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Anisotropic exchange
R. Skomski,a! A. Kashyap, J. Zhou, and D. J. Sellmyer
Department of Physics and Astronomy and Center for Materials Research and Analysis, University
of Nebraska, Lincoln, Nebraska 68588

sPresented on 10 November 2004; published online 2 May 2005d

The origin and physical nature anisotropic exchange interactions is investigated. Emphasis is on
nonrelativistic exchange anisotropies, as encountered, for example, in intermetallics with layered
crystal structures. The summation of site-resolved exchange interactions is analyzed, and it is shown
that Ruderman–Kittel-type long-range exchange yield converging exchange-stiffness expressions
down to atomic length scales. In general, the resulting exchange stiffness is anisotropic, even if the
interaction is mediated by an isotropic free electron gas. The determination of the mean-field Curie
temperature from pair-exchange interactions requires the diagonalization of an interaction matrix, as
opposed to simple site averaging. ©2005 American Institute of Physics. fDOI: 10.1063/1.1850401g

I. INTRODUCTION

Many scientifically interesting and technologically im-
portant materials are anisotropic. This includes alloys and
oxides with noncubic crystal structure, disordered and par-
tially ordered magnets, magnetic nanostructures, and multi-
layers. There are several types of exchange anisotropy.
Heisenberg exchange has the familiar structure

JsRi − R jdSi ·Sj = JijSi ·Sj , s1d

where theJij are site-resolved pair-exchange parameters and
Si is the spin of theith atom. The exchange of Eq.s1d is
magneticallyisotropic; that is, coherent rotation of a mag-
net’s spin system does not change the Heisenberg exchange
energy. There is, however, a generally very strong bond an-
isotropy associated with the vectorsRi j =R j −Ri.

1 For ex-
ample, in layered structures, such as YCo5 andL10 magnets,
intra- and interlayer exchange may be different,2,3 but the
exchange does not depend on whether the magnetization is
in-plane or normal to the layers. These interactions are also
the main source of spin noncollinearities encountered in el-
emental rare earths and in magnetoresistive materials, such
as NiMnSb.4

Past research has lead to a basic understanding of corre-
lation effects and of the relationship between itinerant and
localized features of ferromagnets.5 Recently, it has become
possible to determine exchange interactions from first
principles,2,6,7 and to calculate materials properties such as
Curie temperatureTC sRef. 8d and the exchange stiffness9 for
materials of practical interest.

The bond anisotropysexchange anisotropyd must not be
confused with the relatively weak relativistic anisotropies,
which involve spin-orbit coupling and depend on the angle
between the magnetization and the crystal axes. Examples
are the exchange interactions assumed in the Ising andXY
models, the magnetocrystalline anisotropy, and the unidirec-
tional Dzyaloshinskii–Moriya exchange. Compared to

Heisenberg exchange, relativistic contributions are smaller
by a factor of ordera2, wherea=1/137 is Sommerfeld’s fine
structure constant.10

The main focus of this paper is to relate site-resolved
exchange coefficientsJij to experimental quantities, such as
Curie temperature and exchange stiffness. This helps, for ex-
ample, to identify specific structure-related Curie-
temperature contributions. Site-resolved exchange interac-
tions are also important for the understanding of the finite-
temperature anisotropy of permanent magnets.11 The
summation over all neighborsi and j is nontrivial,12,13 par-
ticularly in nanostructures,14 where first-principle calcula-
tions are not feasible in the near future.

II. ORIGIN OF EXCHANGE ANISOTROPY

Heisenberg exchange isisotropic and, due to its electro-
static nature, relatively strongsJ/kB,100 Kd. A specific ex-
ample of Heisenberg exchange is the Ruderman–Kittel–
Kasuya–Yosida or RKKY exchange between two localized
moments. In the simplest case, the theory assumes free elec-
trons, but there are also effective-mass approximations, and
asymptotic RKKY-type oscillations are encountered in
nanostructures.13,14For a free-electron gas of wave vectorkF,

Jij = Jsur i − r jud = JsRd , coss2kFRd/R3. s2d

Due to the isotropy of the underlying free-electron gas, the
RKKY interaction is isotropic,Jsr i −r jd=Jsur i −r jud. How-
ever, there is an anisotropic net exchange if the lattice
formed by the embedded magnetic moments has a low sym-
metry.

