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Piezomodulated Raman spectroscopy of molecular crystals: An
experimental method for study of the anharmonic

properties of solids®
T. Luty and C. J. Eckhardt

Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304

(Received 2 July 1984; accepted 29 August 1984)

Consideration of phonon-phonon coupling induced by strain serves as impetus for developing a
theoretical structure for piezomodulated Raman spectroscopy which can be used for
experimental realization of the coupling. The direct relation of the coupling constant to
generalized stress Gruneisen parameters is shown. These describe the crystal’s anharmonic
properties such as the thermal expansivity and the temperature dependence of the phonon
energies. Numerical calculations are performed for anthracene crystal which exemplify the use of
the stress Gruneisen parameters as sensitive measures of anisotropy of intermolecular
interactions. Further development shows how the measurement can be used to determine these
parameters and how piezomodulated Raman spectroscopy can be exploited to examine the

anharmonicity of the lattice.

I. INTRODUCTION

Piezomodulation spectroscopy, where an oscillating
stress is applied to a crystal and the optical response is syn-
chronously detected, has proved to be a useful new technique
for the study of molecular crystals.! A theoretical study” of
spectroscopies based on dipole allowed transitions has
shown that the piezomodulation spectroscopy locates both
transverse and longitudinal frequencies of a band, provides
information on internal strains, and gives direct measure of
the partition of the mechanical energy among the various
excitations of the crystal.

The efficacy of the technique in these spectroscopies
suggests extension to other optical methods. Examination of
inelastic light scattering techniques is of particular interest.
Raman scattering is the archetype for such responses and, in
conjunction with the piezomodulation, it may be expected to
provide information on vibrational excitations in crystals.

Raman scattering is a powerful method for the study of
lattice dynamics. For molecular crystals, the first-order scat-
tering provides direct information about optical-phonon en-
ergies. Interpretation of such spectra usually deals with a
symmetry assignment of observed phonon bands, only sel-
dom with integrated intensities and very rarely with band
shapes. For this reason, a common approximation is to treat
optical, Raman-active phonons as noninteracting particles.
However, since there are no truly harmonic solids, the phon-
ons do interact among themselves and with other elementary
excitations, and the effect is evident in the Raman spectra.
Features such as temperature and pressure dependence of
the Raman band shape and intensities, static stress-induced?
and orientational disorder-induced*® Raman scattering
have already been investigated. The study of anharmonic
processes in molecular crystals is a rapidly growing field and
a substantial amount of work has been done recently. The
phonon bandwidths and lifetimes can be directly mea-
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sured®’ and, when compared with model calculations, pro-
vide very important and useful information about mecha-
nisms of phonon-phonon interactions, thus making it also
possible to refine the intermolecular potential at the anhar-
monic level®. In principle, all phonons can act as mediators
for the phonon-phonon interactions, thus making the theo-
retical description® and numerical calculations® of the an-
harmonic processes very complicated. It has been shown
that when interpreting phonon linewidths,® the complexity
can be avoided by assuming all cubic anharmonic terms
(phonon—phonon coupling constants) to be equal. In this
context, it would be useful to develop a selective spectro-
scopic method which will provide information about the
phonon—phonon interactions mediated by particular kinds
of phonons.

Itis the aim of this paper to suggest that the piezomodu-
lated Raman spectroscopy can serve as such a selective spec-
troscopy and measure coupling between Raman-active
phonons due to acoustic phonons. Although the coupling
does not fully account for the effect responsible for the
phonon bandwidths, it is reasonable to expect that low-fre-
quency acoustic phonons interacting with optical Raman-
active phonons will have an observable influence on band
shapes and intensities. Thus the problem is to find out how to
extract information about the interactions. In the case of
statically stress-induced Raman experiments which have
been done exclusively for inorganics, changes in phonon fre-
quencies and their symmetries due to applied stress are of
interest. For those materials, no change in intensities has
been observed under nonresonant conditions,” and there are
no reports in the literature about band shape studies in those
experiments. In order to extract information about phonon
couplings due to applied stress, the relative changes in the
Raman intensities have to be measured directly. Thus, in the
method which is suggested here, the acoustic phonons are
simulated as elastic waves produced by an applied modulat-
ed stress and the Raman intensities are measured synchro-
nously with the applied perturbation. It should be stressed
that there is growing interest in the use of acoustic phonons
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1616 T. Luty and C. J. Eckhardt: Piezomodulated Raman spectroscopy

