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24.1 INTRODUCTION 

This chapter outlines the theory of atomic photoion- 
ization, and the dynamics of the photon-atom collision 
process. Those kinds of electron correlation that are most 
important in photoionization are emphasized, although 
many qualitative features can be understood within a 
central field model. The particle-hole type of electron 
correlations are discussed, as they are by far the most 
important for describing the single photoionization of 
atoms near ionization thresholds. Detailed reviews of 
atomic photoionization are presented in Refs. [I] and 121. 
Current activities and interests are well-described in two 
recent books [3,4]. Other related topics covered in this 

volume are, experimental studies of photon interactions 
at both low and high energies in Chaps. 59 and 60, pho- 
todetachment in Chap. 58, and theoretical descriptions of 
electron correlations in Chap. 23, autoionization in Chap. 
25, and multiphoton processes in Chap. 72. 

24.2 GENERAL CONSIDERATIONS 

24.2.1 The Interaction Hamiltonian 

Consider an N-electron atom with nuclear charge 2. 
In nonrelativistic approximation, it is described by the 
Hamiltonian 
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The one-electron terms in brackets describe the kinetic 
and potential energy of each electron in the Coulomb 
field of the nucleus; the second set of terms describe the 
repulsive electrostatic potential energy between electron 
pairs. The interaction of this atom with external 
electromagnetic radiation is described by the additional 
terms obtained upon replacing pi by pi + (lel/c)A(ri, t ) ,  
where A(ri ,  t) is the vector potential for the radiation. 
The interaction Hamiltonian is thus 

Under the most common circumstance of single-photon 
ionization of an outer-subshell electron, the interaction 
Hamiltonian in (24.2) may be simplified considerably. 
First, the third term in (24.2) may be dropped, as it 
introduces two-photon processes (since it is of second 
order in A). In any case, it is small compared with single 
photon processes since it is of second order in the coupling 
constant lel/c. Second, we choose the Coulomb gauge 
for A, which fixes the divergence of A as V-A = 0. A 
thus describes a transverse radiation field. Furthermore 
p and A now commute and hence the first and second 
terms in (24.2) may be combined. Third, we introduce 
the following form for A: 

This classical expression for A may be shown [5] to give 
photoabsorption transition rates that are in agreement 
with those obtained using the quantum theory of radi- 
ation. Here k and w are the wave vector and angular 
frequency of the incident radiation, E is its polarization 
unit vector, and V is the spatial volume. Fourth, the 
electric dipole (El)  approximation, in which exp i(k-ri) 
is replaced by unity, is usually appropriate. The radii r, 
of the atomic electrons are usually of order 1A. Thus 
for X >> 100A, lk-r,l << 1. Now X >> 100A corre- 
sponds to photon energies hw << 124eV. For outer atomic 
subshells, most of the photoabsorption occurs for much 
smaller photon energies, thus validating the use of the 
E l  approximation.l Use of all of the above conventions 

lThis approximation cannot be used uncritically, however. For 
example, photoionization of excited atoms (which have large radii), 
photoionization of inner subshells (which requires the use of short 
wavelength radiation), and calculation of differential cross sections 
or other measurable quantities that are sensitive to the overlap of 
electric dipole and higher multipole amplitudes all require that the 
validity of the electric dipole approximation be checked. 

and approximations allows the reduction of Hint in Eq. 
(24.2) to the simplified form 

Hint thus has the form of a harmonically time-dependent 
perturbation. According to time-dependent perturbation 
theory, the photoionization cross section is proportional 
to the absolute square of the matrix element of (24.4) 
between the initial and final electronic states described 
by the atomic Hamiltonian in (24.1). Atomic units, in 
which )el = m = fL  = I, are used in what follows. 

24.2.2 Alternative Forms for the 
Transition Matrix Element 

The matrix element of (24.4) is proportional to 
the matrix element of the momentum operator Ci pi. 
Alternative expressions for this matrix element may be 
obtained from the following operator equations involving 
commutators of the exact atomic Hamiltonian in (24.1): 

Matrix elements of (24.5) and (24.6) between eigen- 
states (gal and Igf) of H having energies Eo and E f  
respectively give 

N N 

N 
where w = E f  - Eo. Matrix elements of x i = 1  Pi, 

EL, ri,  and zEl Zri/r: are known as the "velocity," 
'Llength," and "acceleration" forms of the E l  matrix 
element. 