The relativisticanisotropic exchangemeans that the in-
teraction strength depends on the spin direction relative to
the bond vectorRi −R j. In principal-axis representations, it
can be written asJxx,i jSx,iSx,j +Jyy,i jSy,iSy,j +Jzz,i jSz,iSz,j. The
exchange anisotropy is a relatively small relativistic effect;
that is, uJx,i j −Jz,i j u!Jx,i j and uJy,i j −Jz,i j u!Jz,i j . Since this ex-
change anisotropy is a small correction to isotropic ex-
change, it is frequently neglected.

Lowest-order magnetocrystalline anisotropy, in
principal-axis representationKxxMx

2+KyyMy
2+KzzMz
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tivistic as well but it cannot be considered as a small correc-
tion to a leading nonrelativistic term. As a consequence, it
must be taken into account when the length scale approaches
or exceedsao/a=7.2 nm,10 for example, when considering
magnetic domains.

A third class of relativistic exchange interactions is the
Dzyaloshinskii–Moriya sor DMd interaction HDM

=−1
2Si jDi j ·Si 3Sj, where the vectorDi j =−D ji reflects the lo-

cal environment of the magnetic atom.15 Net DM interac-
tions require local environments with sufficiently low sym-
metry and occur, for example, in some crystalline materials,
such asa-Fe2O3 shematited, in amorphous magnets, spin
glasses, and magnetic nanostructures.10,15,16

III. EXCHANGE STIFFNESS

On a continuum level, the Heisenberg exchange of cubic
materials is described by the energy

Eex =E Af¹sM /Msdg2dV. s3d

The exchange stiffness Ais important for the description of
various nanoscale and macroscopic phenomena, such as co-
ercivity and spin waves.10,11 Due to its continuum character,
it may break down on an atomic scale, but even on a nearest-
neighbor scale the relative errors are often smaller than
20%.10,17

To derive the exchange stiffness from the exchange pa-
rametersJij , we rewrite Eq.s3d in terms of the magnetization
angles. Without loss of generality, we keepf=0, so that

Eex =E As¹ud2dV. s4d

Next, we take into account that

Eex , Si j Jij cossui − u jd < Si j Jijf1 − sui − u jd2/2g. s5d

Using the expansionu j =ui + ¹u ·sr j −r id and comparing the
result with Eq.s4d yieldsA,Si j Jijsr i −r jd2. This well-known
expression has been used to deriveA for nearest-neighbor
interactions, but it diverges for long-range interactionsJij .
An example is the RKKY interactionfEq. s2dg, where inte-
gration over all neighbors yieldsA,e1/R3R2R2dR=`. The
reason is thatu j =ui + ¹u ·sr j −r id breaks down for large dis-
tancesR= ur i −r ju.

To solve the problem, we use the Fourier transformJk of
Jsur −r 8ud. Since eAs¹ud2dV=eJkuk

2dk and eAs¹ud2dV
=−eAk2uk

2dk, A is given by the quadratic coefficient of the
expansion of Jk with respect to k. With k =kek, R
=Rcosu8ek+Rsinu8 e', and dV=4pR2 sinu8du8dR, we
obtain

Jk ,E JsRd
sinskRd

kR
R2dR. s6d

For RKKY interaction,Jk =Fskd is the Lindhard screening
function.5,18 In 1952, this function was introduced to de-
scribe electron-density oscillationssFriedel oscillationsd, but
it also applies to RKKY oscillations.5,18 Figure 1 compares
the Lindhard functionssolid lined with the exchange-stiffness
approximation sdashed lined. We see that the exchange-

stiffness approximation works well for long wavelengths, but
breaks down whenk becomes comparable tokF.

In noncubicmaterials,A must be replaced by the 333
exchange-stiffness tensorAmn, and the energy is
SmneAmn]M /]xm ·]M /]xndV. Here, the indicesm and n
sfrom the middle of the Greek alphabetd denote the spatial
coordinatesx, y, and z of the bonds. The energy is aniso-
tropic with respect to the nabla operator¹m=] /]m sbond an-
isotropyd, but isotropic with respect to the magnetizationM .
By contrast, the relativistic anisotropic exchange
SabeAab¹Ma¹MbdV is isotropic with respect to¹, but
anisotropic with respect toM .