as a perturbation to probe couplings between elementary ex-
citations in molecular crystals. In piezoreflection spectros-
copy’? and laser induced phonon spectroscopy,'® different
aspects of coupling between electronic excitations and
acoustic phonons are considered. Here, we shall consider
interactions between optical phonons mediated by acoustic
phonons which are generated by the applied modulated
stress. _

Two aspects must be considered: the dynamical prob-
lem and the magnitude of the response. The dynamical prob-
lem involves the lattice dynamics of a deformed crystal,
while the problem of response will require the Raman scat-
tering. Finally, a discussion will be given of how information
about intermolecular interactions and some of the anhar-
monic properties of the lattice can be extracted from the
experimental measurement.

1. DYNAMICAL PROBLEM

For the purpose of this paper, the acoustic phonons will
be represented by strain components

eep = lim a1, (1
and optical phonons with frequencies wy/(g, j) by normal co-
ordinates Q (q, /). The Hamiltonian for a strained lattice is

H =3+ H, : (2)
where 77, is the potential energy per cell of an undeformed
lattice and

(2 1 0 — .
H =0 3 Comeantro + 3 3 b0 0]
+ 5—;\7 Eq‘, 2,: 030, /0 (@, HC( — ./}

1 o,
+ N ; qu ; bapl@ /i — Q. J)

XeQ (N2 (- a.7)+ - (3)
Since the dynamical problem must be appropriate to the Ra-
man experiment, simplification will be achieved by consider-
ing the zone-center optical modes only. The Hamiltonian
& can then be renormalized by splitting Q (0, j) into two
parts:
20,/)=0;'+ Q. “4)
s/ denotes the elastic displacement of molecules for a given
strain {e} and Q, is the vibrational part associated with this
instantaneous equilibrium position of molecules such that
(Q,) = 0. Substitution into #” and minimizing the Hamil-
tonian with respect to Q ;' gives

Qj'= —owy? g Bap,j€as = D Aag,jCas> )
aB

where only the linear term is retained. Substituting this
expression into the Hamiltonian yields the effective Hamil-
tonian

1
%’ =—V z Caprs e apf e 6
2 apys

i , »
+3 ; [“’0151/ + g’; Papir €ap ]QJQJ" (6)

The effective elastic constants are
Copys = Cogys —V ; Oy *Pap, jPrs.s 7

and they determine completely the elastic part of the poten-
tial energy. Equation (5) determines the internal strains due
to an applied external one, and it is seen that the relation
requires internal strains to be of the same symmetry as the
€, component of the strain tensor.

At new equilibrium positions of the molecules, the dy-
namics are described by the second term in the Hamiltonian
(6). The existence of the coupling between phonons Q, due to
the applied strain e,; and anharmonicity of the crystal im-
plies that the solutions of the matrix

2y = 0y, + ; Papr €ap (8)

are still harmonic phonons, but that the corresponding ei-
genvectors are no longer plane waves. The eigenfrequencies
will depend upon the importance of this interaction and of its
dependence on the strain. The symmetry of the coupling
®ap, - Will determine which phonons Q, are coupled. For
totally symmetric strains, phonons of the same symmetry
are coupled while for nonsymmetric strains phonons of dif-
ferent symmetries are coupled. Denoting w? as the eigenval-
ues of the matrix and Q, as corresponding eigenvectors
gives

1 1
H ==y C5.5€.2€ — Y w203 9
2 aﬁzycs apys€ap 7/6’+ 5 ; Q3 9

The difference 2;w; — =0, will be a measure of anhar-
monic interactions between optical phonons mediated by
elastic waves, i.e., strain.

