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Abstract 

In the past few years the phenomenon of spin dependent tunneling (SDT) in 

magnetic tunnel junctions (MTJs) has aroused enormous interest and has developed 

into a vigorous field of research. The large tunneling magnetoresistance (TMR) 

observed in MTJs garnered much attention due to possible application in random 

access memories and magnetic field sensors. This led to a number of fundamental 

questions regarding the phenomenon of SDT. One such question is the role of 

interfaces in MTJs and their effect on the spin polarization of the tunneling current 

and TMR. In this paper we consider different models which suggest that the spin 

polarization is primarily determined by the electronic and atomic structure of the 

ferromagnet/insulator interfaces rather than by their bulk properties. First, we 

consider a simple tight-binding model which demonstrates that the existence of 

interface states and their contribution to the tunneling current depend on the degree of 

hybridization between the orbitals on metal and insulator atoms. The decisive role of 

the interfaces is further supported by studies of spin-dependent tunneling within 

realistic first-principles models of Co/vacuum/Al, Co/Al2O3/Co, Fe/MgO/Fe, and 

Co/SrTiO3/Co MTJs. We find that variations in the atomic potentials and bonding 

strength near the interfaces have a profound effect resulting in the formation of 

interface resonant states, which dramatically affect the spin polarization and TMR. 

The strong sensitivity of the tunneling spin polarization and TMR to the interface 

atomic and electronic structure dramatically expands the possibilities for engineering 

optimal MTJ properties for device applications. 

 

 
PACS: 72.25.Mk 73.40.Gk 73.40.Rw 73.23.-b 
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1. Introduction 

 

Magnetic tunnel junctions (MTJs) have attracted considerable interest due to their 

potential application in spin-electronic devices such as magnetic sensors and 

magnetic random access memories (MRAMs). The diversity of physical phenomena 

that control the operation of these magnetoresistive devices also makes MTJs very 

attractive from a fundamental physics perspective. This interest has stimulated 

tremendous activity in the experimental and theoretical investigations of the 

electronic, magnetic and transport properties of MTJs (for recent reviews on MTJs 

see Refs.[1,2]). 

A magnetic tunnel junction consists of two ferromagnetic metal layers separated 

by a thin insulating barrier layer. The insulating layer is so thin (a few nm or less) that 

electrons can tunnel through the barrier if a bias voltage is applied between the two 

metal electrodes across the insulator. The most important property of a MTJ is that 

the tunneling current depends on the relative orientation of magnetization of the two 

ferromagnetic layers, which can be changed by an applied magnetic field. This 

phenomenon is called tunneling magnetoresistance (TMR). Since the first observation 

of reproducible, large magnetoresistance at room temperature by Moodera et al. [3], 

there has been an enormous increase in research in this field. Modern MTJs that are 

based on 3d-metal ferromagnets and Al2O3 barriers can be routinely fabricated with 

reproducible characteristics and with TMR values up to 70% at room temperature, 

making them suitable for applications (see, e.g., Refs.[4,5]). 

A very recent discovery of large TMR values in Fe/MgO/Fe(001) and similar 

MTJs by Parkin et al. [6] and Yuasa et al. [7] has triggered further interest in the 

phenomenon of TMR and has opened a new avenue for industrial application of 

MTJs. These junctions have several advantages over alumina-based MTJs.  They are 

fully crystalline and therefore have well-defined interfaces which can be grown in a 

more controllable way. They have no disorder-induced localized states in the barrier 

which are detrimental to TMR [8]. Several experimental groups all over the world 

including industrial laboratories are now pushing forward research on the electronic, 

magnetic and transport properties of these and similar MTJs. 

The phenomenon of TMR is a consequence of spin-dependent tunneling (SDT), 

which is an imbalance in the electric current carried by up- and down-spin electrons 

tunneling from a ferromagnet through a tunneling barrier. SDT was discovered by 

Tedrow and Meservey [9 ], who used superconducting layers to detect the spin 

polarization (SP) of the tunneling current originating from various ferromagnetic 

electrodes across an alumina barrier [10]. These experiments found a positive SP for 

all ferromagnetic 3d metals. This fact was later explained by Stearns [11], who 

assumed that the most dispersive bands provide essentially all the tunneling current. 

Based on this argument and using a realistic band structure of Fe and Ni, Stearns was 

able to explain experimental values (measured at that time) of the SP for these 

ferromagnets. Despite the success of Stearns’ idea, this model did not provide a clear 

understanding of the origin of the dominance of the “itinerant” electrons in transport 

properties. 
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More recent theoretical studies provided a new insight into the phenomenon of 

SDT. It was stated that the expected spin dependence of the tunneling current can be 

deduced from the symmetry of the Bloch states in the bulk ferromagnetic electrodes 

and the complex band structure of the insulator [12,13]. By identifying those bands in 

the electrodes that are coupled efficiently to the evanescent states decaying most 

slowly in the barrier one can make conclusions about the SP of the conductance. It 

was emphasized that for a broad class of insulating materials the states which belong 

to the identity representation should have minimum decay rates. This representation is 

comparable to the s character suggesting that s bands should be able to couple most 

efficiently across the interface and decay most slowly in the barrier. For Fe, Co, and 

