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Complex energy shift and background phase shift for simulated
electron-molecular shape resonances

G. A. Gallup*
Department of Physics and Astronomy, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0111, USA

sReceived 19 August 2004; published 17 February 2005d

Feshbach-Fano resonance theorysFFRTd is used to determine the energy dependence of the complex energy
shift function, consisting of the real energy shift and the resonance width, and the background phase shift for
several simulated molecular shape resonances. Attention is paid to the way the choice of the quasibound state
sQBSd function required in the FFRT affects these energy dependencies. An overlap criterion for choosing an
optimal QBS function is proposed. Using our treatment ont-butylchloride, carbon tetrachloride, ethylene, and
benzene, we give numerical results for specific cases ofl =1 through 4. We find that the real energy shift
function does not vary greatly over the width of the resonance, although the magnitude of the shift can be fairly
large. We also find that the behavior of the background phase shift due to orthogonality scattering is sensitive
to the presence of long-range potentials.

DOI: 10.1103/PhysRevA.71.022710 PACS numberssd: 34.80.Bm, 34.80.Ht, 34.80.Gs

I. INTRODUCTION

When low-energy electrons impinge on molecules, the
two most important inelastic processes are vibrational exci-
tation sVEd and dissociative electron attachmentsDEAd.
Both of these involve transfer of electron kinetic energy to
the nuclei and, because of the disparate masses of electrons
and nuclei, such transfer was traditionally expected to be
small. Nevertheless, it does occur with considerable prob-
ability because of resonant processes due to the potential
energy of interaction between the electron and the molecule.
Core excited resonances also occur and can produce VE and
DEA, but these tend to appear at higher energies, and except
for one instance we restrict the discussion in this article to
the shape resonance regime.

The discussion of nuclear motion in molecules typically
uses the Born-Oppenheimer or adiabatic approximation to
separate electronic and nuclear motion and to relate the elec-
tronic energy at fixed nuclear positions to the nuclear poten-
tial energy. When dealing with resonances, the electronic
state is decaying with a certain lifetime, and the resulting
nuclear potential energy function is nonlocal and complex.
Most treatments of these resonances have used the Feshbach-
Fano resonance proceduresFFRPd f1–4g, which results in a
lifetime and an energy shift that are functions of the nuclear
coordinates and the total energy of the wave function. These
quantities are important parts of the nonlocal complex poten-
tial the nuclei react to, and it is the principal purpose of this
article to analyze the exact scattering solutions for simulated
potentials to gain further insight into how lifetimes and en-
ergy shifts vary with energy at a given nuclear geometry.
Thus, in this article we focus on the behavior of the elec-
tronic parts of the theory and do not directly address matters
of nuclear dynamics.

The FFRP must start with a choice for an approximate
representation of the inner part of the continuum wave func-

tion at energies near the resonance. This function, which
must be square-integrable, is usually viewed as representing
a quasibound statesQBSd embedded in the continuum. The
principal difficulty arises because there is no clear-cut crite-
rion for choosing this QBS function. Although exact results
must be independent of the choice, real calculations with
approximations are usually not so fortunate, and one of our
goals here is to examine how the normal approximations that
must be made in any practical calculation affect the results
and their likely differences from exact answers. This requires
exact results, and to facilitate obtaining such, we use spheri-
cal piecewise constant potentials. Although real molecules
never have spherically symmetric potentials, experiment
shows there are cases when resonance states are sufficiently
closely approximated by a singlel wave that our calculations
can give a useful picture of their behavior.

Our potentials should have some similarity to real sys-
tems, and we use a potential with an arbitrary number of
segmentsf5g. In this way, the effects of long-range forces
may be included up to the limitations of the approximations.
Such piecewise spherical potentials may always be solved
analytically and the wave functions written in a finite number
of terms. Nevertheless, for a potential of any considerable
number of segments, such expressions would have little
practical utility. Therefore, most of our examples are worked
out and displayed in numerical form only. The exception is
the study on the plane wave where the relatively simple form
of the analytical expressions has considerable informational
content.

Resonant behavior of square-well potentials has been
studied beforef6–10g, with much of the emphasis on the
behavior ofS-matrix poles. Our goal, however, is somewhat
different—we are particularly interested in how the choice of
the quasibound resonant state affects the results of the calcu-
lation. For this reason, unlike some earlier studies, we focus
on states ofl .0 where shape resonances produced by cen-
trifugal barriers occur.
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II. THEORY

The FFRP has been described by a number of workers in
various formsf1–4,10–12g, and although the details differ
somewhat, the basic theory is the same. It is assumed that the
system has a resonance that may be viewed as a QBSem-
bedded in the continuum. The inner part of the wave function
at energies near resonance, the QBS function itself, is sym-
bolized by uql and is assumed normalizable. Separate from
this and orthogonal to it, we have the background continuum

function, f
Ek̂

sbd
. These functions have the properties

kquql = 1, s1d

kquf
Ek̂

sbdl = 0, s2d

kf
E8k̂8

sbd uf
Ek̂

sbdl = dsE8 − Eddsk̂8 − k̂d. s3d

The matrix elements of the Hamiltonian for this basis are
assumed to take the form

kquHuql = Eq, s4d

kquHuf
Ek̂

sbdl = VEk̂, s5d

kf
E8k̂8

sbd uHuf
Ek̂

sbdl = EdsE8 − Eddsk̂8 − k̂d. s6d

Of course, Eq.s6d does not imply thatf
Ek̂

sbd
is an eigen-

function of H. Rather, because of Eqs.s2d and s5d, we have

sH − Edf
Ek̂

sbd
= VEk̂uql. s7d

Thus, f
Ek̂

sbd
is a solution of an inhomogeneous Schrödinger

equation. We now letGasrW8 ,rWd=sH−Ed−1 be the Green’s
function with some specified asymptotic behavior, and the

function f
Ek̂

sbd
may be written

f
Ek̂

sbd
= NFf

Ek̂

shd
− Gauql

kquf
Ek̂

shdl

kquGauql
G , s8d

where f
Ek̂

shd
is a solution to the homogeneous Schrödinger

equation, andN must be adjusted so that Eq.s3d is satisfied,
which requires thatN=cosdsbd. This phase shift will be de-
fined below. Equations2d is clearly satisfied by the solution
of Eq. s8d. If we introduce the projection operatorsP andQ
such thatP+Q= I andQ= uqlkqu, one sees that

