University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Faculty Publications from Nebraska Center for Materials and Nanoscience

Materials and Nanoscience, Nebraska Center for (NCMN)

8-28-2001

Anisotropy of conducting p states and ¹¹B nuclear spin-lattice relaxation in Mg_{1-x}Al_xB₂

Kirill D. Belashchenko University of Nebraska-Lincoln, belashchenko@unl.edu

Vladimir B. Antropov Ames Laboratory, US Department of Energy, antropov@ameslab.gov

S.N. Rashkeev Vanderbilt University, Nashville, Tennessee

Follow this and additional works at: https://digitalcommons.unl.edu/cmrafacpub

Part of the Nanoscience and Nanotechnology Commons

Belashchenko, Kirill D.; Antropov, Vladimir B.; and Rashkeev, S.N., "Anisotropy of conducting *p* states and ¹¹B nuclear spin-lattice relaxation in Mg_{1-x}Al_xB₂" (2001). *Faculty Publications from Nebraska Center for Materials and Nanoscience*. 26. https://digitalcommons.unl.edu/cmrafacpub/26

This Article is brought to you for free and open access by the Materials and Nanoscience, Nebraska Center for (NCMN) at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from Nebraska Center for Materials and Nanoscience by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Anisotropy of conducting p states and ¹¹B nuclear spin-lattice relaxation in $Mg_{1-x}Al_xB_2$

K. D. Belashchenko,¹ V. P. Antropov,¹ and S. N. Rashkeev²

¹Ames Laboratory, Ames, Iowa 50011 ²Vanderbilt University, Nashville, Tennessee 37235 (Received 17 May 2001; published 31 August 2001)

We calculated the nuclear spin-lattice relaxation rate in the $Mg_{1-x}Al_xB_2$ system and found that the orbital relaxation mechanism dominates over the dipolar and Fermi-contact mechanisms in MgB_2 , whereas in AlB_2 due to a smaller density of states and strong anisotropy of boron *p* orbitals the relaxation is completely determined by Fermi-contact interaction. The results for MgB_2 are compared with existing experimental data. To validate the theory, nuclear resonance experiments for the studied diboride alloy system are needed.

DOI: 10.1103/PhysRevB.64.132506

PACS number(s): 76.60.Es, 74.70.Ad, 74.25.Jb

The discovery of superconductivity in MgB_2 (Ref. 1) has stimulated a significant interest in the electronic structure of intercalated boron compounds. For the superconductivity, one of the most important parameters is the value $N(E_F)$ $\equiv N$ of the electronic density of states (DOS) at the Fermi level in the normal state. Several groups have performed local-density-functional (LDA) calculations of this quantity and the results scatter around 0.7 states/(eV f.u.).²⁻⁴ Experimentally N can be determined in many different ways but the nuclear spin-lattice relaxation (NSLR) rate $1/T_1$ measurements represent an excellent opportunity to check experimentally not only the total N and its partial components but also their anisotropy, i.e., the distribution between the inplane and out-of-plane p orbitals. Experimental values of $TT_1 = 180, 155, \text{ and } 165 \text{ K sec for } {}^{11}\text{B} \ (\mu = 2.689 \mu_N) \text{ were}$ reported.^{5–7} These relaxation rates were interpreted in terms of dipolar and orbital contributions due to the corresponding Korringa ratio and the already known²⁻⁴ theoretical total N. In this paper we perform a more careful theoretical analysis of NSLR in MgB₂. However, the direct numerical comparison with experiment for one single system may not be sufficient to verify the theory, and studies of trends in a sequence of related systems are usually much more credible. Therefore, we also studied the NSLR in $Mg_{1-x}Al_xB_2$ that is the only known diboride alloy with substitution in the Mg sublattice and a rather wide range of solubility.⁸ In addition, earlier studies $^{2-4}$ have shown that in this system the twodimensional (2D) boron bands are gradually filled with Al doping. Hopefully, the studies of NSLR in this system may provide valuable information about the genesis of anisotropy of electronic states at the Fermi level.

