
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

USDA National Wildlife Research Center - Staff 
Publications 

U.S. Department of Agriculture: Animal and 
Plant Health Inspection Service 

December 2004 

Alligators as West Nile Virus Amplifiers Alligators as West Nile Virus Amplifiers 

Kaci Klenk 
Centers for Disease Control and Prevention 

Jamie Snow 
Centers for Disease Control and Prevention 

Katrina Morgan 
Centers for Disease Control and Prevention 

Richard Bowen 
Colorado State University, Fort Collins 

Michael Stephens 
Centers for Disease Control and Prevention 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc 

 Part of the Environmental Sciences Commons 

Klenk, Kaci; Snow, Jamie; Morgan, Katrina; Bowen, Richard; Stephens, Michael; Foster, Falacia; Gordy, Paul; 
Beckett, Susan; Komar, Nicholas; Gubler, Duane; and Bunning, Michael, "Alligators as West Nile Virus 
Amplifiers" (2004). USDA National Wildlife Research Center - Staff Publications. 629. 
https://digitalcommons.unl.edu/icwdm_usdanwrc/629 

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health 
Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA 
National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University 
of Nebraska - Lincoln. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17232373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/icwdm_usdanwrc
https://digitalcommons.unl.edu/icwdm_usdanwrc
https://digitalcommons.unl.edu/usdaaphis
https://digitalcommons.unl.edu/usdaaphis
https://digitalcommons.unl.edu/icwdm_usdanwrc?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F629&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/167?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/icwdm_usdanwrc/629?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F629&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Kaci Klenk, Jamie Snow, Katrina Morgan, Richard Bowen, Michael Stephens, Falacia Foster, Paul Gordy, 
Susan Beckett, Nicholas Komar, Duane Gubler, and Michael Bunning 

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/
icwdm_usdanwrc/629 

https://digitalcommons.unl.edu/icwdm_usdanwrc/629
https://digitalcommons.unl.edu/icwdm_usdanwrc/629


Recent evidence suggests that American alligators
(Alligator mississippiensis) may be capable of transmitting
West Nile virus (WNV) to other alligators. We experimen-
tally exposed 24 juvenile alligators to WNV parenterally or
orally. All became infected, and all but three sustained
viremia titers >5.0 log10 PFU/mL (a threshold considered
infectious for Culex quinquefasciatus mosquitoes) for 1 to 8
days. Noninoculated tankmates also became infected. The
viremia profiles and multiple routes of infection suggest alli-
gators may play an important role in WNV transmission in
areas with high population densities of juvenile alligators.

The primary enzootic cycle for West Nile virus (WNV)
is between adult ornithophilic mosquitoes and birds,

with these mosquitoes occasionally infecting incidental
hosts such as horses and humans (1). Most research to date
has focused on these endothermic vertebrate hosts. Other
arboviruses infect a variety of ectotherms, including
species of lizards (2–4), snakes (5–11), and turtles (12,13),
but the knowledge of ectotherm involvement in the ecolo-
gy of WNV is limited. In the lake frog (Rana ridibunda),
West Nile viremia capable of infecting mosquitoes (14,15)
develops, and antibodies develop in Nile crocodiles
(Crocodylus niloticus) and other ectotherms after natural
infection (16,17). Experimentally infected North American
bullfrogs (R. catesbeiana) and green iguanas (Iguana igua-
na) sustain low viremia levels for a short period of time,
which suggests that they do not transmit the virus to biting
mosquitoes (18). 

In North America, WNV infections in ectotherms were
first reported in 2001 (19). In the years 2001 to 2003, U.S.
alligator farms reported substantial economic losses and at
least one human case of fever due to WNV outbreaks in

juvenile American alligators (Alligator mississippiensis)
(19, 20; L. Tengelsen, pers. comm.). These alligators were
housed in crowded tanks at a constant temperature of
32°C. The mode of transmission, the risk posed to han-
dlers, and role of alligators in secondary WNV transmis-
sion cycles are unknown. To assess the potential role of
juvenile alligators in the ecology of WNV transmission,
we evaluated routes of transmission, determined viremia
profiles, evaluated viral persistence in organs, and exam-
ined the role of temperature on WNV replication in these
animals.