lil. OPTICAL RESPONSE
The Raman-scattering intensity is governed by the ten-
sor \

faprolo) =5 [ dre i), (10

where o is the difference between scattered and incident
light frequencies, y,z are the tensor components of the elec-
tronic susceptibility of the crystal. To deal with Raman scat-
tering from a strained crystal, the susceptibility is expanded
in terms of strain components e, ; and the coordinates Q (0,/),

X =Xos + Zxap.;é(oaﬁ + E;Xaﬁyseya
7 7

+ZZGXW,,ey.s§(O,j)+ (11)

Using the substitution of Eq. (4) together with the equilibri-
um conditions (5), e.g.,

0(04) = 9 + széjerB’ (12)
vé
and introducing it into Eq. (11) gives

Xos =Xas t X X0
J
+ ;[Xaﬂrﬁ + Zl’ap.jArs,j]era
7

+ 3 2 KanrosQpeys + (13)
ve
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The first coefficient of the expansion

Wap
Xopj = (14)
ap, j an
governs the first-order Raman scattering due to phonons
with normal coordinates Q; .

The photoelastic tensor component

kapys = Xapys + ;XGBJAWSJ (15)

has two contributions. y,s,s measures a change in the sus-
ceptibility component y,, due to the external strain e, 5, and
is due to the change in the volume of the unit cell. The second
corresponds to changes in the dielectric susceptibility com-
ponent s due to the internal strains. Finally, the last coeffi-
cient in Eq. (13) is defined as
dk
Kogysy = —222.. 16
e = 50 (16)

An interesting result of Eq. (15)is that the contribution to the
photoelastic tensor by the internal strains is determined by
the same derivatives which govern the first-order Raman
scattering, This result had first been noticed by Maradudin
and Burstein!' for crystals of diamond structure and has
been used recently’? for determination of the photoelastic
constants of calcite. To our knowledge, no research in this
area has been done for molecular solids. The reason may be
attributed to the low symmetry of molecular crystals for
which the theoretical approach of Maradudin and Burstein
is not applicable. Here the problem is formulated in terms of
normal coordinates of phonons and internal strains, thereby
rendering the description more transparent for molecular
solids. It is the internal strain which relates first-order Ra-
man-scattering intensities to the photoelastic tensor. Due to
recent theoretical studies of the internal strain in crys-
tals'>!4, it is now possible to address this complicated prob-
lem of the photoelasticity of low-symmetry solids.

When the expansion of Eq. (13) is introduced into Eq.
(10), the scattering intensity for a strained crystal is given by

ilw) = i) + P(w) + (o), (17)
where
£} sl0) = ; Xag, i Xys.7 X 5, (@), (18)
’g}ly& (@)= ; Xo5,:X5 (@) Z; K ong.r €ngs (19)
L/

iGhysl@) =3 ¥y (@) % Kepns.sne 2 Krtor.i€orr (20)
i I

and y (o) stands for the imaginary part of the optical
phonon—optical phonon correlation function

Y} 1 ° t i
xiw) == [ dieo, 10, 0). 21

When the phonons are treated as plane waves, the correla-
tion function is nonzero only forj = j'. However, due to the
applied strain, the phonons do interact, and the correlation
function for j#j' is not zero. In the derivation of Eqs. (17)-
(20), the slow time dependence of the external perturbative
strain has been neglected. The other simplification is that the

1517

optical phonons have been treated as Einstein oscillators.