Below we evaluate the relaxation rates for MgB₂ and AlB₂ compounds using an LDA calculation, and for the intermediate concentrations we used the rigid band approximation with MgB₂ bands. We will show that in MgB₂ the orbital mechanism is the leading term in NSLR, whereas the Fermi-contact mechanism is dominating in AlB₂. Our calculated total relaxation rate in MgB₂ is in fair agreement with experiments,^{5–7} thus indicating that the calculated *N* in MgB₂ is basically correct, whereas in AlB₂, due to high anisotropy and low DOS of boron *p* states, we predict a much smaller relaxation rate fully determined by the Fermi-contact mechanism.

The standard technical details of the Linear muffin-tin or-

bital calculations are similar to those described in Refs. 2 and 3. In addition, we carefully checked the sensitivity of the results to the parameters of calculations. We used different exchange-correlation potentials and inputs with different radii of the *B* sphere (both with and without empty spheres). Our values of DOS for s and p orbitals on the B site in MgB_2 and AlB₂ are listed in Table I. One can see that in MgB₂ all p orbitals on the B site have a sizable DOS, while in AlB₂ only p_z orbital is significant with $N_{px} \approx 0.1 N_{pz}$. The s component in AlB₂ becomes relatively more important compared to MgB₂ resulting in the dominance of the Fermi-contact NSLR in AlB₂, as we will show below. In both materials the contribution of d states to NSLR is very small. As for the Mg site, the s component of N is the most important, and we expect that the NSLR on ²⁵Mg is controlled by the Fermicontact mechanism. However, in this paper we will focus on the ¹¹B NSLR.

To calculate T_1 according to a general prescription one has to estimate the $\langle r^{-3} \rangle_l$ expectation values for different orbitals and the electronic density at the nucleus $\varphi_s^2(0)/4\pi$. We found that the convergence of the total NSLR rate with respect to the boron sphere radius in this *sp* system is worse compared to *d* metals (from $r_B = 2.3a_0$ to $r_B = 2.4a_0$ the total T_1^{-1} decreases by ~ 15%). The uncertainty is mostly related to the value of $\langle r^{-3} \rangle_p N_p$.

In our calculations we used the largest r_B that were possible without a significant distortion of the band structure, $2.4a_0$ for MgB₂ and $2.1a_0$ for AlB₂. For these radii we have $\langle (a_0/r)^3 \rangle_p = 1.11$ in MgB₂ and 1.37 in AlB₂. For comparison, the atomic value⁹ for $\langle (a_0/r)^3 \rangle_p$ in *B* is 0.78. The electronic densities on the nucleus $a_0^3 \varphi_s^2(0)/4\pi$ for MgB₂ and AlB₂ were, respectively, 2.68 and 3.02.

The contributions to the ¹¹B relaxation rate for the polycrystalline sample calculated using the general formulas¹⁰ for the hexagonal crystal are given in Table II. The in-plane and

TABLE I. Partial DOS for *s* and *p* orbitals at B site, 10^{-3} (eV spin atom)⁻¹.

	S	p_z	p_x
MgB_2	3.4	50	36
AlB ₂	3.3	19	1.9

TABLE II. Contributions to $(TT_1)^{-1} [10^{-4}/(\text{K sec})]$.

	Fermi contact	Orbital	Dipole	Total	Stoner enhanced	Experiments
MgB ₂	12	30	9	51	81	56 ⁵ ,64 ⁶ ,61 ⁷
AlB ₂	21	1	1	23	26	

out-of-plane *p* orbitals in MgB₂ have similar densities of states, and hence the relative magnitude of orbital and dipolar contributions to NSLR is close to the 3/10 rule for *p* states in a cubic crystal described by Obata.¹⁰ The Fermicontact contribution is also important and amounts to 30% of the orbital term. The contributions from the *d* partial waves to the dipole and orbital relaxation rates are small (at the order of 1%) due to the low diagonal and off-diagonal densities of states $(N_d/N_p)^2 \sim 0.02$ and $(N_{pd}/N_p)^2 \sim 0.05$. The quadrupole contribution to NSLR is negligible due to a rather small ¹¹B quadrupole moment.