PsH − EdPf
Ek̂

sbd
= 0, s9d

and it is a solution to the Schrödinger equation projected
onto theP space.

We do not use the full three-dimensionalEk̂ designations
in our considerations, since the actual potentials in the
Hamiltonians are spherical. Thus, anlm basis version of Eqs.
s1d–s8d is used, and we may work within an individuall
subspace. Asymptotically, in this representation we have

fl
shd → sinswl + dshdd, s10d

fl
sbd → sinswl + dsbdd, s11d

wl = kr − pl/2, s12d

wheresdshdd and sdsbdd are the phase shifts for the homoge-
neous and the background equations, respectively.dshd is the
total phase shift for the problem, of course. One sees here the
incongruous situation in which we find ourselves. In order to
formulate the problem of the nuclear motion in the Born-
Oppenheimer or adiabatic approximations, we need to ex-
press the electronic wave function in a resonance form. Sepa-
rating the description into resonance and background parts
requires us to solve the exact problem in the first place. Nev-
ertheless, the direct use of thefl

shd matrix elements in the
nuclear problem appears difficult. Of course, if one is plan-
ning an approximate partly phenomenological treatment,
some of the quantities will be obtained using physical argu-
ments, and an exact solution is skirted.

The primary result of FFRP gives formulas for the width
and energy shift of the resonance. The width functionGsEd is
given by

GlsEd =
4

k
zkquHufl

sbdlz2, s13d

and the energy shift function is

DlsEd =
1

2p
E

0

` GlsE8ddE8

E − E8
. s14d

In terms of these quantities, the resonant phase shift is

tansdl
sresdd = −

GlsEd/2
E − Eq − DlsEd

, s15d

where Eq=kquHuql is the eigenvalue of the Hamiltonian in
the Q subspace. These results also imply

dl
shd = dl

sbd + dl
sresd. s16d

III. CALCULATIONAL PROCEDURE

A. General considerations

Domcke f10g has suggested a specific three-step proce-
dure, practical with realistic systems, for applying the FFRP
to shape resonances in molecules. We show a “flow chart”
that contains his recommended steps.
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We label the stages in the diagram with a symbol for the
phase shift that exists at that point.

sid dsfd: This represents the free particle, which has no
phase shiftsfrom itselfd.

sii d dstd: This represents the final solution, which has the
actual total phase shift. This is directly obtained from the
solution of the Schrödinger equation with the potentialV.

siii d dsosd: This represents the free continuum orthogonal-
ized to the QBS function chosen to represent the resonance.
This has been called the orthogonality scattering phase shift.

sivd dsbd: This represents the background solution obtained
by solving the Schrödinger equation with the potentialV
under the orthogonality constraint.

Using these symbols, Domcke’s suggestion is

dsfd → dsosd → dsbd → dstd,

going around the bottom of the diagram. The reader is re-
ferred to Domcke’s discussion for a rationale to justify this
apparently roundabout procedure.

Since we consider single-particle potential scattering sys-
tems in this article, a slightly less circuitous process is sim-
pler. This is represented by the extra↓ step added to the right
column of the flow chart. Thus, since our goal is to examine
the behavior of the exact resonance width, energy shift, and
background phase-shift functions for exactly solvable poten-
tials, we may, in principle, proceed from the final solution to
the background function rather than using the opposite direc-
tion, which is Domcke’s final step.

B. Present mathematical procedure

The total wave function must satisfy thel-subspace
Schrödinger equation,

sHl − Edcl = 0, s17d

Hl = −
d2

2dr2 +
lsl + 1d

2r2 + Vsrd, s18d

and to carry out the separation we will need the Green’s
function associated with Eq.s17d from which we obtain the

regular solution. We also need the irregular solution, which
we denotezl. These are arranged to have the asymptotic
behaviors

cl → sinswl + dl
stdd, s19d

zl → − cosswl + dl
stdd, s20d

where

wl = kr −
pl

2
.

dl
std in these is the total phase shift in channell for our sys-

tem. It is this quantity that we will be partitioning into a
background and resonant part. In terms of these solutions,
the standing-wave Green’s function is

Gt
0sr,r8d = −

2

k
clsr,dzlsr.d. s21d

As we shall see, once the specific form of the QBS function
is chosen, the width, energy shift, and background phase-
shift functions may all be written quite simply in terms of the
matrix element of this Green’s functionkqluGt

0uqll and the
overlapkql ucll.