Equality of the matrix elements in (24.7) and (24.8) 
does not hold when approximate eigenstates of H are 
used [6]. In such a case, qualitative considerations may 
help to determine which form is most reliable. For 
example, the length form tends to emphasize the large r 
part of the approximate wave functions, the acceleration 
form tends to emphasize the small r part of the wave 
functions, and the velocity form tends to emphasize 
intermediate values of r. 

If instead of employing approximate eigenstates of the 
exact H, one employs exact eigenstates of an approxi- 
mate N-electron Hamiltonian, then inequality of the ma- 
trix elements in (24.7) and (24.8) is a measure of the non- 
locality of the potential in the approximate Hamiltonian 
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[7]. The exchange part of the Hartree-Fock potential is an 
example of such a nonlocal potential. Nonlocal potentials 
are also implicitly introduced in configuration interaction 
calculations employing a finite number of configurations 
[7]. One may eliminate the ambiguity of which form of 
the E l  transition operator to use by requiring that the 
Schrodinger equation be gauge invariant. Only the length 
form is consistent with such gauge invariance 171. 

However, equality of the alternative forms of the tran- 
sition operator does not necessarily imply high accuracy. 
For example, they are exactly equal when one uses an 
approximate local potential to describe the N-electron 
atom, as in a central potential model, even though the 
accuracy is often poor. The length and velocity forms 
are also exactly equal in the random phase approxima- 
tion [8], which does generally give accurate cross sections 
for single photoionization of closed shell atoms. No gen- 
eral prescription exists, however, for ensuring that the 
length and velocity matrix elements are equal at each 
level of approximation to the N-electron Hamiltonian. 

24.2.3 Selection Rules for Electric 
Dipole Transit ions 

If one ignores relativistic interactions, then a general 
atomic photoionization process may be described in LS- 
coupling as follows: 

Here the atom A is ionized by the photon y to produce a 
photoelectron with kinetic energy E and orbital angular 
momentum k'. The photoelectron is coupled to the ion 
A+ with total orbital and spin angular momenta L' and 
Sf .  In the electric dipole approximation, the photon may 
be regarded as having odd parity, i.e., T, = -1, and 
unit angular momentum, i.e., t, = 1. This is obvious 
from Eqs. (24.7) and (24.8), where the E l  operator is 
seen to be a vector operator. The component m, of 
the photon in the E l  approximation is f 1 for right or 
left circularly polarized light and 0 for linearly polarized 
light.' Angular momentum and parity selection rules for 
the E l  transition in (24.9) imply the following relations 
between the initial and final state quantum numbers: 

2 ~ h e  z axis is taken as & in the case of circularly polarized light 
and as 2 in the case of linearly polarized light, where k and 2 are 
defined in Eq. (24.3). 

Equation (24.14) follows from the parity (-l)e 
of the photoelectron. The direct sum symbol 
@ denotes the vector addition of A and B i.e, 
A @ B = A + B , A + B - 1 ,  . . . ,  IA-BI. 

In (24.9), the quantum numbers a E 

L, S, rd+ ,t, L', Sf, ML,, Ms/ (plus any other quantum 
numbers needed to specify uniquely the state of the ion 
A+) define a final state channel. All final states that dif- 
fer only in the photoelectron energy E belong to the same 
channel. The quantum numbers L', Sf, ML, , Ms/, and 
rt,t = (- l)e~d+ are the only good quantum numbers for 
the final states. Thus the Hamiltonian (24.1) mixes final 
state channels having the same angular momenturn and 
parity quantum numbers but differing quantum numbers 
for the ion and the photoelectron; i.e., differing z,S, 
n ~ + ,  and e but the same L', S', ML,, Ms/ and (-1)' rd+ . 