Materials and Methods

Acquiring and Housing Alligators
American alligators were transported to Fort Collins,

Colorado, from two U.S. alligator farms: St. Augustine
Alligator Farm, St. Augustine, Florida (N = 26, age = 1–2
years, weight = 1–3 kg) and Colorado Gator Farm, Mosca,
Colorado (N = 22, age = 10 mo, weight = 200–400 g).
Alligators were fed gator chow pellets (Burris Mill and
Feed, Franklinton, LA) twice per week (food volume ≈5%
of body weight) (20).

Alligators were divided between two rooms; one room
was maintained at 32°C and the other at 27°C. Room tem-
perature and humidity were monitored by HOBO data
recorders (Onset, Bourne, MA). Within each room, alliga-
tors were placed in livestock tanks (2 m diameter) separat-
ed by plastic curtains to reduce cross-contamination
between tanks. Each tank contained 15 cm of water at the
corresponding temperature (27ºC or 32ºC) and an adequate
basking surface. Water was heated with aquarium heaters
and aerated with an aquarium water pump. Equipment was
checked twice daily, and the water was changed and tanks
were disinfected every other day. Rooms were kept dark to
calm the alligators (a standard practice at some alligator
farms).
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Mouse Infection
The NY99-4132 strain of WNV, passaged 3–4 times in

Vero cells, originally from crow brain provided by W.
Stone, New York State Department of Environmental
Conservation, Albany, New York, was used in this study.
We injected 24 Swiss Webster mice (6–8 weeks of age)
subcutaneously with ≈1,000–2,000 PFU of WNV. Mice
that developed neurologic signs 7–8 days postinoculation
were euthanized and frozen at –70ºC.

Alligator Infection
Six alligators in the 32°C room and six alligators in the

27°C room were subcutaneously injected behind the left
front leg with ≈7,500 PFU of WNV with a volume of 0.15
mL. Another six animals from each room were fed WNV-
infected mice (1/2 mouse per small alligator [<700 g] and
1 mouse per larger alligator [>700 g]). Two noninfected
alligators were placed with each infected group to serve as
tankmate controls. Eight noninfected alligators served as
bleeding controls in each room.

WNV Isolation from Serum
Blood samples were collected from each alligator daily

for 15 days postinfection for virus isolation (some tank-
mate alligators were bled daily through day 21). Blood (0.2
mL) was collected from the caudal vein and added to 0.9
mL of BA-1 diluent (composed of Hank’s M-199 salts, 1%
bovine serum albumin, 350 mg/L sodium bicarbonate, 100
U/mL penicillin, 100 mg/L streptomycin, 1 mg/L ampho-
tericin B in 0.05 mol/L Tris, pH 7.6), producing an approx-
imate 1:10 serum dilution. Blood samples were
centrifuged at 3,750 rpm for 10 min to separate serum
from clotted blood and stored at –70°C.

WNV viremia was quantified by plaque assay. Blood
samples were serially diluted 10-fold with BA-1 through
10–8, and 100 mL of each dilution was added in duplicate
to Vero cell monolayers in six-well plates (Costar,
Cambridge, MA). Samples were allowed to incubate on
the cells for 1 h at 37°C. Cells were then overlaid with 3
mL per well of 0.5% agarose in M-199 medium, supple-
mented with 350 mg/L sodium bicarbonate, 29.2 mg/L L-
glutamine, and antimicrobial drugs as in BA-1. After 48 h
of incubation, a second 3-mL 0.5% agarose overlay con-
taining 0.004% neutral red was added for plaque visuali-
zation. Plaques were counted on day 4 postinfection.

WNV Isolation from Other Samples
Cloacal swab samples were taken from each alligator

daily for 15 days postinfection (some tankmate alligators
were swabbed daily through day 21 postinfection). A cot-
ton swab was inserted into the cloaca ≈2 cm, rotated, and
then placed in a tube containing 1.0 mL BA-1. Virus con-
tent was quantified by plaque assay.