We need now to orthogonalize the total solution to the
QBS function. The usual way to orthogonalize an arbitrary
function,f, to a given one is to use the Schmidt procedure,
yielding f−qlkql ufl for a result. We must do this so that our
function is also a solution of

PsHl − EdPf = 0, s22d

P = I − uqllkqlu, s23d

and one accomplishes this with a simple generalization of the
Schmidt procedure. Considering any third function,g, lin-
early independent off, we see that
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f − g
kqlufl
kguqll

is properly orthogonal toql. The Schmidt result occurs when
g=ql. We satisfy both of our requirements by usingGt

0 to
constructg, and the result is

f = NfFcl − Gt
0uqll

kqlucll
kqluGt

0uqll
G , s24d

whereNf is a normalization constant defined below.
From the definition ofGt

0, we see that

Gt
0uqll → −

2

k
zlkcluqll s25d

for large r, and

f → Nffsinswl + dl
stdd − K cosswl + dl

stddg, s26d

K =
2kcluqll2

kkqluGt
0uqll

, s27d

Nf = s1 + K2d−1/2, s28d

where K is the tangent of the angle that when subtracted
from dstd givesdsbd. Therefore,

tandl
sresd = K, s29d

=
2kcluqll2

kkqluGt
0uqll

, s30d

Nf = cosdl
sresd. s31d

According to the usual prescriptions of the FFRP, one has

GsEd = 2puVku2, s32d

Vk =Î 2

pk
kqluHlufl, s33d

whereÎs2/pkd is the factor required to “energy-normalize”
the function,f. Because of the orthogonality,

kqluHlufl = kqluHl − Eufl, s34d

=−
kqlucllNf

kqluGt
0uqll

, s35d

GsEd =
4

k
S kqlucllNf

kqluGt
0uqll

D2

. s36d

Furthermore, the well known formula for the resonant phase
shift is

tandl
sresd = −

GsEd/2
E − Eq − DsEd

, s37d

and combining all of these results allows us to calculate the
energy shift simply as

DsEd = E − Eq +
cos2dl

sresd

kqluGt
0uqll

. s38d

Bermanet al. f13g have emphasized the importance and con-
venience of determiningDsEd without using a formula like
that of Eq.s14d, which requires a knowledge ofGsEd up to
high enough energies to converge. Our result has the same
convenience.

The peak of the resonance part of the cross section is near
an energy,Eres, whendl

sresd=p /2, i.e.,Eres is the root of the
equation

Eres− Eq − DsEresd = 0, s39d

and this root must be a simple zero. Using Eqs.s38d and
s39d, we see that

U cos2dl
sresd

kqluGt
0uqll

U
Eres

= 0 s40d

also. The numerator of this fraction has a quadratic zero at
Eres, therefore the denominator must have a simple zero at
this energy, and we have the interesting result that

kqluGt
0sEresduqll = 0, s41d

which we discuss further in Sec. VI.

IV. THE QUASIBOUND STATE FUNCTIONS

For the segmented piecewise constant potentials we treat,
it is natural to follow earlier workers and, for theuql func-
tions, use Riccati-Bessel functions truncated at one of the
zeros. Table I gives the first two roots of the regular func-
tions for l =1 to 4. Thus, ifj lshlnd=0, hln.0 is thenth root
corresponding to the function of orderl.

Perhaps a word of caution is called for here. QBS func-
tions of this sort areL2, but have a discontinuous first deriva-
tive, and the kinetic energy operator is not Hermitian in
mixed integrals between these and continuum functions. For
complete rigor, the function with the discontinuous first de-
rivative must be treated as the limit of one with an increas-

TABLE I. Roots of j l Riccati-Bessel functions.

Root j1 j2 j3 j4

1 4.49340946 5.76345920 6.98793200 8.18256145

2 7.72525184 9.09501133 10.41711855 11.70490715
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ingly sharp exponential fall-off. The kinetic energy operator
then behaves correctly.

V. MODEL CALCULATIONS

The first system we treat is one with no potential, i.e., a
free l wave. Considering the flow diagram, for this caseV
=0, and the two columns represent the same pair of systems.
Our example here is thus equivalent to the initial step in
Domcke’s proceduref10g of using orthogonalized plane
waves as the starting point of the FFRP treatment of more
complicated systems. He has illustrated this with ans-wave
example. We give results for a generall value.

In addition to the treatment of the free particle, we show
results from calculations of several simple well and seg-
mented potentials. These includesid a resonance analysis of a
simple well parametrized to match the properties of a C—Cl
s* p-wave resonance,sii d a resonance analysis of a seg-
mented potential parametrized to duplicate the properties of
the 2T2 p-wave resonance in CCl4, siii d a resonance analysis
of a segmented potential parametrized to duplicate the prop-
erties of the2B2g d-wave resonance in C2H4, andsivd a reso-
nance analysis of segmented potentials parametrized to du-
plicate the properties in C6H6 of both the 2E2u f-wave
resonance and the hypothetical shape part of the2B2g g-wave
resonance. The details of the potentials will be given with
each example.

We emphasize that the calculations we describe are made
with spherical potentials, and the states in such systems have
an actual degeneracy of 2l +1. Nevertheless, when we asso-
ciate a system with an actual molecule, we use the correct
degeneracy of the molecular state when giving results that
depend upon that quantity. This refers principally to graphs
of cross sections in the following.