24.2.4 Boundary Conditions on the 
Final State Wave Function 

Photoionization calculations obtain final state wave 
functions statisfying the asymptotic boundary condition 
that the photoelectron is ionized in channel a .  This 
boundary condition is expressed as 

where the phase appropriate for a Coulomb field is 

The minus superscript on the wave function in (24.15) 
indicates an "incoming wave" normalization: i.e., asymp- 
totically $2 has outgoing spherical Coulomb waves only 
in channel a, while there are incoming spherical Coulomb 

t waves in all channels. S,,, is the Hermitian conjugate of 
the S-matrix of scattering theory, 0, indicates the cou- 
pled wave function of the ion and the angular and spin 
parts of the photoelectron wave function, k, is the pho- 
toelectron momentum in channel a and e, is its orbital 
angular momentum, and at, in (24.16) is the Coulomb 
phase shift. 

While one calculates channel functions +,E, experi- 
mentally one measures photoelectrons which asymptot- 
ically have well-defined linear momenta k, and well- 
defined spin states m i ,  and ions in well-defined states 

& E L S M ~  M ~ .  The wave function appropriate for this 
experimental situation is related to the channel functions 
by uncoupling the ionic and electronic orbital and spin 
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angular momenta and projecting the photoelectron an- 
gular momentum states t,, m, onto the direction k, by 
means of the spherical harmonic Ycma (k,). This rela- 
tion is [I]: 

where the coefficients in brackets are Clebsch-Gordan 
coefficients. This wave function is normalized to a delta 
function in momentum space, i.e., 

The factors iea exp(-iae,)k,' ensure that for large TN 

Eq. (24.17) represents a Coulomb wave (with momentum 
k,) times the ionic wave function for the state fi plus 
a sum of terms representing incoming spherical waves. 
Thus only the ionic term h has an outgoing wave. One 
uses the wave function in (24.17) to calculate the angular 
distribution of photoelectrons. 

for the differential cross section 191. Here a, is the 
partial cross section for leaving the ion in the state 
h ,  p is the asymmetry parameter [lo], P2(cos8) = 
$ cos2 8 - i, and 8 indicates the direction of the outgoing 
photoelectron with respect to the polarization vector 2 
of the incident light. The form of (24.21) follows in 
the electric dipole aproximation from general symmetry 
principles, provided that the target atom is unpolarized 
[ l l ] .  The partial cross section is given in terms of reduced 
E l  matrix elements involving the channel functions in 
(24.15) by 

The ,B parameter has a much more complicated ex- 
pression involving interference between different reduced 
dipole amplitudes [lo]. Thus measurement of P provides 
information on the relative phases of the alternative final 
state channel wave functions, whereas the partial cross- 
section in Eq. (24.22) does not. From the requirement 
that the differential cross section in (24.21) be positive, 
one sees that -1 < p 5 +2. 

24.2.5 Photoionization Cross Sections 

If one writes Hint in (24.4) as Hint(t) = Hint(0)-iwt, 
then from first order time-dependent perturbation the- 
ory, the transition rate for transition from an initial state 
with energy Eo and wave function $0 to a final state with 
total energy Ef and wave function +gka is 

The delta function expresses energy conservation and the 
last factors on the right are the phase space factors for 
the photoelectron. Dividing the transition rate by the 
incident photon current density c/V, integrating over 
dk,, and inserting Hint (0), the differential photoioniza- 
tion cross section is 

Implicit in Eqs. (24.19) and (24.20) is an average over 
initial magnetic quantum numbers ML, Ms, and a sum 
over final magnetic quantum numbers MLM9m;. The 
length form of Eq. (24.20) is obtained by replacing each 
pi by wri [cf. Eq. (24.7)]. 

Substitution of the final state wave function (24.17) 
in Eq. (24.20) permits one to carry out the numerous 
summations over magnetic quantum numbers and obtain 
the form 

24.3 AN INDEPENDENT ELECTRON 
MODEL 

The many-body wave functions $0 and +iE are 
usually expressed in terms of a basis of independent 
electron wave functions. Key qualitative features of 
photoionization cross sections can often be interpreted in 
terms of the overlaps of initial and final state one electron 
radial wave functions [12]. The simplest independent 
electron representation of the atom, the central potential 
model, proves useful for this purpose. 

