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exis ts  between maximum eigenvalue and eigen- 
vector of the t ransfer  matr ix  for the ferroelec-  
t r i c  two-dimensional model15 and the ground- 
state eigenvector for  the one-dimensional aniso- 
tropic Heisenberg chain. 

It appears from our  work that the t ransverse  
field changes the cri t ical  temperature without 
changing the crit ical  behavior until the cri t ical  
field is reached, when there is a sudden change 
in the cri t ical  behavior s t  T = O  which becomes 
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TRANSIENT OPTICAL ABSORPTION BY SELF-TRAPPED EXCITONS 
IN ALKALI HALIDE CRYSTALS 
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Naval Research Laboratory, Washington, D. C. 20390 

(Received 29 June 1970) 

Transient absorption spectra produced by pulsed electron excitation at low tempera- 
ture have been identified as due to transitions originating in the lowest triplet states of 
the self-trapped exciton. The current model, comprising an electron plus a self-trapped 
hole, i s  shown to provide electronic configurations for the higher excited states which 
give a good account of the principal features of the spectra. 

Exciton self-trapping in simple halide latt ices 
is an established phenomenon. It gives r i s e  to 
broad-band, strongly Stokes-shifted lumines- 
cence which has  been studied in alkali,' ammo- 
nium,' and alkaline-earth3 halides. The self- 
trapping can be attributed to the formation of a 
covalent bond between two adjacent excited ha- 
lide ions, and the resulting X2-2 molecular ion 
provides metastable singlet and triplet  s ta tes  
with which the characterist ic short-  and long- 
lived luminescent transit ions can be reasonably 
well e ~ p l a i n e d . ~  In pure mater ia ls  at low temper- 
a tures ,  a significant fraction of any energy im-  
parted to the electronic system is at  some stage 
s tored in these states.  The present work con- 
ce rns  absorption spectra  arising f rom the longer- 
lived s ta tes  of self-trapped excitons in several  
alkali halides. The model with which the lumi- 
nescent transit ions have been interpreted will be 
shown to furnish also a straightforward account 
of the higher excited s ta tes  involved in the ab- 
sorption. 

The basic experiment consisted of t ime-re- 
solved measurements of absorption and emission 
spectra  produced by single-pulse excitation from 
an electron source of 500 keV mean energy. The 
apparatus has been described p r e v i ~ u s l y . ~  A nov- 
e l  aspect of this system i s  the use of a light beam 
which reflects internally a t  a low angle from the 
crysta l  face being irradiated. This geometry 
maximizes the light path through the irradiated 
volume, which is thin ( ~ 0 . 5  mm) because of 
the low penetration of the electron beam. For  
more  accurate spectra l  resolution, the system 
was augmented by a simple rotating-mirror 
scanning device capable of sweeping a t  r a t e s  up 
to 6 nm/psec.  Repetitive excitation and a digital 
signal averager were  used when it  was desired 
to minimize the intensity of a given pulse in o r -  
de r  to hold transient heating effects to tolerable 
level.6 The decay t imes under investigation fell 
in the lo-=-  to  lO-'-sec range. No attempt was 
made to observe the singlet self-trapped exciton 
s ta tes  since their  lifetimes (1-10 nsec) a r e  only 
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FIG. 1. Decay of optical density of absorption and 
intensity of intrinsic luminescence in NaC1 at about 
8°K. With the exception of a small permanent F band, 
all portions of the observed absorption spectrum decay 
with the same lifetime as  the two bands shown. 

on the verge of accessibility with this apparatus. 
Observed absorption was identified a s  due to 

self-trapped excitons principally on the basis  of 
decay-time correlations with the luminescence. 
A typical example is shown in Fig. 1, where the 
decay of the 3.38-eV triplet-state emission band 
in NaCl is compared with the decays of two prom- 
inent new absorption bands. The sample temper- 
a ture  was 8 * 2OK. Each point represents  a sepa- 
ra te  channel of the signal averager,  ten runs  
having been averaged for the absorption data in 
this example. Within the experimental accuracy, 
the three curves a r e  parallel  and exhibit identi- 
cal  lifetimes of 3.4 x sec." This t ime cor re -  
lation pe rs i s t s  well into the temperature range 
where the lifetimes begin to  decrease  markedly 
because of thermally activated nonradiative t ran-  
s i t i o n ~ . ~  These facts lead us  to  infer that the low- 
es t  tr iplet  self-trapped-exciton state is the o r i -  
gin of the absorption a t  these wavelengths. 