A. The FFRP applied to a free particle

As described in Sec. IV, theQ space is based upon the
function

qlsrd = Nl j lsard, r , r0, s42d

=0;r0 , r , s43d

a = hl1/r0, s44d

Nl =Î 2

r0
ylsar0d, s45d

wherer0 is the radius of theuql function. There is, of course,
no reason inherent in this system for choosing a particular
value of r0. Our Hamiltonian is simply

H = Hl = −
d2

2dr2 +
lsl + 1d

2r2 . s46d

It is now a straightforward calculation to determine the back-
ground function from Eq.s8d. We use the standing-wave
Green’s function

G0 = −
2

k
j lskr,dylskr.d, s47d

where the asymptotic specifications forj l andyl are those of
Abramowitz and Stegunf14g. All of the integrations are fa-
miliar, being of Bessel function products. One obtains

kqlu j ll = −Î 2

r0

a j lsbd
a2 − k2 , s48d

kqluG0uqll =
2

a2 − k2 −
4a2j lsbdylsbd
bsa2 − k2d2 , s49d

G0uqll → − 2kqlu j llylskrd/k, s50d

where b=kr0. We also note that the matrix element,
kqluG0uqll, given by Eq. s49d is not singular atk=a, but
rather

lim
k→a

kqluG0uqll = −
3 + 2ar0j l8sar0dyl8sar0d

2a2 ,

wherej l8 andyl8 are the derivative functions corresponding to
the Bessel functions.

After some simplification, one obtains

tandsbd =
a2j lsbd2/b

k2/2 − a2/2 + a2j lsbdylsbd/b
, s51d

which agrees with Domcke’s result for the casel =0 and aQ
space of one function. Since the result of the resonance treat-
ment must be to return the phase shift to zero, we obviously
havedsresd=−dsbd.

The threshold law fordsbd is

dsbd < −
2b2l+1

s2l − 1d!! s2l + 3d!!
, s52d

and tandsbd→0 asE→`. Thus, depending upon the quad-
rant we assume for the arctangent function,dsbd varies from 0
to −p or from p to 0. Previous workers have usually chosen
the former alternative for the background phase shift. The
rate at whichdsbd approaches −p varies withr0 as predicted
by Wigner’s resultf15g, limiting the derivative of the phase
shift with respect tok to values.−r0. Figure 1 shows this
for four cases andl =1.

We now change notation slightly and usefl
sbd for our

normalized background function corresponding tol, and we
now find that the resonance width for this system is1

GsEd =
4

k
zkqluHlufl

sbdlz2, s53d

=
4 cos2dsbdkqlu j ll2

kkqluG0uqll2 . s54d

Finally, using Eq.s38d we obtain

1Here is where the non-Hermitian problem of the Hamiltonian
arises for theb functions used. It will be seen thatkfl

sbduHlubl=0 if
evaluated directly sinceHlubl is proportional toubl.

COMPLEX ENERGY SHIFT AND BACKGROUND PHASE… PHYSICAL REVIEW A 71, 022710s2005d
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DsEd = E − Eq +
cos2 dsbd

kqluG0uqll
. s55d

Figure 2 shows how several of these quantities vary with
electron energy for the special case ofr0=3 Å and l =1. It
may be noted in particular thatkqluG0uqll has one simple zero
in the range of the graph. This is in line with the discussion
leading up to Eq.s41d. We will discuss these results further
in Sec. VI after we have examined systems with potentials
that support centrifugal barrier shape resonances.

B. Influence of well size on dip-to-peak separation

Most of the measurements of molecular resonances have,
because of its sensitivity, used the electron transmission

spectroscopysETSd methodf16g, which yields the negative
of the first derivative of the total cross section with respect to
energy. The presence of a resonant peak in the total cross
section gives a signature structure in the electron transmis-
sion spectrum consisting of a dip followed by a peak with
increasing energy. Since one is determining the derivative of
the cross section, dip and peak extrema correspond to inflec-
tion points. The experimental quantity of interest here is the
dip-to-peak energy separation, since, in simple cases, it is
closely related to the lifetime of the resonance.2 In our work,
however, we determine the resonance cross section and dif-
ferentiate it to obtain the derivative curve and the dip-to-peak
separation directly.

Before starting to examine cases with particular param-
eters, we wish to show how the radius of the well is related
to the dip-to-peak distance of the resonance produced, and
since the shape resonances we discuss are the result of an-
gular momentum barriers, the height of the barrier for a
given l is determined principally by the size of the system.

To show an example of the influence of this on dip-to-
peak separation, we somewhat arbitrarily choose an energy
of 1.5 eVsthis is reasonably typical of molecular shape reso-

2For a narrow resonance, with essentially constant lifetime and
energy shift and not overlapped by others, the Breit-Wigner single
level formula may be used to represent the total cross section. Un-
der these circumstances, the cross sections may be written as

s ~
sG/2d2

EfsE − E0d2 + sG/2d2g
. s56d

A straightforward calculation then shows that the dip and peak en-
ergies are

E0 7
G

2Î3
−

G2

9E0
+ G 3 OfsG/Eod2g. s57d

Thus, through first order inG /E0, the dip-to-peak separation is
G /Î3.

FIG. 1. The variation ofdsbd with energy for a free electron for
four values ofr0 sin Åd and for l =1.

FIG. 2. The graphs of several integrals, matrix elements, or
phase shifts forr0=3 Å and l =1 for a free electron. The energies
are all in eV, the phase shift is in radians, and the others are in a.u.
Only dsresd is shown sincedsbd is its negative.Eq is also shown by a
vertical arrow.

FIG. 3. The centrifugal potential forl values 1 to 4. The hori-
zontal dotted line is placed at 1.5 eV, and wells with radii outside
each crossing point will not have barriers above the “resonance
energy.”
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nancesd and calculate the dip-to-peak energy separation as a
function of the radius of the well. The depth of the well must,
of course, be varied here to produce such results. Figure 3
shows graphs of the centrifugal potential for values ofl =1 to
4 as a function of the distance from the origin. This shows
that if the well radius is large enough, the centrifugal barrier
height is less that our chosen resonance position.