IV. CURIE TEMPERATURE

For isotropic lattices with nearest-neighbor interactions,
the spin-1/2 mean-field Curie temperature isTC=zJ/3kB,
where z is the number of nearest neighbors. A frequently
used expression isTC=kJol /3kB, whereJo is the single-site
exchange and the average is over all lattice sites.2,12 How-
ever, this approach fails when there is a pronounced disper-
sion of the site-specificJosr id. An extreme example is a mix-
ture of two ferromagnetic phases with equal volume
fractions but different Curie temperaturesT1 andT2.T1. In
the approximation just described,TC=sT1+T2d /2, but in re-
ality TC=T2.

19 The effect persists down to very small length
scales and occurs, in a slightly weakened form, even on an
atomic scale.19,20

The most general mean-field treatment of the critical be-
havior of ferromagnets is based on the diagonalization of the
interaction matrixJij . The Curie temperature is given by the
largest eigenvalues ofJij ,

19,20 and the corresponding eigen-
modes are generally nonuniform. Figure 2 shows a simple
two-dimensional example. Site averaging would yieldTC

=s7Tblack+9Twhited /16, but the exact mean-field Curie tem-
perature is obtained by diagonalizing a 636 matrix. For
Tblack=2To and Twhite=To/2, the correct result isTC

=1.421To, as compared to the site-averaged resultTC

=1.156To.

FIG. 1. Exchange energy as a function of the wave vector of the magneti-
zation inhomogenity: Lindhard functionssolid lined and exchange-stiffness
approximationsdashed lined.

10B302-2 Skomski et al. J. Appl. Phys. 97, 10B302 ~2005!

Downloaded 14 Nov 2006 to 129.93.16.206. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



V. DISCUSSION AND CONCLUSIONS

Heisenberg interactionsfEq. s1dg require well-defined
atomic magnetic moments, whereS2=So

2. In insulators,So
2

=SsS+1d, whereas in metals,So is an expectation value and
S/So has the character of a unit vector that describes the
local magnetization direction. In some materials, this is a
very crude approximation. Examples are semimetals, such as
Sb, exchange-enhanced Pauli paramagnets, such as Pt, and
very weak itinerant ferromagnets, such as ZrZn2.

11,21A simi-
lar situation is encountered inL10 magnets, where the 4d or
5d momentssPd or Ptd are induced by the 3d atomssFe or
Cod. There the moment of the 4d/5d layers exhibits an ex-
plicit dependence on the relative spin arrangement of the
adjacent 3d layers: it is nonzero for ferromagnetic 3d-3d
coupling but zero for antiferromagneticsAFMd coupling.3

A closely related issue is that first-principles calculations
based on perturbation theorysforce theoremd are non-self-
consistent. If an atomic momentSi experiences a negative
sor AFMd net interaction, then the Heisenberg-type reversal
of that atomic moment does not necessarily yield the correct
energy, because any significant changes inSi leads to a rear-
rangement of the one-electron levels. These correction are
not considered in this paper.

In conclusion, we have investigated the origin and mani-
festation of anisotropic magnetic interactions, with particular
focus on nonrelativistic phenomena. Free-electron RKKY in-
teractions are inherently isotropic, but embedding a low-
symmetry lattice of local magnetic moments yields spatially
anisotropic exchange interactions. Compared to short-range
exchange interactions, the summation over RKKY-type inter-
actions requires specific care, but yields convergent expres-
sions for the exchange stiffness. To determine the mean-field
Curie temperature, it is necessary to diagonalize a matrix
whose size is given by the number of nonequivalent lattice
sites. This Curie temperature is typically larger than that ob-
tained from the volume-averaged exchange.
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FIG. 2. Mean-field treatment of a simple two-dimensional lattice. There are
two types of atomssblack and whited with altogether six nonequivalent sites.
TC is essentially determined by the black atoms. Note that many magnetic
compounds can be considered as anisotropic structures where strongly mag-
netic layers are separated by essentially nonmagnetic layers.
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