24.3.1 Central Potential Model 

In the central potential (CP) model the exact H in 
(24.1) is approximated by a sum of single-particle terms 
describing the independent motion of each electron in a 
central potential V(T): 

The potential V(r) must describe the nuclear attraction 
and the electron-electron repulsion as well as possible and 
must satisfy the boundary conditions 

V(T)----, - ZIT and V(T) --, - l / r  (24.24) 
r -0  7-Oi- 
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in the case of a neutral atom. HCp is separable in 
spherical coordinates and its eigenstates can be written 
as Slater determinants of one-electron orbitals of the 
form r-lPnefi,(R) for bound orbitals and of the form 
r-' PEe(r)&, (0) for continuum orbitals. The one- 
electron radial wave functions satisfy 

subject to the boundary condition P,g(O) = 0, and 
similarly for the discrete orbitals Pne (r). Hermann 
and Skillman [13] have tabulated a widely used central 
potential for each element in the periodic table as well 
as radial wave functions for each occupied orbital in the 
ground state of each element. 

24.3.2 High Energy Behavior 

The hydrogen atom cross section, which is nonzero 
at threshold and decreases monotonically with increasing 
photon energy, serves as a model for inner-shell photoion- 
ization cross sections in the x-ray photon energy range. 
A sharp onset at threshold followed by a monotonic de- 
crease above threshold is precisely the behavior seen in 
x-ray photoabsorption measurements. A simple hydro- 
genic approximation at high energies may be justified 
theoretically as follows: (1) Since a free electron cannot 
absorb a photon (because of kinematical considerations), 
at high photon energies one expects the more strongly 
bound inner electrons to be preferentially ionized as com- 
pared with the outer electrons. (2) Since the Pne(r) for 
an inner electron is concentrated in a very small range 
of r ,  one expects the integrand of the radial dipole ma- 
trix element to be negligible except for those values of r 
where Pne(r) is greatest. (3) Thus it is only necessary to 
approximate the atomic potential locally, e.g., by means 
of a screened Coulomb potential 

appropriate for the ne orbital. Here s,e is the "inner- 
screening" parameter, which accounts for the screening 
of the nuclear charge by the other atomic electrons, and 
V,Oe is the "outer-screening" parameter, which accounts 
for the lowering of the nt electrons' binding energy due 
to repulsion between the outer electrons and the photo- 
electron as the latter leaves the atom. The potential in 
(24.26) predicts hydrogen-like photoionization cross sec- 
tions for inner-shell electrons with onsets determined by 
the outer-screening parameters V,Oe 

Use of more accurate atomic central potentials in 
place of the screened hydrogenic potential in (24.26) 
generally enables one to obtain photoionization cross 
sections in the keV photon energy region to within 10% 

of the experimental results [14]. For high but still 
nonrelativistic photon energies, i.e., w << mc2, the energy 
dependence of the cross section for the ne subshell is [15] 

24.3.3 Near Threshold Behavior 

For photons in the vuv energy region, i.e., near the 
outer-subshell ionization thresholds, the photoionization 
cross sections for subshells with e > 1 frequently have 
distinctly nonhydrogenic behavior. The cross section, in- 
stead of decreasing monotonically as for hydrogen, rises 
above threshold to a maximum (the so called delayed 
maximum above threshold). Then it decreases to a mini- 
mum (the Cooper minimum [16,17]) and rises to a second 
maximum. Finally the cross section decreases monoton- 
ically at high energies in acordance with hydrogenic be- 
havior. Such nonhydrogenic behavior may be interpreted 
as due either to an effective potential barrier or to a zero 
in the radial dipole matrix element. We examine each of 
these effects in turn. 

The delayed maximum above outer subshell ioniza- 
tion thresholds of heavy atoms (i.e., 2 2  18) is due to an 
effective potential barrier seen by e = 2 and e = 3 pho- 
toelectrons in the region of the outer edge of the atom 
[cf. Eq. (24.25)]. This effective potential lowers the prob- 
ability of photoelectron escape until the photoelectrons 
have enough excess energy to surmount the barrier. Such 
behavior is nonhydrogenic. Furthermore, in cases where 
an inner subshell with e = 2 or 3 is being filled as Z in- 
creases (as in the transition metals, the lanthanides and 
the actinides) there is a double well potential. This dou- 
ble well has profound effects on the 3p-subshell spectra of 
the transition metals, the 4d-subshell spectra of the lan- 
thanides, and the 5d-subshell spectra of the actinides, as 
well as on atoms with Z just below those of these series 
of elements [18,19]. 