The results are shown in Fig. 4, and one sees that the
width of the resonance peak, as measured by its dip-to-peak
separation, shows the expected behavior as the barrier height
decreases. We also see that this measure of the width contin-
ues to increase smoothly for a short distance above the bar-
rier, at least. The arrows in Fig. 4 show the radii at which
each barrier is 1.5 eV.

The most noteworthy aspect of the results shown in Fig. 4
is that the dip-to-peak energy separation behaves qualita-
tively just as the threshold behavior of the spherical Bessel
function that is the inner portion of the solution for eachl,
i.e., r l.

C. An overlap criterion for choosing the QBS function

We now examine a simple square well and include se-
lected results of several calculations. As mentioned above,
one of our goals is to investigate how one might determine
when a particular QBS function is optimal for the situation at
hand. An intuitive criterion is to require a function that
matches most closely the inner part of the wave function at
an energy close to the cross-section peak, and we implement
this in the following way.

If we have a test functionutl, an unknown functionuxl,
and both areL2 functions normalized to 1, calculating the
overlap provides a simple test for how close they are to being
equal. That is,utl= uxl if and only if kt uxl=1. Our problem is
slightly more complicated in that one of our functions,cl, is
not L2. Therefore, we proceed slightly differently.

Let wsrd be a weight function that guarantees the conver-
gence of our integral, and define the weighted mean-square
difference between the two functions as

FIG. 4. The dip-to-peak separations for 1.5 eV resonance and
different well radii and differentl values. The arrows show the radii
where the centrifugal barrier equals 1.5 eV.ssee Fig. 3d.

FIG. 5. The cross section and the negative of its derivative with
respect to energy for the C—Cls* orbital of sCH3d3CCl andl =1.

FIG. 6. The overlapssquaredd criterion for the “best” QBS func-
tion plotted vsr0 for sCH3d3CCl andl =1.

FIG. 7. The three phase shiftsdsresd, dstd, anddsbd vs energy for
the simple potential forsCH3d3CCl. In order to guide the eye, a
dotted line atp /2 is drawn across the graph. In addition,E−Eq

−DsEd is plotted, and it crosses thex axis atEres wheredsresd also
intersects thep /2 line.
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D = infHE fbsrd − Cclsrdg2wsrddrJ , s58d

asC is varied. It is straightforward to show that requiringD
to be a minimum is equivalent to having a maximum in the
quantity

kbuwucll2

kcluwucll
ø kbuwubl. s59d

The obviously most simplewsrd function for our application
is

wsrd = Ssr0 − rd, s60d

whereSsxd is the unit step function. For the truncated QBS
functions,kbuwubl=kbubl=1 andkbuwucll=kbucll. We use this
criterion below.

D. An l =1 case

Some of the best examples among molecules of this case
arise with the alkyl chlorides. In particular,sCH3d3CCl, tert-
butyl chloride f17g shows a resonance in ETS around 1.86
eV. This has been assigned to the C—Cls* orbital and is
expected to be predominantlyp-wave. The observed dip-to-
peak separation is 1.18 eV. The C—Cl bond distance is near
1.85 Å, and in order to simulate such a situation we choose a
spherical well of radius 1.0 Å, a little larger than half the
actual internuclear distance. If the potential in the well is
taken as233.0 eV, we arrive at ap-wave resonance peak at
1.85 eV, close to the experimental value. The corresponding
theoretical dip-to-peak separation of 0.89 eV in −ds /dE is
somewhat smaller than the experimental separation. In light
of the results shown in Fig. 4 and the discussion leading up
to it, we would expect to be able to make the theoretical

FIG. 8. TheGsEd and DsEd functions near the resonance peak
for the sCH3d3CCl potential. The vertical dotted line is added to
guide the eye to the energy of the resonance maximum.

FIG. 9. sCH3d3CCl. TheGsEd andDsEd functions up to 1000 eV.
Otherwise, see the caption of Fig. 8.

FIG. 10. The resonant and background phase shifts for the
sCH3d3CCl potential treated with a range of diffuse QBS functions.
The results are for four values ofr0: a, 3.0;b, 5.0;c, 7.0;d, 9.0. All
of the distances are in Å.dstd is also shown for comparison.

FIG. 11. The lifetimes and energy shifts for thesCH3d3CCl po-
tential treated with a range of diffuse QBS functions. The results are
for four values ofr0: a, 3.0;b, 5.0;c, 7.0;d, 9.0. All of the distances
are in Å.
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dip-to-peak separation match the experimental value. This
would require an increase of the well radius by approxi-
mately 0.3 Å. Such a match should not actually be expected,
since the present theoretical treatment makes no provision
for the “Franck-Condon width”f18g contribution. Our cur-
rent selection of the well size is expected to yield qualita-
tively correct results. The cross section and its energy deriva-
tive are shown in Fig. 5.

Choosing the energy 1.85 eV at the peak of the cross
section, we plot in Fig. 6 the “overlap” criterion of Eq.s59d
as a function of ther0 of the QBS function. The maximum is
at r0=1.6852 Å, and we use this value for the remainder of
the example. Figure 6 actually gives the square of the over-
lap. At the maximum, the overlap itself is 0.9652, which
shows that there is a great deal of similarity between the two
functions where they are both defined. For this QBS func-
tion, Eq=10.881 eV.

Figure 7 shows how the three phase shifts vary with en-
ergy in the vicinity of the cross-section peak. We see that the
background phase shift is small for the parameters we are
using. The actual slope the curve would have if plotted ver-
sus k is 20.613 bohr, which is considerably above the
Wigner limit of 23.18 bohr corresponding to the radius of
the QBS function.

