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High-Temperature Magnetic Properties of
Mechanically Alloyed SmCo5 and YCo5 Magnets

I. A. Al-Omari, R. Skomski, R. A. Thomas, D. Leslie-Pelecky, and D. J. Sellmyer

Abstract—The high-temperature coercivity of mechanically al-
loyed and subsequently annealed RCo5 (R= Sm and Y) is studied.
The annealed materials have the hexagonal CaCu5 structure with
2 : 17 (or 1 : 7) regions as a minor phase. High-temperature mag-
netic measurements show that the coercivities of materials decrease
with increasing temperature from room-temperature to 873 K, but
that the temperature coefficient of the coercivity of YCo5 is much
smaller than that of SmCo5. This behavior is explained in terms
of the intrinsic temperature variation of the magnetocrystalline
anisotropy.

Index Terms—Anisotropy, coercivity, finite-temperature mag-
netism, permanent magnets.

I. INTRODUCTION

RECENTLY, samarium–cobalt based permanent magnets
[1], [2] have attracted renewed interest due to their

superior high-temperature properties [3]–[5]. In rare-earth
transition-metal intermetallics, such as SmCoand Nd Fe ,
the rare-earth anisotropy is responsible for the high anisotropy
(and coercivity), whereas the transition-metal sublattice pro-
duces a high saturation magnetization and Curie temperature
[2], [6]. In almost all cases of interest, the magnitudes of the
cobalt moments are somewhat lower than isotructural iron
moments, but the strong interatomic exchange ensures a high
Curie temperature and helps to realize a strong rare-earth
anisotropy at and above room temperature. Typical Sm–Co
based permanent magnets are produced by sintering and are
used as bonded magnets (single-phase SmCobased) or as
Sm Co /SmCo -based two-phase magnets [1], [2], although
appreciable room-temperature coercivities of 17 kOe [1.7 T]
can also be obtained by mechanical alloying [7].

The pronounced temperature dependence of the rare-earth
anisotropy makes the rare-earth sublattice comparatively unim-
portant at high temperatures [6], [8]. This effect is particularly
important in rare-earth cobalt magnets with the hexagonal
CaCu structure, where the Co atoms yield an unusually strong
transition-metal contribution to the anisotropy. In fact, the first
1 : 5 permanent magnets in the late 1960s were YComagnets,
and only in the early 1970s, when people began to recognize
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the role of the rare-earth anisotropy, did emphasis shift toward
samarium–cobalt magnets.

The practical idea behind the present work is to explore the
feasibility of rare-earth free and therefore comparatively cheap
high-temperature permanent magnets with moderate energy
products (1 to 10 MGOe).

II. SAMPLE PREPARATION AND STRUCTURE

SmCo and YCo alloys were prepared by mechanical al-
loying from elemental powders. The starting Sm and Y pow-
ders are 40 mesh and 99.9% purity, while the Co powder is

325 mesh with a puritiesy of 99.8%. The powders were al-
loyed and handled in an argon-filled glove box to prevent ox-
idation. The milling was performed in a hermetically sealed
tungsten-carbide-lined vial in a SPEX 800 mixer/mill inside the
argon-filled glove box, using a 3 : 1 ball-to-powder mass ratio.
The milling was interrupted every two hours to remove a small
amount of powder for x-ray diffraction and to break up clumps
of powder. The x-ray diffraction patterns of the milled and un-
milled powders are very similar to those shown in [7]. After
milling for 16 hours, the SmComaterial has an amorphous
structure, but annealing at 800C for 5 min yields sharp diffrac-
tion peaks corresponding to SmCowith 2 : 17 (or 1 : 7) regions
as a minor phase. The YCosamples, milled for 18 hours and
annealed at 900C for 5 min, exhibit a similar behavior.

III. M AGNETIC PROPERTIES

The samples were prepared by mixing the powder with
Omega high-temperature cement and magnetizing in a field
of 18 kOe. Hysteresis loops were measured by a vibrating
sample magnetometer (VSM) in fields up to 10 kOe and at
temperatures from 20C to 630 C.

Fig. 1 shows the coercivities of SmCoand YCo as func-
tions of temperature. The coercivity decreases with increasing
temperature for both materials. For SmCo, the coercivity
decreases from 11 kOe at room temperature to 0.15 kOe at
500 C, whereas the respective values for YCoare 3.6 kOe
and 0.6 kOe. In contrast, the shape of the hysteresis loops (not
shown here) did not exhibit any significant temperature or
materials dependence.