Figure 2 shows transient absorption spectra  
for  three  alkali chlorides a t  8i 2°K. Each solid 
curve represents  that pa r t  of the initial absorp- 
tion which decays in proportion to the intensity 
of the tr iplet-state luminescence. The electron 
pulse also creates  transient and stable F, H ,  and 
V ,  centers  which contribute to the absorption. 
In KC1, for  example, F and H centers  give strong 
nonexponential components of roughly 1 5  psec  
duration. The large t ime difference between 
these and the 5-msec self-trapped-exciton ab- 
sorption makes their  separation straightforward. 
Fas t  transients in the F and H bands were f i r s t  

NaC l i 
ENERGY (eV) 

FIG. 2. Absorption spectra of self-trapped excitons 
(solid lines) and stable defects (dashed lines) produced 
at low temperature by single electron pulses. The 
pulse energy was comparable in the three cases. Peak 
wavelengths of H and V, bands are marked for refer- 
ence. 

observed a t  10°K by Kondo - et  al. and were  a t -  
tributed to mutual annihilation of F and H cen- 
t e r ~ . ~  

The approximate amounts of stable color-cen- 
t e r  absorption produced by one pulse a r e  shown 
a s  the dashed bands in Fig. 2. Although the F -  
band corrections were fairly c lear  f rom the data, 
inflections in the solid curves near  the peaks of 
the F bands for KC1 and NaCl a r e  nevertheless 
subject to some uncertainty. Additional measure-  
ments imply that the appearance of stable V ,  
centers in the spectrum for  KC1 is correlated 
with the relatively large concentration of F cen- 
t e r s ,  which act  as electron t r aps  and thereby 
stabilize the V ,  centers.  As is the case  for the 
luminescence, t r ace  impurit ies o r  accumulated 
radiation damage appear to have no significant 
influence on the absorption spectra.  The KC1 
spectrum of Fig. 2, for  example, comes f rom an 
ultrapure, zone-refined crystal ,  but spectra  
f rom Harshaw crysta ls  were  similar.  

New transient absorptions correlated with the 
luminescent tr iplet  s ta tes  have also been ob- 
served in KBr, RbBr, KI, and RbI. Spectral 
measurements have been completed only on the 
two bromides, whose spectra  strongly resemble  
that of KC1 in Fig. 2. Peak energies a r e  given 
in Table I for the three  most prominent bands. 
Only two bands a r e  noted for NaC1, for  which the 
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Table I. Peak energies (eV) of principal self-trapped- 
exciton absorption bands: (a) the first two peaks of the 
red-infrared series, (b) the broad ultraviolet band. 

(a) (b) 

RbCl 1.72 1.90 3.7 
KC1 1.87 2.12 3.7 
NaCl 2.03 3.6 
RbBr 1.48 1,65 3.35 
KBr 1.58 1.77 3.30 

doublet s t ructure  i s  the red  band i s  not resolved. 
Let us now consider the electronic s ta tes  which 

give r i s e  to these optical transitions. The lumi- 
nescence data have shown that the ionized state 
of the self-trapped exciton is in fact the self- 
trapped hole, o r  V ,  center. This center is basi-  
cally an X,' molecular ion and, in the chlorides, 
i t s  predominant absorption band a t  approximate- 
ly 3.4 eV has been identified a s  a (~ ,3p) (n ,3p)~  
x(n,3P)4(a, 3PY, 2Cg+- (0, 3 ~ ) ~ ( 7 1 ~ 3 ~ ) ~ ( 1 1 , 3 ~ ) ~ ( 0 ~  3P), 
'2,' transition.'1112 We designate these configu- 
rations B and A,  respectively. For  the lowest 
state of the exciton, i t  is reasonable to assign 
the electron to a og4s  orbital  having substantial 
amplitude on the ions neighboring the V ,  - 
like absorption should therefore pe rs i s t  in the 
exciton, and consequently we attribute the absorp- 
tion in the 3- to 4-eV range to this type of hole 
transition. The peak i s  0.3 eV above the known 
V ,  peak energy in all  three chlorides. Regarding 
the absorption in the 1- to 3-eVrange, the logical 
source is a sequence of Rydberg-like transitions 
converging to the conduction band edge. The elec- 
t ron orbitals involved would be lso,, 2pu,, 2PrU,  
etc., employing an eclectic but convenient nota- 
tion. It is apparent in Fig. 2 that the shifts in 
th is  absorption f rom crysta l  to crysta l  a r e  simi- 
l a r  to the shifts for electron-excess color cen- 
t e r s ,  in particular F and M centers.  