Cross section minima arise due to a change in sign of 
the radial dipole transition matrix element in a particular 
channel [20,21]. Rules for predicting their occurrence 
were developed by Cooper [16,17]. Studies of their 
occurrence in photoionization from excited states [22], 
in high Z atoms [23], and in relativistic approximation 
[24] have been carried out. Only recently has a proof 
been given [25] that such minima do not occur in atomic 
hydrogen spectra. For other elements, there are further 
rules on when and how many minima may occur [26]. 

Often within such minima, one can observe effects 
of weak interactions that are otherwise obscured. Rel- 
ativistic and weak correlation effects on the asymmetry 
parameter 0 for s-subshells is a notable example [27]. 
Wang et al. [28] have also emphasized that near such 
minima in the E l  amplitudes, one cannot ignore the ef- 
fects of quadrupole and higher corrections to the differ- 
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ential cross section. Central potential model calculations 
[28] show that quadrupole corrections can be as large as 
10% of the E l  cross section at such cross section minima, 
even for low photon energies. 

24.4 PARTICLE-HOLE 
INTERACTION EFFECTS 

The experimental photoionization cross sections for 
the outer subshells of the noble gases3 near the ionization 
thresholds can be understood in terms of interactions 
between the photoelectron, the residual ion, and the 
photon field which are called, in many-body theory 
language, "particle-hole" interactions (see Chap. 23). ~ E # l : l y  " 
These may be described as interactions in which two - - -  
electrons either excite or de-excite each other out of 
or into their initial subshell locations in the unexcited 
atom. To analyze the effects of these interactions on 
the cross section, it is convenient to classify them into 
three categories: intrachannel, virtual double excitation, 
and interchannel. These alternative kinds of particle-hole 
interactions are illustrated in Fig. 24.1 using both many- 
body perturbation theory (MBPT) diagrams and more 
"physical" scattering pictures. We discuss each of these 
types of interaction in turn. 

(Je- 0 
n l 

24.4.1 Intrachannel Interactions 
tc) 

The MBPT diagram for this interaction is shown on 
the left in Fig. 24.l(a); on the right a slightly more 
pictorial description of this interaction is shown. The Figure 24.1. MBPT diagrams (left) and scattering 
wiggly line indicates a photon, which is absorbed by the pictures (right) for three kinds of particle-hole interac- 
atom in such a way that an electron is excited out of the tion: (a) intrachannel scattering following photoabsorp- 
nC subshell. During the escape of this excited electron, tion; (b) photoabsorption by a virtual doubly-excited 
it collides or interacts with another electron from the state; (c) interchannel scattering following photoabsorp- 
same subshell in such a way that the second electron tion. 
absorbs all the energy imparted to the atom by the 
photon; the first electron is de-excited back to its original 

S angular momenta. Any other basis set requires explicit location in the nC subshell. For closed-shell atoms, the 
treatment of intrachannel interactions. photoionization process leads to a Pl final state in which 

the intrachannel interaction is strongly repulsive. This 
interaction tends to broaden cross section maxima and 24.4.2 virtual ~ ~ ~ b l ~  ~ ~ ~ i t ~ t i ~ ~ ~  
push them to higher photon energies as compared with 
the results of central potential model calculations. The MBPT diagram for this type of interaction is 

Intrachannel interaction effects are taken into account shown on the left in Fig. 24.l(b). Topologically, this 
automatically when the correct Hartree-Fock (HF) basis diagram is the same as that on the left in Fig. 24.l(a). 
set is employed in which the photoelectron sees a net 

In fact, the radial parts of the two matrix elements 
Coulomb field due to the residual ion and is coupled to are identical; only the angular factors differ. A more 
the ion to form the appropriate total orbital L and spin pictorial description of this interaction is shown on the 

3 ~ h e  noble gases have played a prominent role in the devel- right of Fig. 24.l(b). The ground state of the atom 
opment of the theory of photoionization for two reasons. These before DhotoabsorDtion is shown to have two electrons 
were among the first elements studied by experimentalists with 
synchrotron radiation beginning in the 1960's. Also, their closed- 

virtually excited out of the nC subshell. In absorbing the 
shell, spherically symmetric ground states simplified the theoretical photon, One these is de-excited its 
analysis of their cross sections. location in the nC subshell, while the other electron in 
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PHOTON ENERGY (eV) 

