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Static-Electric-Field-Induced Polarization Effects in Harmonic Generation

Bogdan Borca,1,* A. V. Flegel,2 M. V. Frolov,2 N. L. Manakov,2 Dejan B. Milošević,1,† and Anthony F. Starace1

1Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0111
2Department of Physics, Voronezh State University, 394693 Voronezh, Russia

(Received 22 December 1999)

Two static-electric-field-induced effects on harmonic generation are demonstrated analytically and
numerically: elliptic dichroism (in which the harmonic yield is different for right and left elliptically
polarized laser fields) and elliptical polarization of harmonics produced by linearly polarized driving
laser fields. Both effects stem from interference of real and imaginary parts of the nonlinear atomic
susceptibilities. Possibilities for experimentally measuring these effects are discussed.

PACS numbers: 42.65.Ky, 32.80.Qk, 32.80.Wr, 42.50.Hz

High-order harmonic generation (HHG) has become a
main topic of intense laser-atom physics [1]. Both to un-
derstand the HHG process better and to enhance its use in
applications, many studies have focused on the control of
HHG [1]. Among the most recent are those concerned with
the polarization characteristics of the harmonics. Weihe
et al. [2] showed that the polarization ellipse of the emit-
ted harmonics may rotate with respect to that of the inci-
dent laser polarization ellipse. Reference [3] showed that
this unusual effect stems from interference between the
real and imaginary parts of the corresponding nonlinear
susceptibilities. Burnett et al. [4] found that the polar-
ization characteristics of emitted harmonics vary greatly
along the harmonic plateau. Antoine et al. [5] confirmed
such behavior, finding that the rotation angles and ellip-
ticities of the harmonics strongly depend on their position
in the spectrum, but that the ellipticities of the harmonics
remain smaller than that of the driving laser. Other ex-
periments have found unusual polarization characteristics
for particular harmonics [6]. Theorists, meanwhile, have
found that prediction of harmonic polarization provides a
stringent test of models and methods [3,7,8].

Other studies have focused on the use of a strong static
electric field to control the intensities and plateau structure
of HHG [9–11]. A static electric field allows the genera-
tion of even harmonics, control of the intensity of particular
harmonics [9], and the appearance of high-order plateau
structures [10]. Wang et al. [12] examined the effect on
HHG intensities of elliptically polarized laser light and a
static electric field parallel to the laser polarization ellipse’s
major axis. They found that circularly polarized light gen-
erates harmonics (which is consistent with the three-step
model [13], since the static field reflects electronic wave
packets back to the atomic core). They did not, however,
examine the polarization of the harmonics.

We present here some results of a general formulation
of the problem of HHG for arbitrarily polarized laser light
in the presence of an arbitrarily oriented static electric field.
We show that a static electric field has striking effects on
the polarization of high-order harmonics and on the de-
pendence of harmonic yield on the laser field ellipticity.
We demonstrate that (i) in the presence of a static electric

field the harmonics are in general elliptically polarized,
even for a linearly polarized driving laser (which contrasts
with results obtained in the absence of a static field [5]),
and (ii) the static electric field leads to a significant ellip-
tic dichroism effect; i.e., the intensity of a harmonic differs
substantially for right and left helicities of an elliptically
polarized laser beam. These results demonstrate the sig-
nificant control a static electric field permits of polarization
effects in HHG.

We consider a single atom interacting with a laser field
of arbitrary polarization, i.e.,

F�r, t� � F Re�e exp�i�k ? r 2 vt��� , (1)

where the complex polarization vector e is defined in a
coordinate-frame-invariant way using the laser field wave
vector k and the unit vector ˆ́́́ along the major axis of the
laser polarization ellipse,

e �
ˆ́́́ 1 ih�k̂ 3 ˆ́́́ �p

1 1 h2
, 21 # h # 11 . (2)

Here h is the ellipticity, where h � 11 �21� corresponds
to right (left) circular polarization, and h � 0 to linear po-
larization. In terms of these vectors, the degree of linear
polarization is given by l � e ? e � �1 2 h2���1 1 h2�,
and the degree of circular polarization by j � ik̂ ? �e 3

e�� � 2h��1 1 h2�, both of which are simply related
to the usual Stokes parameters S1, S2, S3 (i.e., j � S2,
l �

p
S2

1 1 S2
3 ) [14]. The static electric field FFF is ori-

ented along the direction ê0, which we assume in the fol-
lowing to lie in the plane of the laser polarization ellipse,
perpendicular to k.