The susceptibility is now calculated for the coupled op-
tical phonon-strain system. The Hamiltonian for the inter-
acting system is

1
7/="£'; [ng‘sjf + §¢aﬂ.jfeaﬁl Q0,0;. (22)

The single-particle susceptibility for noninteracting phon-
ons systems can be defined as

x o) = {oy — o® +iwy;} 7, (23)

e.g., as for adamped harmonic oscillator with frequency wy;.
Setting

Wy, = ; bop. i Cap> 24)

then from the definition of the generalized susceptibility of
interacting systems'®

xrl@) = [1+W-x%)1; "y} @) (25)
where x°(«) is a diagonal matrix with elements of noninter-
acting phonon susceptibilities y J(w). Equation (25) can be
conveniently written as

¥ @) = {[X@)] ™" + W] " (26)
The coupled system susceptibility will have poles at frequen-
cies w,; [viz. Eq. (9)] appropriate to a deformed structure of
the crystal, and the intensity in the Raman experiment will
be given by Eq. (17). In general, the intensity and maxima in
the spectrum will depend on the applied strain. Experiments
with inorganic materials under stress do not show changes in
Raman intensities which would indicate that terms /®(w)
and /*(w) are negligible in those solids. In order to obtain a
useful result for the strain sensitivity of Raman scattering
from molecular solids, a precise experimental technique will
be required. This is possible with the use of differential mea-
surements using piezomodulation. Here the stress is applied
toacrystal and the response is measured synchronously with
the modulation frequency. The first use was to study poly-
mers,'® but without an underlying interpretation.

The piezomodulated Raman spectroscopy measures
differences in scattering from a crystal in its compressed and
extended deformation, or between a strained and unstrained
crystal. In the first case, this corresponds to

R"w)= gial) .0 (27)

ré
. v6
for a particular applied stress o, . Since the produced strain
acts as a mediator for the phonon—phonon interactions, the
equation has to be rewritten as

R™a)= 3 T (€ -0y (28)
apf

where C™! is the inverse of the elastic constant tensor de-
fined by Eq. (7). Apart from the term di(w)/de,,z in Eq. (28), it
is seen that the piezomodulated Raman response will depend
on the compressibility of a given crystal; the higher the com-
pressibility, the larger the response will be. This is a promis-
ing result for molecular crystals are reasonably compressible
and, in particular, it has interesting implications for ferroe-
lastic materials where a softening of an elastic constant takes
place close to a phase transition.
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The band shapes of the piezomodulated Raman spectra
are described by the differential

Iy
i) w8 3 X5 g X (@), (29)
aeaﬂ j.j‘”

A simple example is a one-phonon oscillator with fre-
quency w,. The susceptibility of the strain-phonon system is

X (@) =[14¢y5 - 05 - ¥ %0)] ~'x *@)- (30)
When the applied strain is very small, the susceptibility can
be approximated as

X (@) = x %) = x *@Mapesx "), (31)
and the band shape of the piezomodulated Raman spectra

will be determined by
2

I , _ 2 g€ NWy — @
oy T (@R — P+ P (32)
e.g.,
R w) = (@ — o Joyw)) (33)

[@8) + ™)
where from Eq. (8), 24 ,5¢,5 has been replaced by a differ-
ence in the phonon frequencies for the extended and com-
pressed crystals. In the approximation, the zero-response is
at @ = w,, e.g., at the frequency of the unstrained crystal,
and the intensity depends on the coupling constant ¢,,5. It is
reasonable to assume that extrema in the derivative-like re-
sponse correspond tow , and w__, but experimental verifica-
tion must be obtained.

It is instructive to compare this simple result with the
response for frequency modulated spectra. Here the band
shape is determined by
Iy "w) _ @) — ) — 0’?] — 40’} — w,)

oo [(@ — 0?)? + 0*¥*]? '
When comparing Eq. (33) with Eq. (34), one sees that al-
though the shapes of the modulated Raman spectra are pre-
dicted to be similar, the intensity will be different. Moreover,
from the frequency modulated spectra, no physically inter-
esting information will be extracted, while the strain modu-
lated Raman spectra allows for extraction of the phonon-
strain coupling constant ¢,. Since the coupling is due to the
anharmonicity of the crystal, e.g., caused by higher terms in
the energy expansion, more extensive investigation of the
details of intermolecular interactions can be studied.

