total of 30 cycles. The RNA extraction from samples,
RT, and PCR protocols have been described previously
(Sur et al., 1996).
The detection of PRRSV in the tissues of the gilts from

the Principal Group was also approached by in vivo
inoculation of PRRSV-susceptible pigs (swine bioassay)
as previously described (Allende et al., 2000b). Briefly, we
inoculated 1- to 2-week-old piglets, obtained from an
unvaccinated PRRSV-free herd, to assay for the presence
of infectious PRRSV in tissue collected from the gilts of
the principal group killed at weaning of offspring (at 45
days postchallenge with PRRSV IA 97-7895 strain). Each
homogenate typically consisted of 50 to 80 mg of ground
tissues including tonsil, lung, and pool of retropharyn-
geal and bronchial lymph nodes. Each homogenate was
maintained at �80°C for parallel attempts of viral isola-
tion assay in cell cultures. For bioassay each homoge-
nate was diluted to a volume of 8 ml with MEM, supple-

mented with gentamicin (50 �g/ml) and used to inoculate
the piglets. Tissue samples taken at necropsy from the
infected animals were ground separately. Typically each
homogenate consisted of 5 to 10 g each of ground lung,
lung lymph node, and tonsil tissues and 4 ml of serum.
MEM supplemented with gentamicin (100 �g/ml) was
added in a volume of 15 ml. The suspension was then
frozen and thawed and clarified by centrifugation at 2000
rpm for 10 min. Supernatants were then transferred to
new sterile tubes and diluted 1 to 5 in MEM containing
100 �g/ml of gentamicin. A volume of 12 ml from each
sample suspension was used to inoculate the piglets.
Bioassay experimental piglets were inoculated with 1 ml
of the supernatants from tissue suspension delivered in
each nostril with the remaining 10 ml of inoculum being
delivered intraperitoneally. Each inoculated animal re-
mained individually isolated during the bioassay experi-
ments for a period of 3 weeks. The progress of the
experimental inoculation was monitored by daily clinical
observation and weekly serum sampling which was
used for the assessment of viremia and PRRSV antibody
response by ELISA in the recipient young pigs.

Statistical analysis

All statistical analyses were performed using SYSTAT
9.0 (SPSS, Inc., Chicago, IL). Differences between groups
were evaluated by Kruskal-Wallis analysis of variance
and pairwise rank-sum test (Donner, 1991).
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