Nine alligators (two that died of infection and seven
that recovered) were tested for virus in tissues. Tissue sam-
ples (≈0.5 cm3 in size) were harvested from the lung, liver,
spleen, heart, kidney, spinal cord, cerebrum, and cerebel-
lum. Samples were trimmed as needed and ground in 1.5
mL BA-1 containing 20% fetal bovine serum with a
Retsch MM300 mixer mill (Retsch GmbH & Co, Hann,
Germany) (30 cycles/sec for 4 min). Each resulting
homogenate was transferred to a 1.7-mL Eppendorf micro-
centrifuge tube and clarified by microcentrifugation at
7,500 rpm for 3 min. Each supernatant was transferred to a
1.8-mL cryovial (Nalge Nunc International, Rochester,
NY) and stored at –70ºC. Virus content was quantified by
plaque assay.

Water (0.5 mL) was taken from each tank daily (before
cleaning) for 15 days postinfection and then twice per
week through day 31 postinfection. Water samples were
added to 0.5 mL BA-1 (containing 2x concentrations of
antimicrobial drugs). Water samples were pooled accord-
ing to tank. Half of each pool was used for virus isolation.
Water samples were added to 25-cm3 tissue culture flasks
(Corning, Corning, NY) (1 mL per flask) containing Vero
cell monolayers. Flasks were rocked every 15 min for 1 h
at 37°C, and 10 mL of Dulbecco’s Modified Eagle
Medium (Invitrogen, Carlsbad, CA), supplemented with
2% fetal bovine serum, was added to each flask. Flask
media were replaced on day 6 postinfection. Flasks were
checked daily for cytopathic effect (CPE) through day 10
postinfection. Remaining water samples were tested by
Taqman reverse transcriptase–polymerase chain reaction
(RT-PCR) (21). 

Neutralizing Antibody Detection
Blood samples (0.4–0.6 mL) were collected from each

alligator for neutralizing antibody detection twice per
week from day 21 postinfection through day 31 postinfec-
tion. To detect neutralizing antibodies, 15-µL serum sam-
ples from day 21 to day 31 were mixed with 60 µL of
BA-1 and 75 µL of a WNV preparation (200 PFU/0.1 mL)
in a polypropylene 96-well plate (Costar, Cambridge,
MA). The virus-serum mixtures were incubated at 37°C
for 1 h to allow for virus neutralization. These mixtures
were then tested by plaque assay. Controls employed BA-
1 only (cell viability control), serum-free virus mixture
with BA-1 only (to enumerate PFU in the challenge dose
of virus), and West Nile hyperimmune mouse ascitic fluid
(diluted 1:200) mixture with virus (to verify challenge
virus identity). Specimens were considered positive for
WNV neutralizing antibodies if they reduced a challenge
dose of ≈100 PFU of WNV by at least 90% at a serum
dilution of 1:10.
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Results

Viremia after Parenteral Infection
Every alligator injected with WNV became viremic

from days 1 to 3 postinfection (Figure A and B). Alligators
housed at 32°C became viremic on day 1 or 2 postinfec-
tion, while those kept at 27°C became viremic on days 2 or
3 postinfection. Viremia in the 32ºC alligators persisted an
average of 10 days with an average maximum WNV titer
of 5.7 log10 PFU/mL (maximum 6.7 log10 PFU/mL). The
alligators housed in 27°C conditions were viremic for ≈14
days and averaged a maximum WNV titer of 5.8 log10
PFU/mL (maximum 6.1 log10 PFU/mL). No injected alli-
gators died of the infection.

Tankmates in the 32ºC injected group became viremic
on days 10 and 12 postinfection, while the tankmates in the
27°C injected group failed to become viremic (Figure A and
B). Infection of tankmates in the 32ºC injected group per-
sisted for ≈10 to 12 days, and neither died of the infection.

Viremia after Oral Infection
Viremia developed in two alligators from the 32°C

room and five alligators from the 27°C room 3–6 days
after they ate WNV infected mice (Figure C and D).
Alligators in the 32°C room remained viremic for >9 days,
while the alligators in the 27°C room remained viremic for
≈14 days.