Complete information concerning the intensity and po-
larization properties of the nth harmonic may be extracted
from the amplitude Anv�e0� describing dipole emission of
a harmonic (with frequency v0 � nv, measured polariza-
tion e0, and propagation direction k̂0 � k̂) by an atom in
the presence of fields FFF and F, where

Anv�e0� � e0� ? d̃n , (3)

and d̃n, defined in Eq. (9), is a (complex) matrix element
of the dipole operator. Taking into account, as in [3], the
spatial and temporal symmetry properties of the vectors

732 0031-9007�00�85(4)�732(4)$15.00 © 2000 The American Physical Society



VOLUME 85, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 24 JULY 2000

involved [i.e., F�r, t�, FFF , e, e�, and d̃n], as well as the
fact that only the part of d̃n transverse to k̂ contributes to
Eq. (3), one may express d̃n in general as

d̃n � x1e 1 x2e� 1 x3ê0 . (4)

The complex scalars x1,2,3 are the nonlinear susceptibili-
ties, which depend only on nonvector parameters (e.g., v,
F, F , l) and on the angle w between ˆ́́́ and ê0. The total
intensity of the nth harmonic, summed over its polariza-
tion states, is proportional to jd̃nj

2, where

jd̃nj
2 �

3X

i�1

jxij
2 1

p
2�1 1 l� Re��x1 1 x2�x�

3 � cosw 1 2l Re�x1x�
2 � 2 j

p
2��1 1 l� Im��x1 2 x2�x�

3 � sinw . (5)

The last term in Eq. (5), involving j, exhibits elliptic
dichroism: it has opposite signs for right (j . 0) and left
(j , 0) elliptic polarization of the laser field. Obviously
this term vanishes for j � 0 (linear laser polarization).
It vanishes also for jjj � 1 (circularly polarized laser
light). This may be understood on symmetry grounds: the
pseudoscalar j can only enter jd̃nj

2 multiplied by another
pseudoscalar quantity, namely, sinw � ê0 ? �k̂ 3 ˆ́́́ �. For
circular polarization, the direction of ˆ́́́ is arbitrary and
no other preferential direction in the polarization plane
exists besides that of the static field (ê0); since no addi-
tional pseudoscalar exists, the dichroic term must vanish.
A detailed analysis of the l and w dependence of the sus-
ceptibilities xi , e.g., in terms of higher order perturbative
expansions in F (cf. [3]), shows that for l ! 0, the last
term of Eq. (5) is proportional to lj sin�2w� and hence
vanishes. Similar considerations imply that when w �
p�2 the elliptic dichroism term also vanishes. Therefore,
when 0 , jjj , 1 and 0 , w , p�2, elliptic dichroism
may be observed, caused by an interference between the
real and imaginary parts of x1,2 and the static-electric-
field-induced susceptibility, x3.

The polarization properties of the nth harmonic are
described by its Stokes parameters Sn

i , 1 # i # 3 [14].
These are defined in terms of the intensity of the nth
harmonic having a detected polarization e0: Inv�j0, u� ~

jAnv�e0�j2, where u is the angle between the directions
ˆ́́́ and ˆ́́́ 0 of the major axes of the polarization ellipses,
respectively, of the laser and of the detected harmonic.
Thus Sn

1 equals the difference between Inv�j0 � 0, u� for
u � 6p�4 divided by the sum. Similarly Sn

2 involves
Inv�j0 � 61, u�, and Sn

3 involves Inv�j0 � 0, u� for
u � 0, p�2. For a linearly polarized laser, Eq. (4) shows
that there are only two independent susceptibilities, xk �
x1 1 x2 1 x3 cosw and x� � x3 sinw. One easily finds
that the harmonic’s intrinsic degree of circular polariza-
tion, jn, and offset angle, un, are

jn � Sn
2 �

2 Im�x�x
�
k �

jxkj2 1 jx�j2
, (6)

tan2un �
Sn

1

Sn
3

�
2 Re�x�x

�
k �

jxkj2 2 jx�j2
. (7)

As for elliptic dichroism, the ellipticity jn originates from
an interference of the real and imaginary parts of the non-
linear susceptibilities and may be observed for 0 , w ,

p�2. In contrast, the offset angle originates from the obvi-
ous anisotropy of the atom in a static field and is nonzero
even for real xk and x�.