We finish this example now by showing theGsEd and
DsEd functions for the potential. These are given for low
energies in Fig. 8. The values at the resonance peak are
GsEresd=1.974 eV andDsEresd=−9.011 eV. It is seen that the
energy shift is almost constant at this energy and the width
function changes little over the width of the resonance. Nev-

ertheless, the dip-to-peak distance of 0.89 eV given above is
slightly less than half of the resonance width produced by the
FFRP for these parameters. Since the energy shift formula in
the form of Eq.s14d involves an integral over all energies,
we plotG andD to higher energies in Fig. 9 as an indication
of how such integrals might converge.

E. More diffuse QBS functions: The dependence uponr0

During the past 25 years, a number of computational
packages for molecular structure calculations have become
available. These typically use Gaussian orbital basis sets and
typically will carry out ab initio Hartree-Fock self-
consistent-field calculations for molecules. It has been dis-
covered that the virtual orbital energies from such calcula-
tions can be used to guide the assignment of resonances to
electronic states of the molecules involving particular anti-
bonding orbitalsf19g. Using Koopmans’ theoremf20g, the
virtual orbital energies from these calculations correspond to
theEq quantity we have been calculating.3 A partly empirical
scaling proceduref21g has also been suggested that is de-
signed to compensate for the fact that aDsEd as well asEq

must be known for a successful comparison of theory with
experiment for temporary negative ions.

To work, the Hartree-Fock treatments for molecules must
be carried out with basis sets that are not too diffuse. When
one is dealing with astable negative ion, the standard injunc-
tion that “the bigger the basis, the better” certainly stands.
With temporary negative ions, however, large basis sets with
many diffuse functions merely exhibit variational collapse of
the virtual orbital energies, and the corresponding orbitals
show little relation to the inner part of the resonant wave
function being sought.4 Unfortunately, over the years a num-
ber of studies have appeared in which this error has occurred.
In spite of its inappropriateness, such a collapsed energy or-
bital could still be used in the FFRP, and it is important to
see how such overdiffuse functions behave when that proce-
dure is applied. To show this, we have calculated results for
this simple well for the four values ofr0: 3.0, 5.0, 7.0, and
9.0 Å. The corresponding values ofEq are 6.68, 2.90, 1.53,
and 0.94 eV, respectively.sCompare with the 10.88 eV value
above from the optimumr0.d The resonant and background
phase shifts are shown in Fig. 10, and the computed lifetime
and energy shift values are in Fig. 11.

3As an alternative to using Koopmans’ theorem, the total energy
of the negative ion may be directly determined.

4Another method for dealing with this problem is the stabilization
proceduref22,23g.

TABLE II. Model potential for CCl4.

C bond Cl Polarizability tail

0.0a 0.4 1.2 2.2 4.15 6.1 10.0 Å

261.0 235.8 2126.49 20.27193 20.05825 20.00806 0.0 eV

0.4 1.2 2.2 4.15 6.1 10.0 ` Å

aIn each column of the table the first line gives the left boundaries of a segment, the second line gives the
energy of a segment, and the third line gives the right boundaries of a segment.

FIG. 12. The inner portion of the potential used for the calcula-
tions on CCl4.
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Using these more diffuse functions causesEq to decrease,
principally because the kinetic energy of the electron is in-
versely proportional to the square ofr0. At the same time,
however, the resonant phase shift deviates more strongly
from the total phase shift, and, consequently, the background
phase shift becomes larger in magnitude. TheGsEd andDsEd
functions also develop much more structure at lower energies
as r0 increases. Except for the behavior ofEq, these other
changes are undesirable.

F. A simulated potential for CCl4

Carbon tetrachloride, CCl4, is a tetrahedral molecule in its
equilibrium geometry and is the closest to spherical of our
examples. The equilibrium C—Cl distance is close to 1.8 Å.
It has a long-range polarization tail produced by a static po-
larizability of 75.6 bohr3 f24g. In this case, we use for our
simulated potential one with the seven constant segments
given in Table II. The inner portion of the potential is also
plotted in Fig. 12.

The outer “surface” of the molecule is set at 2.2 Å. CCl4
has threeT2 orbitals that are linear combinations of C—Cl
bonding orbitals, and ETS measurements have found a shape
resonance close to 1.0 eV that has been assigned to the three
T2 combinations of the C—Cl antibondingss*d orbitals. The
actual relative values of the inner part of the potential of
Table II were based upon a spherical average of the calcu-
lated electric potential of CCl4, but the depths were modified
empirically so that there are two triply degenerate bound
states ofl =1 symmetry and a shape resonance with cross
section peaking at 1.0 eV. This is consistent with Koopmans’
theorem calculations of theT2 QBS, which show two radial
nodes. The bound states represent theT2 linear combinations
of the four C—Cls bonding orbitals and four of the non-
bonding orbitals on Cl. Figure 13 shows the cross section
and its derivative. The dip-to-peak separation is 0.824 eV.

The QBS for the resonance analysis, which in this case
must be made orthogonal to the lower states, is arranged to
have two radial nodes and terminates atr0=2.91 Å. This

FIG. 13. The cross section in thel =1 channel and the negative
of its first derivative for CCl4. A vertical dotted line is drawn at the
cross-section maximum.

FIG. 14. The phase shifts for theT2 resonance in CCl4. The
energy differenceE−Eq−DsEd is also shown.

FIG. 15. The graphs ofGsEd andDsEd for the T2 resonance of
CCl4 at lower energies. A vertical dotted line is drawn at the cross-
section maximum.