Every alligator in the 32°C orally infected tank eventu-
ally became viremic during the experiment, with an aver-
age maximum WNV titer of 5.6 log10 PFU/mL (max 6.2
log10 PFU/mL) (Figure C). Tankmate viremia onset ranged
from 12 to 24 days after infection. Because we stopped
routine daily bleeding after day 15 postinfection, the exact
viremia onset days of two alligators in this group are
unknown. Also, the average duration of viremia for these
alligators cannot be calculated. Two alligators in this group
died of WNV infection after 12 or 13 days of viremia.

Both tankmates from the 27°C orally infected group
also became infected (Figure D). One tankmate came into
contact with a viremic mouse but did not eat it; this alliga-
tor became viremic on day 4 postinfection, and the infec-
tion persisted for >14 days. Viremia developed in the other
tankmate on day 16 postinfection. Because of the absence
of daily bleeding, the duration of viremia is not precisely
known.

Viral Loads of Cloacal Swabs
Of 29 viremic alligators, 24 had detectable viral loads

in their cloacae (Table 1). All five remaining infected alli-
gators became viremic on the last 1 to 2 days of swabbing
or after daily swabbing ceased, so no positive swabs can be
reported from them. Viral shedding was detected within 3
days of detectable viremia and, in some instances, was

detected on the same day as viremia onset. Duration of
shedding lasted 6 to >12 days, with an average maximum
viral load of 5.2 log10 PFU/swab (maximum 6.2 log10
PFU/swab).

Viral Isolation from Other Samples
Of 29 infected alligators, 2 died, and WNV was detect-

ed in their tissues (Table 2). No virus was isolated from
the seven alligators that recovered from infection. WNV
neutralizing antibodies were detected in 100% of infected
alligators within 25 days after virus detection. No infec-
tious virus or viral RNA was detected in water samples.
Sample volumes were each 0.00013% of the total tank
water volume.
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Figure. Daily viremia titers. A) Injected alligators held at 32°C ( , *,
, ∆, , +) and their tankmates (x, –), B) Injected alligators held at

27°C ( , , *, ∆, , +). Tankmates did not become viremic.
C) Orally infected alligators held at 32°F (∆, ) and their tankmates
( ,–, *, +, x, ∆). D) Orally infected alligators held at 27°C ( , , *,
∆, , +) and their tankmates (x, –). Blood samples were collected
from each alligator for virus isolation once a day for 15 days postin-
fection. (Some tankmate alligators were bled daily through day 21
postinfection.) After day 15, alligators were bled biweekly through
day 31 postinfection. West Nile viremia was quantified by using a
Vero cell plaque assay. Plaques were counted after 4 days of incu-
bation. The threshold of detection was 1.7 log10 PFU/mL of serum.
Values <101.7 were considered to be zero.



Discussion
In some southern states, alligator farms contribute to

the economy as agricultural producers and tourist attrac-
tions. A typical operation raises 3,000 alligators each year.
The market value of raw products (e.g., meat, hides) from
an average adult alligator is ≈$300, and alligator meat typ-
ically fetches ≈$5 per pound. In Louisiana alone, the total
value of farm-raised alligators is >$16 million (22).
Beginning in 2001, alligator farms in at least four different
states suffered substantial economic losses due to WNV
outbreaks in young alligators. Public health risks involved
in these large outbreaks and the eventual culling of thou-
sands of young alligators are also substantial.

We have shown that sick juvenile alligators carry high
viral loads in tissues, which poses a threat to handlers,
processors, and consumers, although this risk has not been
quantified beyond one reported case in Idaho of human
West Nile fever in a handler of imported Florida juvenile
alligators. Furthermore, all infected alligators in our study
shed WNV from the cloaca, which poses another possible
threat to other alligators and to handlers. Although tank-
mates in our study became infected at a high rate, we can-
not conclude with certainty that cloacal shedding is the
cause of this direct transmission. 