The above symmetry analysis is independent of any dy-
namical model, but quantitative estimations of the mag-
nitude of the effects require numerical calculations of the
amplitudes in Eq. (3). An accurate, ab initio way to cal-
culate them nonperturbatively is to use the quasistation-
ary, quasienergy states (QQES) or non-Hermitian Floquet
states (see, e.g., [15]) for an atom in strong laser and static
electric fields, F§�r, t�, where § is the complex quasi-
energy. Because of their asymptotically divergent terms
in r (in the open ionization channels), the QQES wave
functions are not normalizable in the standard way; thus
matrix elements of the dipole emission operator r between
QQES functions diverge when calculated in the usual way.
Instead, properly normalized (dual) functions, F̃§�r, t�,
must be used as bra vectors in a calculation of transition
matrix elements [16], as when using quasistationary states
in radiationless problems (see, e.g., [17]). In the presence
of two fields, FFF and F�r, t� with an arbitrary elliptical po-
larization, the proper dual functions are given by

F̃§�r, t� � �F§�r, 2t; h ! 2h���. (8)

For h � 0, the dual function in Eq. (8) coincides with that
introduced by Potvliege and Shakeshaft [16] for a linearly
polarized laser field. The time-dependent (complex) dual
dipole moment is thus calculated as

d̃�t� � 	F̃§�r, t�jrjF§�r, t�
 �
1
2

X

n
d̃ne2invt , (9)

using F̃§�r, t� as the bra vector. The nth Fourier coeffi-
cient, d̃n, of Eq. (9) is then used in Eq. (3) for the genera-
tion amplitude.

Based on this QQES approach, we calculated the sus-
ceptibilities x1,2,3 in Eq. (4) using a three-dimensional
zero-range potential model for the atom. The QQES so-
lution for this model [18] has been used in recent HHG
calculations (see, e.g., [9,10,19]). We note that if (as done
here) the quasienergy § is approximated by the unper-
turbed binding energy, E0, of the model atom and if all
but the leading Fourier coefficients of FE0 �r, t� at the ori-
gin �r ! 0� are neglected, as in [19], then our approxi-
mate QQES result for the amplitude Anv�e0� coincides
with the result of the S-matrix approach [7,10,20] provided
that the latter takes into account the so-called continuum-
continuum term [7]. For HHG by an elliptically polarized
laser in the presence of a static electric field, each suscep-
tibility x1,2,3 involves an infinite sum of one-dimensional
time integrals of a product of Bessel functions. These in-
tegrals were evaluated numerically. In order to make our
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numerical results applicable to a variety of atoms and field
parameters, we adopt scaled units: our energy unit is the
atom binding energy jE0j, and our electric field strength
unit is the internal field, F0 �

p
2mjE0j3�eh̄. The dis-

played results are calculated for h̄v � 0.2, F � 0.2, and
F � 1023, all in scaled units, as a particular numerical
example.

Figure 1 shows the HHG spectrum for different values
of the laser field ellipticity, h, when the static field is
collinear with the polarization direction, ˆ́́́ . As h increases,
the intensity of the harmonics decreases, but they are still
produced even for a circularly polarized laser field (as
shown by [12]). As h increases, the gap between even
and odd harmonic intensities decreases. For right-circular
polarization (i.e., h � 1.0) both odd and even harmonics
are produced only due to the static field; thus they have the
same levels of intensity.

In Fig. 2 we predict elliptic dichroism for both even
and odd harmonics as a function of the angle w between
the directions of the major axis of the laser polarization
ellipse, ˆ́́́ , and the static electric field, ê0. If we denote
by I1 and I2 the intensities obtained for laser ellipticities
6jhj, then the dichroic ratio d � �I1 2 I2���I1 1 I2�
is a good measure of this effect. Our calculations show
that significant values of d appear as a result of either out-
of-phase oscillations of I1 and I2, or in-phase oscillations
with, e.g., I1 . I2. One sees from Fig. 2 that d is signifi-
cant for both even and odd harmonics, that it is significant
throughout the plateau region, and that it is very sensitive
to both jhj and w.

Figure 3 shows the circular polarization degree, jn, for
low-order even harmonics produced by a linearly polar-
ized laser as a function of the angle w [cf. Eq. (6)]. For
F � 0, a linearly polarized laser field generates only lin-
early polarized odd harmonics. As our static field strength
is very small compared to the laser field strength, it does
not change the polarization of the odd harmonics signifi-
cantly (e.g., we found jjnj , 0.03 for n � 3, 5, 7). How-

FIG. 1. Harmonic intensities in the presence of a static field
parallel to the major axis of the laser polarization ellipse, for five
laser ellipticity values h. In scaled units (see text), v � 0.2,
F � 0.2, and F � 1023.

ever, the even order harmonics, which owe their presence
to the static field, are strongly affected by its orientation.
It is even possible to produce harmonics with polarizations
that are very close to circular over a fairly large range of w

[cf. Fig. 3 for n � 2 and 6 and 60± # w # 70±]. As the
harmonic order increases, the domain of significant non-
linear polarization becomes narrower and is increasingly
shifted towards w � 90± (as one can see for the 8th har-
monic). When w � 90±, all harmonics are emitted with
linear polarization but with different orientations: odd har-
monics along ˆ́́́ and even ones along ê0.