(34)

IV. RELATION OF THE COUPLING CONSTANT TO
PHYSICAL PROPERTIES

The Hamiltonian of Eq. (6) is the simplest anharmonic
Hamiltonian from which an interpretation of the coupling
constant can be gleaned. From the equation of motion of the
Hamiltonian and upon taking an ensemble average, the fol-
lowing obtains:

(eu) =~ 3 (C hamo 3, s (©,0,)- (35)
To lowest order in the anharmonicity then,
(0,0,) = ()85, =ﬁejm, (36)

0j

where €;(T) is the energy of the phonon mode .
The relation (35) now becomes

() = =3 (C utrs X —tyay &) (37)
U 98 j Wy
which can be interpreted as an averaged strain in the lattice
due to the mean-square amplitudes of all thermally excited
optical phonons that are coupled through the coupling con-
stant ¢, ; to the strain e, ;. The sum over jin Eq. (37) can be
also seen as a thermally activated stress

$,5(T)= — ;W;,,,-(Q}), (38)

with ¢, ; being a measure of how much a given thermally
excited phonon mode j contributes to the ¥§-component of
the stress. The stress results in an averaged strain which is in
fact generated indirectly by internal strain Q;’ [Eq. (5)]. This
indirect coupling is already taken into account in the expres-
sion for the effective elastic constants [Eq. (7)] which are
used in Eq. (37).

The thermally stimulated internal strain (Q ') can now
be visualized in the following fashion. The thermally excited
phonon mode j with mean-square amplitude given by Eq.
(35) drives the lattice strain [Eq. (37)). The internal strains
are then produced [Eq. (5)] to provide a necessary balance
between homogeneous deformation and internal strains
which follow from the condition for a minimum in the crys-
tal energy.

The above interpretation is slightly different from that
suggested in a recent paper’’ where the main concern was
focused on thermal expansion. This work provided an inter-
esting relation between thermal expansion and the stress-
sensitivity of phonon modes. It serves as a straightforward
application to information which may be obtained regarding
the coupling constant.

Consistent with the approximation of Eq. (36) and from
Eq. (8), it is assumed that

2
dw;

?
de,s

and this is introduced into Eq. (37). From the definition of
thermal expansion
d
aaﬁ — (eaﬂ> ,
ar
the following is obtained:

1 dlnw;
aplT)= —— -C,(T). 39
s(T) " ; oo, i(T) (39)
Here, C,(T') is the contribution of the jth phonon to the heat
capacity, and quantity

brs.i =

dnow;

Yapll) = (40)

do.g

is similar to the recently proposed!” generalized Gruneisen
parameter. The importance of this is that it can be directly
measured in the piezomodulated Raman experiment. Thus
the experiment permits separate measurement of the aniso-
tropic contributions of every phonon mode at the center of
the Brillouin zone to the thermal expansion. Such informa-
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tion will be essential to understanding anomalous thermal
expansion in many molecular crystals.
These contributions also show the anisotropy of the
pressure influence on the phonon frequencies as
dlnw;

__1 ;
Y(i) - ap - 3 ; Yaa(l)‘

Since the pressure dependence of phonon frequencies is
thought to be an important measure of intermolecular inter-
action'®, there now is the potential for direct detection of
anisotropic contributions ¥,4(j) which are essential to the
understanding of molecular solids. Methods of analyzing
piezomodulated Raman data to uncover information about
the strength of the intermolecular interactions in different
directions in the crystal are under development.