IV. DISCUSSION

To explain the temperature behavior of the coercivity, we first
analyze the temperature dependence of the anisotropy, which
governs the temperature dependence of the coercivity, and then
briefly discuss some micromagnetic aspects of the problem.
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Fig. 1. Experimental coercivity as a function of temperature.

Fig. 2. Temperature dependence of the anisotropy of some RCo
intermetallics.

A. Temperature Dependence of the Anisotropy

As a rough approximation, the “intrinsic” coercivity
of permanent magnets scales as

(1)

where
is the first-order anisotropy constant,
is the spontaneous magnetization, and
is a real-structure-dependent dimensionless factor.

Usually, for optimized permanent magnets [9]. The
main contribution to the temperature dependence of the coer-
civity originates from the temperature dependence of[2],
[8]. is much less temperature dependent [8], whereasis es-
sentially constant unless there are irreversible structural changes
on heating.

Fig. 2 shows the temperature dependence offor a NdCo ,
YCo , and SmCo [2]. The convergent character of the curves
shows that the rare-earth anisotropy is less important at high

temperatures: the magnetization of the rare-earth ions must be
coupled to the magnet’s main transition-metal magnetization,
but the rare-earth transition-metal intersublattice exchange is
comparatively weak and easily overcome by thermal excitation
[2], [6]. The striking anisotropy differences between isostruc-
tural rare-earth compounds—compare NdCoand SmCo in
Fig. 2—are well known to reflect the shape of the rare-earth
electron clouds (see e.g., [2], [8]). The shape of theshells is
given by the Stevens factor in the case of uniaxial crystals
(hexagonal, tetragonal, and rhombohedral). The elements Ce,
Pr, Nd, Tb, Dy, and Ho have oblate (pancake-like) shells
( ), whereas Sm, Er, Tm, and Yb are characterized by
prolate (cigar-like) shells ( ). In a given crystalline
environment, prolate and oblate ions give opposite anisotropy
contributions, which explains the different low-temperature
anisotropies of NdCoand SmCo.

Gadolinium, which has a half-filled 4f shell, and the “non-
magnetic” rare earths Y, La, and Lu exhibit shells with spher-
ical symmetry, so that and the corresponding anisotropy
contribution is zero. The anisotropy of YCotherefore origi-
nates from the Co sublattice. Figs. 1 and 2 show that the rare-
earth contribution to anisotropy and coercivity is negligible at
high temperatures.

B. Micromagnetic Effects

The intrinsic temperature dependence of the anisotropy
(Fig. 2) provides a qualitatively correct explanation of the
coercivity. However, Fig. 1 shows that the high-temperature
coercivity of YCo is actually somewhat higher than that of
SmCo . This supports our original idea that Sm may well
be replaced by Y, but it doesn’t make sense from a purely
intrinsic point of view. In terms of Eq. (1), the reason for this
effect is well known: small structural changes may give rise
to disproportionally large changes in the parameter[2].
The YCo and SmCo magnets are structurally very similar
(nanostructured random-anisotropy magnets), but there remain
small differences in stoichiometry and grain structure that
produce easily measurable coercivity deviations.

It is important to keep in mind that the present predictions
refer to single-phase materials. Two-phase materials, such as
cellular 1 : 5/2 : 17 magnets, exploit subtle differences between
the anisotropies of the phases involved, and the coercivity may
actually reach a maximum at high temperatures [2]–[5].

As a first-order approach, the magnets can be consid-
ered as isotropic and weakly interacting ensembles of
Stoner–Wohlfarth particles. In the hard-magnetic limit [10], the
energy product can be approximated by

(2)

where is the exchange stiffness andis an appropriately de-
fined average grain radius. For , the “ideal” isotropic
energy product of is reproduced, whereas the second
and third terms in the bracket describe the onset of soft mag-
netism and the remanence enhancement, respectively. Equation
(2) shows that very hard isotropic materials with sufficiently
small grain sizes exhibit a remanence-enhanced energy product,
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but it is difficult to predict to what extent this remains true at el-
evated temperatures, where the magnets become softer.

V. CONCLUSIONS

We have shown that the high-temperature performance of
the Y–Co magnets is comparable to that of similarly processed
isotructural Sm–Co magnets. This may be used to develop rare-
earth-free high-temperature permanent magnets having mod-
erate energy products.
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