Our analysis above [cf. (5) and (6)] shows that the
polarization effects demonstrated in Figs. 2 and 3 stem
from the anisotropy induced by the static field [cf. Eq. (4)]
in an absorptive medium. We may extend this analysis
by noting that the anisotropy can be induced by means
other than a static electric field. For example, a similar
effect may appear in harmonics generated by reflection
of an intense laser beam by a metal surface, where the
anisotropy is introduced by the surface normal vector.
As another example, closer to the one we have treated,
the required anisotropy may be introduced by a second,
low-intensity, linearly polarized laser beam collinear
with the first, FV�t� � FV ê0 cosVt. In this case, if one
considers only the harmonics of the high-intensity laser,
Eqs. (3)–(7) have exactly the same form and therefore
lead to the same polarization effects. For a low frequency,
V, neglecting (in lowest approximation) the (weak) V

dependence of the susceptibilities xi , the only effect is
to replace the static field amplitude F by an “effective
amplitude” of order FV [21]. Though we have presented
our analysis and numerical results for the simplest con-
ceptual case, that of HHG in the presence of a static field,
we emphasize by these additional examples a major goal
of our paper: to demonstrate how the introduction of a
second polar vector in the problem [in addition to F�t�]
leads to interference between the complex susceptibilities
xi , the results of which are unusual polarization properties

FIG. 2. Elliptic dichroism parameter d � �I1 2 I2���I1 1
I2� for (a) n � 10 and jhj � 0.25, 0.5, and 0.75, and (b) n �
15, 16, and 17, and jhj � 0.5, and v, F, and F as in Fig. 1.
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FIG. 3. Circular polarization degree, jn, for even harmonics
(n � 2, 4, 6, and 8) produced by a linearly polarized laser field
for different angles w. Parameter values v, F, and F are as
in Fig. 1.

of the generated harmonics from an initially isotropic and
absorptive medium. The predicted effects depend only
on the magnitudes of the real and imaginary parts of the
susceptibilities xi . Physically, the imaginary parts are con-
nected with the ionization of the target atom by the laser
field, and hence they are zero if we neglect this ionization.
The polarization effects can therefore be called ionization-
(or dissipation-) induced effects.

Experimental verification of these harmonic polarization
effects depends on the qualitative matching of our scaled
parameters with a particular atomic system and a particular
set of field strengths and frequencies. For example, for
a Xe atom, the scaled parameters employed in Figs. 1–3
correspond to a laser with l � 511.5 nm and intensity
2.48 3 1014 W�cm2, which are close to typical values for
a frequency-doubled Nd:YAG laser (l � 532 nm). The
static field strength, however, is 2.16 MV�cm, which is
far higher than typical laboratory static fields even though
it is weak compared with the laser field (F �F � 5 3

1023). The requisite field strength ratio may nevertheless
be achieved in a two color experiment in which the weak
laser field, FV�t�, has a much lower frequency, V, than
that of the intense laser. For example, the frequency of a
CO2 laser (scaled frequency V � 0.009 for Xe) is 22 times
smaller than that of a frequency-doubled Nd:YAG laser,
while the necessary F �F ratio could be achieved with
an intensity of order 6 3 109 W�cm2. The weak laser
field may be regarded as approximately constant compared
with the strong laser field and hence measured polarization
results in such an experiment would be qualitatively similar
to those predicted here for a laser plus static field as long as
the ratio of field strengths is similar. [Note that if one uses
as the second laser a harmonic of the fundamental laser,
similar effects but of different physical origin (proportional
to the sine of the phase difference between the two fields)
are possible and will be discussed elsewhere.]

A static electric field or, alternatively, an additional low-
intensity, linearly polarized laser beam permits signifi-
cant control over the polarization properties of harmonics.
Neither of the two predicted polarization effects occurs in
the absence of the second field. Elliptic dichroism pro-
vides a unique case in the analysis of harmonic genera-

tion of measuring an effect which depends on the sign of
the helicity of an elliptically polarized laser beam. Either
effect allows the direct determination of the interference
between real and imaginary (dissipative) parts of the non-
linear susceptibilities, which is useful for distinguishing
between different models of ionization and harmonic gen-
eration by atoms in strong fields.
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