The values of T_1^{-1} obtained in such manner correspond to the theoretical 'bare' partial boron N whereas the actual T_1^{-1} contains different terms enhanced according to the corresponding susceptibilities. To estimate the possible range of enhancement, we calculated the total enhancement coming from the spin susceptibility only (which is the case for AlB₂). We estimated the effective Stoner exchange parameter $I \equiv \Delta E/m = 1.7$ eV from the splitting of the bands at the Γ point in the external magnetic field. The corresponding Stoner enhancement of the uniform susceptibility in the 3D case may be written¹¹ as $S=3/[(1-NI)(3-2IN)]\approx(1$ -IN)^{- α} with $\alpha \approx 1.62$, while in the 2D case the enhancement is described by the same formula with $\alpha = 2$. In our case due to the mixed 2D and 3D character of the bands it is not clear what value of α should be used, but the difference in the result for $\alpha = 1.62$ and 2.0 is less than 10%. We used $\alpha = 1.9$ resulting in the enhancement of T_1^{-1} by approximately 60% (Table II). The obtained 'bare' and enhanced values provide a range of possible NSLR rates for MgB₂ that should be compared with the experimental rates⁵⁻⁷ of 56 $\times 10^{-4}$ -64 $\times 10^{-4}$ (K sec)⁻¹. The fact that such simple estimate may give a faster relaxation compared to experiments suggests a possible importance of unique effects resulting in the lowering of the effective boron N.

The roles of the three NSLR mechanisms are very different in AlB_2 where no traces of superconductivity have been found and where no experimental data are available. According to our theoretical estimation, due to the sharp decrease of the boron *p* component of *N* compared to MgB₂ and its very strong anisotropy (see Table I), the orbital and dipolar contributions to NSLR become very small, and the NSLR in AlB₂ is completely dominated by the Fermi-contact mechanism. This conclusion may be verified experimentally by studying the Korringa ratio. The resulting Stoner-enhanced NSLR rate in AlB₂ is more than three times smaller than in MgB₂ (see Table II). We should note that the strong anisotropy of boron *p* states in AlB₂ on this stage is a theoretical prediction and more experimental information is needed to confirm it.

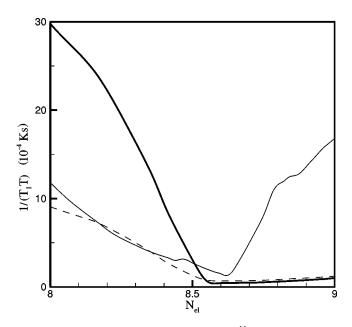


FIG. 1. Different contributions to the total ¹¹B relaxation rate in $Mg_{1-x}Al_xB_2$. Thick solid line, orbital; dashed, dipolar; thin solid, Fermi contact.

We also calculated the NSLR rate in $Mg_{1-x}Al_xB_2$ in the rigid band approximation with MgB_2 bands. From Fig. 1 one can see how the roles of different mechanisms of NSLR change with doping. The sharp decrease of N in the 2D sheets of the Fermi surface with doping³ leads to the corresponding lowering of all contributions to NSLR, and at the point of the complete filling of these 2D bands we expect a very large T_1 . Experimental verification of this sharp dependence of T_1 on doping in this alloy may be a crucial test of our understanding of the electronic structure of this system and is highly desirable. Together with the nuclear quadrupole resonance data (which is related to the anisotropy of total charges on different p orbitals) such measurements should help to build a general picture of anisotropy of p orbitals.