Figure 24.2. Photoionization cross section for the 3p 
and 3s subshells of Ar. HFL and HFV indicate the 
length and velocity results obtained using HF orbitals 
calculated in a 'PI potential. Dot-dash and dashed lines 
represent the length and velocity results of the MBPT 
calculation of Kelly and Simons [29]. Only the four lowest 
3s + np resonances are shown; the series converges to 
the 3s threshold a t  29.24 eV. Experimental results are 
those of Samson[30] above 37 eV and of Madden et al. 
[31] below 37 eV (From Ref. [29]). 

ionized. These virtual double excitations imply a more 
diffuse atom than in central-potential or HF models, 
with the effect that the overly repulsive intrachannel 
interactions are weakened, leading to cross sections for 
noble gas atoms that are in very good agreement with 
experiment with the exception that resonance features 
are not predicted. 

24.4.3 Interchannel Interactions 

The interchannel interaction shown in Fig. 24.l(c) is 
important, particularly for s subshells. This interaction 
has the same form as the intrachannel interaction shown 
in Fig. 24.l(a), except now when an electron is photoex- 
cited out of the nolo subshell, it collides or interacts 
with an electron in a different subshell-the n l l l  sub- 
shell. This interaction causes the second electron to be 
ionized, and the first electron to fall back into its original 
location in the nolo subshell. 

Interchannel interaction effects are usually very con- 
spicuous features of photoionization cross sections. When 
the interacting channels have partial photoionization 
cross sections which differ greatly in magnitude, one finds 
that the calculated cross section for the weaker channel is 
completely dominated by its interaction with the stronger 
channel. At the same time, it is often a safe approxi- 
mation to ignore the effect of weak channels on stronger 

channels. In addition, when the interacting channels have 
differing binding energies, their interchannel interactions 
lead to resonance structure in the channel with lower 
binding energy (arising from its coupling to the Rydberg 
series in the channel with higher binding energy). 

24.4.4 Photoionization of Ar 

An example of both the qualitative features exhibited 
by photoionization cross sections in the vuv energy region 
and of the ability of theory to calculate photoionization 
cross reactions is provided by photoionization of the 
n = 3 subshell of argon, i.e., 

Figure 24.2 shows the MBPT calculation of Kelly 
and Simons [29], which includes both intrachannel and 
interchannel interactions as well as the effect of virtual 
double excitations. The cross section is in excellent 
agreement with experiment [30,31], even to the extent 
of describing the resonance behavior due to discrete 
members of the 3s + ~p channel. 

Figure 24.2 illustrates most of the features of pho- 
toionization cross sections described so far. First, the 
cross section rises to a delayed maximum just above the 
threshold because of the potential barrier seen by photo- 
electrons from the 3p subshell having l = 2. For photon 
energies in the range of 45 eV-50 eV, the calculated cross 
section goes through a minimum because of a change 
in sign of the 3p -+ ~d radial dipole amplitude. The 
HFL and HFV calculations include the strongly repulsive 
intrachannel interactions in the P final-state channels 
and calculate the transition amplitude using the length 
(L) and velocity (V) form respectively for the electric 
dipole transition operator [cf. Eq. (24.7)]. With respect 
to the results of central potential model calculations, the 
HFL and HFV results have lower and broader maxima 
at higher energies. They also disagree with each other 
by a factor of two! Inclusion of virtual double excita- 
tions results in length and velocity results that agree to 
within 10% with each other and with experiment, except 
that the resonance structures are not reproduced. Fi- 
nally, taking into account the interchannel interactions, 
one obtains the length and velocity form results shown 
in Fig. 24.2 by dash-dot and dashed curves respectively. 
Agreement with experiment is excellent and the observed 
resonances are well-reproduced. 
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24.5 THEORETICAL METHODS FOR 
PHOTOIONIZATION 