The Gruneisen parameter measured in piezomodulated
Raman spectroscopy can be further used to analyze another
purely anharmonic effect in crystals, namely, the tempera-
ture dependence of phonon frequencies. This contains, in
general, two contributions'®

G0,-G).+ )G, w

The first term on the right-hand side is the “explicit” contri-
bution; it reflects the effect of the change in the phonon occu-
pation numbers for fixed equilibrium positions. The second
term, the “implicit” contribution, reflects the effects of the
change in equilibrium intermolecular spacings that accom-
pany a change in temperature. The relative importance of
the two terms is a matter of interest since it is required for an
understanding of the effect of temperature on the phonon
spectrum, as well as a measure of covalent contributions to
crystal forces. In particular, the coefficient

=(5). (50, 55, “

has a value close to one when the crystal forces are dominat-
ed by van der Waals or ionic forces, and tends toward zero
when covalent forces dominate’. With the possibility of
measurement of the stress dependence of the phonon fre-
quencies, the coefficient can now be formulated anisotrop-

ically
1 - dlnw,\ !
Teol) = — gl - GT) (T2) L 8
P

where (d In w; /3T ), is found experimentally and

- dlnw,

Yapl) = 2 L= CapysVysli)- (44)

€ap [z
Equation (43) can also be written as
dT
Tesl) = @l 3, Cums () (@5)
[z day& @

where az(j) is the jth mode “contribution” to the thermal
expansion component &,z. C,,5 is the elastic constant com-
ponent and

(o). =Go) )
do,/., do,s) \aT
is interpreted as an increase in temperature which compen-

sates a stress increase in the sense of canceling the effect on
the phonon frequency and keeping @ constant. Equation (45)

1519

is an anisotropic generalization of the isotropic parameter
introduced by Zallen.'®

It has been pointed out by Munn?® that the strain Grun-
eisen parameters for molecular crystals contain information
not only about the anharmonic part of the intermolecular
potential but also about the harmonic part. The last contri-
bution comes from the internal strain relaxation, the effect
which is responsible for the second term in the expression (7)
for the effective elastic constants. In this context, the possi-
bility of extracting purely anharmonic contributions (cou-
pling constants, ¢4, ) from piezomodulated Raman experi-
ments, as shown in the previous section, seems to be
especially valuable.

V. CALCULATIONS OF v,(j)

Because there is no information available about the de-
pendence of optical-phonon frequencies in molecular crys-
tals on different components of the strain tensor, numerical
calculations have been performed for the archetypical mo-
lecular crystal, anthracene. The “6-exp” atom-atom poten-
tial function with parameters from Williams*' has been em-
ployed. The reason for this choice of the potential function
and parameters is that, as was concluded by Dorner et al.,?
Chaplot et al.,® and Dumas ez al.,** the lattice statics and
dynamics calculations for anthracene crystal with Williams
parameters give best agreement with the experimental
phonon frequencies and the shape of the calculated phonon
dispersion branches corresponds well with the measured
curves. Chaplot et al.>* concluded also that the agreement
gives “...more confidence in the intermolecular potential
function.” Obviously, such a comparison between the calcu-
lated harmonic frequencies and the experimental data is
based on the assumption that the experimental frequencies
are harmonic in nature and the shifts due to crystal anhar-
monicities are negligible. Thus, it is advisable to refine the
intermolecular potential at the anharmonic level. It has re-
cently been done for naphthalene crystal® based on calcula-
tions of the temperature dependence of the anharmonic fre-
quency shifts and bandwidths of lattice phonons.

The important suggestion of this paper is that the stress
Gruneisen parameters ¥,4(j) or the coupling constants ¢ .5,
which will be obtained from piezomodulated Raman experi-
ments, can be used to refine the intermolecular potential.
The calculations of the stress Gruneisen parameters for the
anthracene crystal which we present below should then be
considered as an illustration of the computational procedure
and as a starting point for further improvement of the inter-
molecular potential when the experimental data from piezo-
modulated Raman-scattering measurements become avail-
able. It is important to mention that the Raman-active
phonons in the anthracene crystal are especially suitable for
the refinement of the potential as it has been shown? that
those modes are not influenced by low-energy intramolecu-
lar vibrations and they are therefore purely librational at the
center of the Brillouin zone.