The above calculations have been done for a polycrystalline sample. Because single crystals are becoming available, we include our estimations of the anisotropy in the angular dependence of NSLR rate¹⁰ $A + B \sin^2 \theta$. For MgB₂ we obtained $B/A \approx -0.06$, so that the NSLR is nearly isotropic. The NSLR rate in AlB₂ is isotropic because it is determined by isotropic Fermi-contact mechanism.

In conclusion, we have performed LDA calculations for the NSLR rate in the $Mg_{1-x}Al_xB_2$ system. We found that the orbital mechanism of relaxation dominates over the spindipolar and Fermi-contact ones in MgB₂, because the boron *p* orbitals at the Fermi level are distributed nearly isotropically and have a large DOS. Strong anisotropy and low density of *p* states at the Fermi level in AlB₂ results in the dominance of the Fermi-contact NSLR mechanism. With the values of 0.7 (0.5) st./eV for the bare total (boron partial) DOS at the Fermi level for MgB₂ and 1.7 eV for the effective Stoner exchange parameter, reasonable agreement is obtained with the experimental NSLR rates. However, we emphasize a relatively weak radial convergence of the NSLR rate in this system compared to the well-studied *d* metals, and a common uncertainty related to the estimate of the enhancement factor. Still, we strongly believe that the obtained results related to the relative importance of different NSLR mechanisms are qualitatively correct. According to our calculation, the NSLR rate strongly depends on the concentration in the Mg_{1-x}Al_xB₂ system, and the experimental studies of this dependence are highly desirable for the understanding of the anisotropy of boron *p* states.

When this paper was completed we became aware that similar results for NSLR in MgB₂ were independently obtained in Ref. 12, where the T_1 on ²⁵Mg and the Knight

shifts were also computed. We believe that the discrepancy in the Fermi-contact term is mainly due to the significantly larger boron sphere radius used in our calculations.

We are grateful to I. Mazin and F. Borsa for valuable discussions. This work was carried out at the Ames Laboratory, which is operated for the U.S. Department of Energy by Iowa State University under Contract No. W-7405-82. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences of the U.S. Department of Energy.

- ¹J. Nagamatsu et al., Nature (London) 410, 63 (2001).
- ²J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, Phys. Rev. Lett. **86**, 4656 (2001).
- ³K. D. Belashchenko, M. van Schilfgaarde, and V. P. Antropov, cond-mat/0102290 (unpublished).
- ⁴J. M. An and W. E. Pickett, Phys. Rev. Lett. **86**, 4366 (2001); G. Satta, G. Profeta, F. Bernardini, A. Continenza, and S. Massidda, Phys. Rev. B (to be published 1 September 2001).
- ⁵H. Kotegawa, K. Ishida, Y. Kitaoka, T. Muranaka, and J. Akimitsu, cond-mat/0102334 (unpublished).
- ⁶A. Gerashenko, K. Mikhalev, S. Verkhovskii, T. D'yachkova, A.

Tyutyunnik, and V. Zubkov, cond-mat/0102421 (unpublished).

- ⁷J. K. Jung, S. H. Baek, F. Borsa, S. L. Bud'ko, G. Lapertot, and P. C. Canfield, Phys. Rev. B **64**, 012514 (2001).
- ⁸J. S. Slusky *et al.*, Nature (London) **410**, 343 (2001).
- ⁹S. Fraga, K. M. S. Saxena, and J. Karwowski, *Handbook on Atomic Data* (Elsevier, Amsterdam, 1976).
- ¹⁰Y. Obata, J. Phys. Soc. Jpn. **18**, 1020 (1963); A. Narath, Phys. Rev. **162**, 320 (1967); T. Asada and K. Terakura, J. Phys. F: Met. Phys. **12**, 1387 (1982).
- ¹¹B. S. Shastry and E. Abrahams, Phys. Rev. Lett. 72, 1933 (1994).
- ¹²E. Pavarini and I. I. Mazin, cond-mat/0105350 (unpublished).