24.5.1 Calculational Methods 

Most of the ab initio methods for the calculation of 
photoionization cross sections (e.g., the MBPT method 
1321, the close-coupling (CC) method 1331, the R-matrix 
method [34], the random phase approximation (RPA) 
method [8], the relativistic RPA method 1351, the transi- 
tion matrix method [36], the multiconfiguration Hartree- 
Fock (MCHF) method [37,38], etc.) have successfully 
calculated outer psubshell photoionization cross sections 
of the noble gases by treating in their alternative ways 
the key interactions described above, i.e., the particle- 
hole interactions. In general, these methods all treat 
both intrachannel and interchannel interactions to infi- 
nite order and differ only in their treatment of ground 
state correlations. (The exception is MBPT, which of- 
ten treats interchannel interactions between weak and 
strong channels only to first or second order.) These 
methods therefore stand in contrast to central potential 
model calculations, which do not treat any of the particle- 
hole interactions, and single-channel term-dependent HF 
calculations, which treat only the intrachannel interac- 
tions. The key point is that selection of the interactions 
that are included in a particular calculation is more im- 
portant than the method by which such interactions are 
handled. 

Treatment of photoionization of atoms other than the 
noble gases presents additional challenges for theory. For 
example, elements such as the alkaline earths, which have 
s2 outer subshells, require careful treatment of electron 
pair excitations in both initial and final states. Open 
shell atoms have many more ionization thresholds than 
do the noble gases. Treatment of the resultant rich 
resonance structures typically relies heavily on quantum 
defect theory [38] (see Chap. 45). All the methods listed 
above can be used to treat elements other than the 
noble gases, but a method which has come to prominence 
because of the excellent results it obtains for both alkaline 
earth and open-shell atoms is the eigenchannel R-matrix 
method [39]. 

24.5.2 Other Interaction Effects 

A number of interactions, not of the particle-hole 
type, lead to conspicuous effects in localized energy 
regions. When treating photoionization in such energy 
regions, one must be careful to choose a theoretical 
method which is appropriate. Among the interactions 
which may be important are the following: 

Relativistic and Spin-Dependent Interactions. 
The fact that j = l? - electrons are contracted more 
than j = l? + electrons at small distances has an 

enormous effect on the location of cross section minima in 
heavy elements [14,40]. It may explain the large observed 
differences in the profiles of a resonance decaying to final 
states that differ only in their fine structure quantum 
numbers 1411. 

Inner-Shell Vacancy Rearrangement. Inner- 
shell vacancies often result in significant production of 
satellite structures in photoelectron spectra. Calcula- 
tions for inner subshell partial photoionization cross sec- 
tions are often substantially larger than results of pho- 
toelectron measurements 142-441. This difference is at- 
tributed to such satellite production, which is often not 
treated in theoretical calculations. 

Polarization and Relaxation Effects. Negative 
ion photodetachment cross sections often exhibit strong 
effects of core polarization near threshold. These effects 
can be treated semi-empirically, resulting in excellent 
agreement between theory and experiment [45]. Even for 
inner shell photoionization cross sections of heavy ele- 
ments, ab initio theories do not reproduce measurements 
near threshold without the inclusion of polarization and 
relaxation effects [46,47]. 

An Example. The calculation of the energy depen- 
dence of the asymmetry parameter P for the 5s subshell 
of xenon requires the theoretical treatment of all of the 
above effects. In the absence of relativistic interactions, 
,6 for Xe5s would have the energy-independent value of 
two. Deviations of p from two are therefore an indica- 
tion of the presence of these relativistic interactions. The 
greatest deviation of ,B from two occurs in the localized 
energy region where the partial photoionization cross sec- 
tion for the 5s subshell has a minimum. In this region, 
however, relativistic calculations show larger deviations 
from two than are observed experimentally. Inner shell 
rearrangement and relaxation effects play an important 
role 148,491 and must be included to achieve good agree- 
ment with experiment. 

24.6 FUTURE DIRECTIONS 

The construction of high brightness synchrotron light 
sources and the increasing use of lasers are providing the 
means to study atomic photoionization processes at an 
unparalleled level of detail. The synchrotrons generally 
produce photons in the soft x-ray and x-ray regions. 
Thus, inner shell vacancy production and decay, satellite 
production, and multiple ionization phenomena are all 
being increasingly studied. Laser sources are allowing 
production of atoms in tailored initial states. Thus, 
photoionization of excited atoms and, in particular, 
complete measurements of particular photoionization 
processes, are now possible. Recent collections of short 
review papers provide references to these topics [3,4]. In 
addition, two recent reviews of experimental results for 
noble gas atom photoionization [50] and for metal atom 
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photoionization [51] provide also valuable information on 
the current state of the corresponding theoretical results. 
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