As the first step in the calculations of the stress Grunei-
sen parameters, the internal energy of the anthracene crystal
has been minimized®® simultaneously with respect to seven
parameters (a,b,c,8 and Euler angles ¢,1,6 describing the
orientation of the molecules). The parameters are listed in

J. Chem. Phys., Vol. 82, No. 3, 1 February 1985
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TABLE I. Crystal structure minimization of anthracene crystal calculated
with Williams (Ref. 21) parameters and experimental values (Ref. 31),

TABLEII. Internal strains in anthracene crystal calculated for totally sym-
metric external strains.

Parameter Calculation Experiment e [ €33 €3
a(A) 8.159 8.443 9 4 56.5 —49  — -
b k&) 6016 6.002 ae,,( eg) . . 84.4 83.7
c(A) 11.085 11.124 3
8 (deg) 12397 125.60 Fy {deg) 26.9 -170 128  —848
& (deg) 216.61 218.19 ¥ " 377 043
# (deg) 60.01 59.24 %6 \deg) : T —1043 0 —559
6 (deg) 15.84 14.12 v

Table I and compared with experimental values.

For the strain-free equilibrium structure, the lattice dy-
namics in the harmonic approximation is solved. The next
step requires change of the unit-cell parameters according to
a particular strain component and minimization of the lat-
tice energy with respect to molecular orientations which are
the only internal strains in the anthracene crystal. Only to-
tally symmetric strains were considered to retain the mono-
clinic structure. Relations between unit-cell parameters and
strain components as derived by Schlenker et al.?® have been
used.
The calculations have been performed for every strain
component equal to 0.02, corresponding to a contraction of
the lattice, and separately keeping other strains zero. After
the minimization procedure, the equilibrium orientation of
the molecules has been determined for the crystal experienc-
ing a particular strain. The lattice-dynamical problem is thus
solved for the new equilibrium structure. Calculated internal
strains, expressed as changes in Euler angles, are listed in
Table IL.

‘The procedure of the calculations described above cor-
responds to that expressed by Egs. (3}-{9). Phonon frequen-
cies so calculated are the @, in Eq. (9). Table III summarizes
the results which indicate that the frequencies change a few
wave numbers for 1% of applied strain. This indicates that a
crystal such as anthracene is more sensitive to strain than
inorganics.?

The values of the strain-Gruneisen parameters 7_/,,5 {
show a significant anisotropy which has a physical meaning

reflecting the anisotropy of intermolecular interactions. As
discussed above, the calculation of 7,s(/) parameters is
straightforward, although they are not directly measurable
quantities.

In the experiment, a specific stress is applied to a crys-
tal. In this manner, the stress-Gruneisen parameters are
measured. Those parameters as defined by Eq. (4) can be
calculated from

Yasld) = g; SesrsVrsli) (46)

where S 5,5 are the elements of the elastic compliance ten-
sor. To keep the calculations consistent within the same po-
tential function model, the elastic constant tensor C and its
inverse S have been calculated from dispersion of acoustic
phonons in ten directions of the Brillouin zone. Results are
shown in Table IV and they agree very well with experimen-
tal values at 100 K.? These calculations are for 0 K. The
stress Gruneisen parameters are found using Eq. (46) and are
listed in Table V. It is evident that the c* direction in the
anthracene crystal is, from the point of view of intermolecu-
lar interactions, different from directions in the ab plane. It
is the direction perpendicular to the cleavage plane and thus
of weaker interactions that are known to lead to many phys-
ical properties which display anomalous behavior. The mod-
el calculations mirror this and it can be concluded that the
stress sensitivity of phonon modes can provide help in under-
standing the anisotropy of molecular interactions in other,
more complicated, molecular solids.

TABLE IIL Optical-phonon frequencies® ( = cm™") of anthracene crystal calculated for the strain-free equi-
librium structure compared with experimental values and calculated strain Gruneisen parameter.