FIG. 16. The cross section and the negative of its first derivative
for the 2B1g resonance of C2H4. A vertical dotted line is drawn at
the cross-section maximum.
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value maximizes the overlap with the scattering wave func-
tion at 1 eV and gives a value of 0.950, which shows a
reasonable match. The phase shifts are shown in Fig. 14
along with the quantityE−Eq−DsEd. The expectation value
of the energy for the projected QBS function isEq
=12.616 eV. Figure 15 showsGsEd andDsEd at lower ener-
gies. The behavior of these two functions at high energy is
qualitatively the same as that of our previousl =1 calcula-
tions and, consequently, is not shown.

G. A simulated potential for C2H4

Ethylene, C2H4, is the simplest of the olefins and has a
single low-energy resonance that has been measured by ETS
f25g. From the vibrational structure, the 0-0 peak of the reso-
nance was found to be at 1.55 eV and the electronic state has
been assigned to a2B1g symmetry.ssee Fig. 16d The leading
l value in this case is 2. The C—C internuclear separation is
close to 1.34 Å. The segmented potential used is shown in
Table III. We include a polarizability tail corresponding to an
average polarizability of 28.69 bohr3 f24g. The potential has
been adjusted to give a resonance at the experimental value,
and results in a calculated dip-to-peak separation of 0.067
eV. With ETS, the effects of vibration prevent a reliable de-
termination of an experimental separation based purely upon
the electronic lifetime.

Following our earlier procedure, we maximized the over-
lap of the QBS function with the exact wave function at 1.55
eV and obtain a cutoff position of 1.37 Å with an overlap of
0.982 76, which indicates a good match between the func-
tions. For this QBS function,Eq=15.65 eV. We show the
various phase shifts in Fig. 17. Unlike our earlierl =1 calcu-
lations, the background phase shift,dsbd, does not start out in
a negative direction immediately atr =0, but, rather, it takes
on very small positive values at first. For larger values ofr,
not shown on the graph, it becomes negative and heads to-
ward −p, as it must.

The values of the lifetime and energy shift functions are
shown in Fig. 18.GsEd is here clearly within its threshold
region andDsEd is close to constant over the region around
the resonance.

H. Simulated potentials for C6H6

We finish with an illustration of a spherical potential with
parameters based upon the physical properties of benzene,
C6H6. Treating benzene as spherical will certainly be more
approximate than it was for CCl4, but atl =3 and 4, C6H6 has
two of the highestl-value shape resonances known. The
electron transmission spectrum was determined by Sanche

TABLE III. Model potential for C2H4.

Bond C Polarizability tail

0.0a 0.33 1.0 2.5 5.0 10.0 angstrom

254.29 273.65 20.7836 20.04898 20.00306 0.0 eV

0.33 1.0 2.5 5.0 10.0 ` angstrom

aSee footnote “a” in Table II.

FIG. 17. Various phase shifts and the energy differenceE−Eq

−DsEd for the 2B1g resonance of C2H4 as a function of energy. A

vertical dotted line is drawn at the cross-section maximum.

FIG. 18. TheGsEd andDsEd functions for the2B1g resonance of

C2H4. A vertical dotted line is drawn at the cross-section maximum.
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and Schulzf26g. The upperg-wave resonance is generally
believed to be a mixed shape-core excited state, but calcula-
tions indicate that a QBS function predominately of the
shape sorts<80%d is reasonable.5

1. The 2E2u resonance

In this case, the potential is set to give anf-wave reso-
nance around 1 eV, and the values are given in Table IV.
Benzene has an average polarizability of 67.5 bohr3 f24g,
and a region of the potential is adjusted to reflect this value.
Figure 19 shows the cross section and the negative of its
derivative. The dip-to-peak separation is only 0.006 eV. Such
a small number suggests that the electronic lifetime in the
actual molecule probably is also affected by inelastic pro-
cesses. In addition, the measurements show significant vibra-
tional structure that obscures an estimate of the electronic
lifetime.

When we consider the FFRP, we find the optimum QBS
function to have an overlap withcl of 0.987 31, which shows
a high match. The cutoff radius is 2.35 Å, and the corre-
sponding energy isEq=6.99 eV. In this case, the background
phase shift is very small and is negligible in the range of the
resonance. As is the case with C2H4, dsbd is slightly positive
in the neighborhood of 1.0 eV, but it takes on the expected
behavior of heading toward −p at energies above those on
the graph. The various phase shifts are shown in Fig. 20, and
the GsEd andDsEd functions are shown in Fig. 21.

2. The 2B2g resonance

In this case, we set the potential to produce ag-wave
resonance at the place where a pure shape resonance, un-
mixed with any core excited component, might hypotheti-
cally occur in benzene. It is shown in Table V. The center of
the resonance is<6.0 eV and the dip-to-peak separation is
0.17 eV. The cross section and the negative of its derivative
are shown in Fig. 22.

When we consider the FFRP, we find the optimum QBS
function to have an overlap withcl of 0.987 26, which again
shows a high match. The cutoff radius is now 2.27 Å, and the
corresponding energy isEq=13.760 eV. The various phase
shifts are shown in Fig. 23. Again, the background shows a
lower energy region of small positive values before heading
to its −p destiny. Finally, the values ofGsEd andDsEd for the
resonance are shown in Fig. 24. Clearly, even at 6.0 eV and
with the relatively large size of the molecule, theGsEd func-
tion is still well in the threshold region.

5Unpublished calculations.

TABLE IV. Model potential for2E2u C6H6 resonance.

Center C Polarizability tail

0.0a 1.1 1.8 3.85 5.9 10.0 Å

0.0 240.2 20.32770 20.05942 20.00720 0.0 eV

1.1 1.8 3.85 5.9 10.0 ` Å

aSee footnote “a” in Table II

FIG. 19. The cross section and the negative of its first derivative
for the 2E2u resonance of C6H6. A vertical dotted line is drawn at
the cross-section maximum.