Direct transmission likely plays an important role in the
epizootiology of WNV infection in farmed alligators but
has not been documented in wild alligators (19,20).
However, we now know that high levels of viremia devel-
op in young alligators, so WNV infection could likely lead
to mosquitoborne transmission as well. In general, viremia
reached titers considered to be infectious to Culex quin-
quefasciatus mosquitoes with the NY99 strain of WNV

(5.0 log10 PFU/mL) in all but three infected alligators
(23,24). Cx. quinquefasciatus is one of the principal vec-
tors of WNV in the southeastern United States (25).
Numerous species of mosquitoes feed on reptiles as well as
birds and mammals and thus could be vectors from alliga-
tors to people (26). The primary WNV amplification cycle
is believed to depend on birds and mosquitoes (1); howev-
er, the maximum duration of viremia in juvenile alligators
was >2 weeks, which is longer than that observed in birds
(maximum duration 7 days) (27).

Because most alligator farms raise juvenile alligators at
a higher temperature (32°C) than older alligators, the
effect of temperature on WNV infection was of interest.
The 5°C difference in temperature that we tested did not
significantly alter infection rates (Fisher exact test, p =
0.11). In general, alligators housed at 27°C maintained
detectable viremia 4–5 days longer than the alligators
housed at 32°C, which could be due to an enhanced
immune function at the higher temperature. In 1969, Tait et
al. discovered that lizards (Egernia cunninghami) housed
at 30ºC produced higher titers of antibodies at a faster rate
than those housed at 25ºC after injection with sheep red
blood cells (28). In our study, WNV neutralizing antibod-
ies developed in all infected alligators within a month of
infection; these antibodies were detected in the alligators
housed at 32°C an average of 5 days earlier than in the alli-
gators housed at 27°C (data not shown). Although neutral-
izing antibody circulation is only one part of immune
function, previous studies have suggested that multiple
aspects of the ectothermic immune system may be affect-
ed by body temperature, which is directly affected by envi-
ronmental temperature (29–31).

Transmission of WNV by means other than mosquitoes
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has been shown in humans (32–34), mice (35), and birds
(27,36), although some modes of transmission are poorly
understood. In our study, alligators were successfully infect-
ed by parenteral and oral routes, although infection rates
between the parenteral and oral groups differed significant-
ly (Fisher exact test, p < 0.05). All 12 injected and 7 of 12
orally inoculated alligators became viremic. Furthermore,
high viral loads in the cloacal samples indicate a possible
fecal-oral route of transmission, although no viral RNA was
detected in our water samples, probably because of the dilu-
tion effect of ≈400 L per tank (a 10–6 dilution factor). Other
transmission routes could include bloodborne transmission,
although wounds were observed on only two alligators dur-
ing the experiment, or direct transmission by contaminated
water droplets sprayed onto the conjunctiva or other
mucous membranes. Although we apparently sampled
water that was too dilute to detect WNV particles, at dis-
crete moments, pockets of highly concentrated virus parti-
cles in the water could exist and lead to transmission.
Infectious saliva could also contribute to direct transmis-
sion, but this factor was not examined in this study.

The only deaths observed in our study were two alliga-
tors housed at 32°C and infected by tankmate transmis-
sion. These data confirm the observations on the farms that
WNV infection kills some alligators. Precise death rates on
the affected farms are unknown, but we observed an over-
all death rate of 7% in this study (2 of 29 infected alliga-
tors).1 Because of infectious virus in their tissues, these
dead alligators represent a potential health threat to han-
dlers, alligator meat consumers, and other alligators.
Infectious virus was not isolated from tissues of seven alli-
gators that recovered from infection, which suggests that
surviving alligators do not pose a health threat after
viremia and cloacal shedding cease (within 4 weeks
postinfection). 

In summary, juvenile alligators may be competent hosts
for WNV. This study showed that juvenile alligators have
adequate viremia levels (high-titer and long-lasting) for
viral transmission by mosquitoes. Coupled with multiple
routes of infection, alligators may play a role in WNV
ecology, especially in areas where the density of young
alligators is high.
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