Energy-level assignments based on the present 
considerations a r e  shown for  the three  chlorides 
in Fig. 3. Selection rules  on multiplicity and 
parity have been taken into account. The lowest 
tr iplet  state is placed a t  ze ro  energy since i t  
originates a l l  transitions under consideration. 
Figure 3 pertains only to lattice configurations 
characterist ic of the 'C,+ state;  that is, Franck- 
Condon transitions a r e  assumed. The free-exci- 
ton s ta te  represents  an exciton which has es -  
caped the trapping site; the energy of this state 
relative to the lCg+ ground s ta te  is just the peak 
energy of the f i r s t  exciton absorption band in the 
perfect crystal .  From the location of the f ree-  

:[ "." K C 1  RbCl 
- Free Exciton 

FIG. 3. Energy level diagram for principal transi- 
tions originating in the lowest b,' state of the self- 
trapped exciton in three alkali chlorides. From the 
measured spectra, the conduction-band edge is esti- 
mated to be within the range indicated by the cross- 
hatching. 

exciton state i t  i s  c lear  that none of the observed 
transitions involve s ta tes  degenerate with exci- 
ton band states.  

The conduction band edge or  Rydberg se r i es  
limit, A2Cut, cannot be located accurately on the 
basis  of the spectra  in Fig. 2. Only a rough esti-  
mate has been made, partly by comparison with 
Rydberg-like color-center absorptions in these 
crystals.13 This resul ts  in placement of the con- 
duction-band edges within the ranges of uncer- 
tainty indicated by the c r o s s  hatchings in Fig. 3. 
It thus becomes evident that the optical ioniza- 
tion energies of self-trapped excitons a r e  sub- 
stantially greater  than the 0.5- to 1.0-eV free-ex- 
citon binding energies inferred f rom various fun- 
damental spectra.14 It is apparent also that the 
Blsa,3C,+ s ta tes  a r e  degenerate with the conduc- 
tion bands. 

There a r e  two possible interpretations for  the 
doublet s t ructures  in the 1.5- to 2.1-eV range in 
KC1 and RbCl (and also KBr and RbBr): transi-  
tions to 20- and 3P-like orbitals o r  to molecular- 
field-split 2po, and 2P7ru orbitals. The relative 
strengths seem to favor the latter assignment, 
and the designations in Fig. 3 reflect this choice. 
Note in Table I that the doublet splittings a r e  
about 0.2 eV in both the chlorides and the bro- 
mides. 

In light of the present data, i t  i s  useful to com- 
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pare  the self-trapped exciton with a well-known 
color center,  the M center.  With respect  to  the 

character  of the excited electron orbital, the 
transit ions which give rise to the M, and M, ab- 
sorption bands are s imi la r  to our proposed 
molecular-field-split Rydberg transitions; in  
fact, for  the c rys ta l s  in Table I, the exciton 
bands comprising the r e d  doublet fa l l  consistent- 
ly between the M, and M2 bands.15 Thus the t ran-  

si t ions appear relatively insensitive to whether 
the electron is interacting with an X2' molecular 
ion, as fo r  the exciton, o r  with another electron 
in the vacancy pai r ,  as for  the M center. This  

suggests a significant degree  of delocalization 
for  the lsa,, 2pa,, and higher orbitals of the 
Rydberg series. It may be  noted that the lifetime 
data  a lso  re la te  to the question of delocalization. 
After correct ion fo r  multiplicity forbiddenness, 
the dipole matr ix  elements fo r  '2,'- 'C,' t rans i -  
tions4 s t i l l  exceed those fo r  the 3C,+- lG,+ tran- 
si t ions by factors  ranging from roughly 3 for 
NaCl to  6 for RbBr.la It is reasonable to  a t t r i -  

bute this effect pr imari ly  to a relatively g rea te r  
r ad ia l  extent of the lso, orbi ta l  i n  the 3C,+ state. 
Theoretical indications of diffuse relaxed excita- 
tion s t a t e s  have previously appeared in  the work 
of Wood." 

A more  extensive account of the present  work 
will  be  published. 
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