Ni ferromagnets the majority-spin states at the Fermi energy have more s character 

than the minority-spin states, which tend to have mainly d character. Thus, the 

majority-spin conductance is expected to be greater than the minority-spin 

conductance resulting in a slower decay with barrier thickness for the former. These 

symmetry arguments explain nicely large values of TMR predicted for epitaxial 

Fe/MgO/Fe junctions [14,15]. These conclusions are also expected to be valid for 

MTJs with an Al2O3 barrier which is consistent with the experimental observations 

[10]. They are also consistent with the earlier hypothesis by Stearns [11]. 

Despite the undoubted importance, the symmetry arguments have their limitations. 

First, they assume that the barrier is sufficiently thick so that only a small focused 

region of the surface Brillouin zone contributes to the tunneling current. For realistic 

MTJs with barrier thickness of about 1 nm this assumption is usually unjustified. 

Moreover, for amorphous barriers like alumina where the transverse wave vector is 

not conserved in the process of tunneling, the entire surface Brillouin zone might 

contribute almost equally to the conductance. Second, despite the presence of certain 

selection rules for tunneling, there is no general rule preventing the Bloch states 

composed mostly of the d orbitals from tunneling through the barrier states that have 

no d character. Symmetry strictly forbids tunneling only in special geometries for 

special values of the wave vector. Therefore, symmetry considerations alone applied 

to bulk materials are not always sufficient to predict the SP. It is critical to take into 

account the electronic structure of the ferromagnet/barrier interfaces which, as it was 

shown experimentally, controls the SP [16]. 

An important mechanism by which the interfaces affect the SP of the conductance 

is the bonding between the ferromagnetic electrodes and the insulator [17]. The 

interface bonding determines the effectiveness of transmission across the interface 

which can be different for electrons of different orbital character (and/or symmetry) 

carrying an unequal SP. Also the interface bonding is responsible for the appearance 

of interface states which, as was predicted theoretically [18], affect the conductance 

dramatically. Experimentally, the effect of bonding at the ferromagnet/insulator 

interface was proposed to explain the inversion of the SP of electrons tunneling from 

Co across a SrTiO3 barrier [19]. The bonding mechanism was also put forward to 

elucidate positive and negative values of TMR depending on the applied voltage in 

MTJs with Ta2O5 and Ta2O5/Al2O3 barriers [20]. Theoretically, strong sensitivity of 

the magnitude of TMR to the sp-d mixing at the ferromagnet/alumina interface was 

predicted in the presence of imperfectly oxidized Al or O ions [21]. It was found that 
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oxygen deposited on the Fe (001) surface reverses the SP of the density of states 

(DOS) in vacuum due to the strong exchange splitting of the antibonding oxygen 

states [22]. It was predicted that an atomic layer of iron-oxide at the interface between 

Fe and MgO layers greatly reduces TMR in Fe/MgO/Fe junctions due to the bonding 

between Fe and O [23]. 

In this paper, we review results of our recent studies of spin-dependent tunneling 

which show that the SP is primarily determined by the electronic and atomic structure 

of the ferromagnet/insulator interfaces rather than by bulk properties. In Section 2, we 

consider a simple tight-binding model which demonstrates that electronic potential 

and orbital hybridization at the interface essentially control the conductance [24]. In 

Section 3, we discuss SDT from oxidized Co surfaces through vacuum [25]. We 

demonstrate that one monolayer of oxygen placed on the fcc Co(111) surface creates 

a spin-filter effect due to the Co-O bonding. This reverses the sign of the SP from 

negative for the clean Co surface to positive for the oxidized Co surface. In Section 4, 

we consider SDT in Co/Al2O3/Co junctions [26]. We show that there might be two 

types of interface O atoms: those which saturate Al bonds and those which are 

adsorbed by Co. The latter bind strongly to Co creating interface states which 

enhance the tunneling current in the majority-spin channel, thereby controlling the 

positive SP. In Section 5, we consider the effect of resonant states on SDT in 

Fe/MgO/Fe tunnel junctions [27]. We demonstrate that these states are detrimental to 

TMR at small MgO layer thickness, but can be destroyed by placing a thin Ag layer 

at the Fe/MgO interface. In Section 6, we analyze spin-dependent tunneling in 

epitaxial Co/SrTiO3/Co MTJs [28] and show that the complex band structure of 

SrTiO3 enables efficient tunneling of the minority d-electrons from Co, causing the 

SP of the conductance across the Co/SrTiO3 interface to be negative in agreement 

with the experiments of de Teresa et al.[19] In Section 7, we make our conclusions. 