FIG. 20. The phase shifts and the energy difference for the2E2u
resonance of C6H6.

FIG. 21. The width and energy shift functions for the2E2u reso-
nance of C6H6.
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VI. DISCUSSION

We have illustrated electronic resonant scattering behav-
ior with a number of examples. Although physical data from
several actual molecules were used in contriving the poten-
tials, actual comparison with experimental data is precluded
by the the fact that our examples treat only elastic scattering
in the electronic state, with no effects due to nuclear motion
or inelasticity. Nevertheless, several interesting points con-
cerning the behavior of the electronic state have been uncov-
ered.

First we take note of the fact that, for all of the potentials
shown here, the value ofDsEd is relatively constant in the
region up to and past the resonance. Energy shift functions
determined for other systems tend to show behavior crossing
into the positive region at lower energiesf27g, whereGsEd
functions determined from electronic structure and scattering
calculations have been fit empirically to exponential func-
tions. This suggests that ourGsEd functions have, in general,
a slower fall-off with higher energies than do those deter-
mined from more realistic potentials.sSee, particularly, Ref.
f13g.d At present, we can only conjecture that the step func-
tion nature of our potentials may be involved.

The GsEd function in these examples oscillates through
positive values for all energies. It is well known that seg-
mented potentials like those we use can sometimes produce
what might be considered spurious oscillatory behavior in
quantum-mechanical calculations. With these examples, the
oscillations are more the result of the form of the QBS func-
tion used here than of the nature of the potentials. As sug-

gested above, a two-segment QBS function can be con-
structed with a regular Bessel function piece from the origin
out to a fixed radius with an exponentially decreasing seg-
mentsprovided by a modified Bessel functiond affixed so that
the function is smooth at the breaking point rather than
merely continuous. The oscillations inGsEd occur as much in
that case as they do with the sort of function used in the
above examples. It is, however, fairly straightforward to
show that the oscillations do disappear if functions of the
r l+1 exps−ard sort are used to represent the QBS functions.
Of course, exponential functions are known to be very
smooth.

The oscillations are affected only slightly by the sharp
breaks in the potentials as seen by their presence in the
plane-wave example. The segmented potentials do appear to
make the oscillations somewhat irregular at low energies.

In our examples that demonstrate behavior forl .1, we
find that the background phase shift is quite close to zero at
the low energies we have investigated. This fact suggests that
higher l values will be easier to deal with in semiempirical
considerations, since it is unlikely that background phase
shifts must be dealt with. Forl =1, however, it can be sizable.

We have pointed out thatdl
sbd for l .1 has a substantial

region of small positive values at low energy before it be-
comes negative. Even for CCl4 and l =1, close examination
shows that there is a very short region of positive excursion.
This disappears when a QBS function is used that is too
diffuse. These positive excursions appear to be due to the
simulated long-range polarization tail on the potentials. The
simple well example of Sec. V D does not show it.

TABLE V. Model potential for2B2g C6H6 resonance.

Center C Polarizability tail

0.0a 1.1 1.8 3.85 5.9 10.0 Å

25.0 251.1 20.32770 20.05942 20.00720 0.0 eV

1.1 1.8 3.85 5.9 10.0 ` Å

aSee footnote “a” in Table II.

FIG. 22. The cross section and the negative of its first derivative
for the 2B2g resonance of C6H6. A vertical dotted line is drawn at
the cross-section maximum.

FIG. 23. The phase shifts and the energy difference for the2B2g
resonance of C6H6.
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Although the background phase shift can be small, none
of our examples indicate that the energy shift is small for the
optimum QBS determined using our criterion, and the size of
this quantity depends strongly upon ther0 value taken for
uql. In Sec. V E, where we discuss the application to our
t-butylchloride potential of several QBS functions with
larger r0 values, one sees that several undesirable features
develop when using functions that are too diffuse. These in-
clude maxima and minima inGsEd andDsEd as well as reso-
nant phase shifts that are very different from the total phase
shift, and background phase shifts that are very different
from zero. Therefore, one concludes that the description of
resonance processes is likely to be complicated to a consid-
erable extent by using a QBS function that is too diffuse.

It may be noted that the QBS function actually used for
CCl4 has a different character from those of our other calcu-

lations, since an orthogonalization to the bound-state func-
tions was required for that system. Thus it is not constrained
to be zero forr . r0 as other cases are. Nevertheless, the
projected function still has a discontinuous first derivative at
r0, and the qualitative nature of the phase shifts and theGsEd
andDsEd functions is seen to be similar to the results in other
cases.

In many molecules, the resonances result from antibond-
ing orbitals that are restricted to a fractional portion of the
molecule. These calculations suggest that, in those reso-
nances where there is also a dominantl value, there should
be relations similar to those shown in Fig. 4 between the
dip-to-peak separation and the size of that portion of the
molecule supporting the potential that gives the resonance.
Many resonances, however, are not expected to have domi-
nant l values.

Finally, we make a more mathematical observation. Re-
turning to Eq. s41d, the root of the matrix element,
kquG0sEduql, has an interesting interpretation if we use the
spectral representation of the Green’s function,

G0sEd =E
0

` 2ucstdlkcstdudE8

pksE − E8d
, s61d

kquG0sEduql =E
0

` 2zkbucstdlz2dE8

pksE − E8d
. s62d

Thus the square of the overlap divided byk and weighted by
the reciprocal ofE−E8 may be thought to have equal areas
on either side ofEres, with, however, the correct recognition
of the fact that the integral is the Cauchy principal value of
the integrand.
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