Mode frequencies Gruneisen parameters
Expt. Calc. n V22 Y33 Y3
A, 49.0 43.4 242 1.50 10.71 —2.65
A, 82.1 90.0 4.50 2.56 4.22 —5.56
A, 132.1 146.9 4.22 5.10 0.00 —-2.72
B, 56.0 52.0 2.88 1.06 9.23 —5.58
B, 70.0 71.0 4.54 3.05 2.06 —3.4
B, 140.0 148.9 4.06 3.79 —0.91 —4.40
A, — 39.0 4.23 3.59 6.92 — 6.41
A, 107.1 119.8 5.38 3.46 —0.25 —4.88
B, 71.0 60.5 3.64 4.96 0.74 —4.05

* Raman-active frequencies are taken from Ref. 27 and infrared active frequencies from Ref. 28. All determined

at4K.
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TABLEIV. (A) Calculated elastic constant tensor elements for anthracene
(kbar). (B} Calculated elastic compliance tensor elements for anthracene (in
10~2 kbar ™).

(A) 135 30 50 0 52 0
145 7 0 25 0
202 0 —-33 0
35 0 -9
68 0
32
(B) 168 039 —08 0 —1.84 0
110 —065 0 —1.02 0
117 0 1.46 0
3.08 0 0.87
3.96 0
3.37
V1. CONCLUSIONS

This paper has demonstrated that piezomodulated Ra-
man spectroscopy can be a new method for the study of in-
termolecular interactions in solids. The coupling constant
#.sy; Which can be measured by this experiment plays an
important role in determining anharmonic properties of
crystals such as the thermal expansion, temperature depen-
dence of phonon energies, and anisotropy of intermolecular
interactions.

Of perhaps greater import is that these coupling con-
stants can play an essential role in the theory of phase transi-
tions since they represent the anharmonic part of the free-
energy expansion which stabilizes the crystal after a
structural phase transition. The coupling between totally
symmetric strain and an order parameter always has to be
present and in some cases will even be responsible for the
transformation. Here, the so-called reentrant phase transi-
tion in malononitrile®? can serve as an example. According
to the current theoretical model,> the unusual reentrant
nature of the phase transition is due to “anomalous thermal
contraction of the cell dimension a, represented by strain
component e;,.” As it relates to the above discussion, this
means that the coupling term ¢, ;, €,,Q;Q;, is believed to be
responsible for the phase transition since it is the coupling
constant which determines the thermal expansivity of the
crystal. More detailed analysis of the phase transition in
terms of the coupling constant is underway.

The approach to the problem of piezomodulated Ra-
man spectroscopy has employed the following simplifica-
tions: (i) optical phonons are approximated by Einstein oscil-
lators and (ii) applied stress is considered as homogeneous.
‘When these approximations are lifted, the description will be
more complicated, but can bring new insight. It can be ex-
pected that when the dispersion of the optical phonons is
taken into account, the coupling constant will depend on an
integration of the phonon states within the Brillouin zone
and consequently the coupled system susceptibility will con-
vey information about the phonon densities of states.

A qualitatively new problem will appear when the sec-
ond approximation is lifted. Allowing the strain to propa-
gate through the crystal with dissipation will force changes
in the phonon densities of states. Measurement of the opti-
cal-phonon energies as a function of distance from the sur-

TABLE V. Stress Gruneisen parameters ¥,4(/) for optical-phonon modes in
anthracene crystal (kbar—!).

Mode @y Yu Y22 1£:] Vi3
A, 43.4 0.004 —0.017 0.057 —0.008
A, 90.0 0.152 0075 —0067 —0.267
A, 146.9 0.141 0.100 —0.151 —-0.237
B, 520 0.075 0020 —-0005 —0.150
B, 71.0 0.129 0069 —0.078 —0.213
B, 148.9 0.171 0.108 —0.134 —0.301
A, 39.0 0.144 0082 —0072 —0.267
A, 119.8 0.196 0.109 —-0142 -0331
B, 60.5 0.148 0.10s —-0.114 —0.267

"

face where the stress has been applied will provide a measure
of optical-phonon velocities. Furthermore, the phonons will
condense in a region of the crystal where the applied stress
allows them to have lower energy. This can provide an excel-
lent opportunity to study the details of structural phase tran-
sition mechanisms which are known to be based on phonon
condensation.
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