 

2. Effect of interface bonding within a simple tight-binding model 

 

In order to illustrate the decisive role of interfaces in tunneling properties, we 

consider, first, a one-dimensional (1D) single-band tight-binding model [24].  Fig.1a 

shows the geometry of the system which represents a 1D tunnel junction with two 

metal electrodes separated by an insulating barrier layer. The left electrode consists of 

a semi-infinite atomic chain with all sites having same on-site atomic energy levels E0 

and nearest-neighbor hopping integrals V0. The chain is terminated at a site s which is 

coupled to the interfacial site i with a hopping integral Vi. The site i has an on-site 

atomic energy Ei and may correspond either to the surface atom of the electrode, or to 

the interfacial barrier site, or to an “adsorbate” at the metal-barrier interface. In each 

of these situations, the parameters Ei and Vi  are determined by charge transfer and 

bonding at the interface. The insulator consists of atoms having same energy levels Eb 

and is coupled to the right electrode, as is shown in Fig.1a. The aim of this simple 

model is to understand the influence of the hopping integral Vi and the on-site 

potential Ei at the left interface on tunneling conductance. 

To simplify the description we assume that the Fermi level EF lies well below the 

bottom of the insulator conduction band, so that the hopping integral Vb between the 
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nearest-neighbor sites in the barrier layer is much less than the barrier height, i.e. 

b b F
V E E−≪ . In this limit of a high potential barrier the conductance per spin is 

given by [29] 

 
2 2

2 24
( ) ( ) ( )aN

b i r

e
G E V N E e N E

h

κπ −= , (1) 

where G(E) is the conductance at a given energy E (Fermi energy), 
1
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b

E E

a V
κ
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is the decay constant, a is the lattice parameter, N is the number of atoms in the 

insulator, and Ni(E) and Nr(E) are the local DOS at the interface sites i and r 

respectively. In Eq.(1) the only quantity that depends on the parameters Vi and Ei,  

characterizing the left interface, is the local DOS Ni(E). This quantity can be obtained 

analytically [24]. Using dimensionless variables 0 0( ) /E E Vε = − , 0 0( ) /
i i

E E Vε = − , 

and 0/
i

w V V= , we find that for the reduced interfacial density of states 

 0( ) ( ) Im ( 0) /
i i i

V N E g iρ ε ε π≡ = − + , (2) 

where ( )
i

g ε  is the Green’s function at atom i. For | | 2ε <  it is given by 

 ( )
1

2
2( ) 4

2
i i

w
g iε ε ε ε ε

−
 

= − − − − 
 

. (3) 

For | | 2ε >  the Green's function (3) can be obtained by analytic continuation via the 

upper half-plane. 

 

Fig.1 (a) Geometry of a tunnel junction within a one-dimensional tight-

binding model. Vertical positions of atoms reflect the on-site atomic energies. 

Parameters of the model are described in text. (b) Contour plot of the interface 

DOS, ρi, as a function of energy ε and interface bonding strength w for εi = 

0.6. The vertical lines at 2ε = ±  show bulk band edges. After [24]. 

Fig.1b shows the resulting interface DOS as a function of energy ε and interface 

bonding parameter w for an arbitrary choice of εi = 0.6. It is seen that the interface 

DOS may be strongly enhanced.  For strong coupling w, this enhancement occurs at 
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band edges. In this case localized states emerge from the continuum. These states 

correspond to bonding and antibonding orbitals formed by the atom s and its nearest 

neighbor i, modified by the interaction with the bulk band. For weak coupling w, the 

interface DOS is enhanced near the interface atom level εi = 0.6. As w decreases 

starting from large values, the localized level approaches the band edge and then 

enters the continuum of bulk states, becoming a surface resonance. This is evident 

from Fig.1b which shows that the interface DOS near this band edge is strongly 

enhanced. Thus, we see that the magnitude of the interface DOS and consequently the 

magnitude of the conductance are essentially controlled by the strength of bonding 

and atomic potential at the interface. The SP of the tunneling current must also be 

very sensitive to the bonding and potential at the interface due to a different band 

structure for majority- and minority-spin electrons. 

To further illustrate these points, we add the in-plane dispersion to our tight-

binding model by considering a simple cubic lattice with nearest-neighbor hopping. 

For simplicity we assume that all hopping integrals for bonds parallel to the surface 

are equal to V0. The integrals for perpendicular bonds between the interface i and 

surface s layers are assumed to be equal to Vi, and we again denote 0/
i

w V V= . In this 

3D model, the in-plane component of the wave vector k|| is conserved and we can use 

it as a quantum number.  

 

Fig.2 Contour plots of the interface DOS ρi in a quarter of the surface 

Brillouin zone within the 3D model for ε = 0 and w = 1 (a) and w = 1.5 (b). 

The top left corner of each panel shows Ni for εi = 0; the bottom right corner, 

for εi = 0.6. After [24]. 

Fig.2 shows plots of the surface DOS as a function of k|| for ε = 0 and for four 

different combinations of w and εi. It is clearly seen that the shape of the surface DOS 

depends strongly on w and εi. For w =1 and εi = 0, there are no surface perturbations 

and the DOS varies smoothly with k||. However, in all other cases the spectral weight 

is strongly displaced toward one of the edges of the Fermi surface projection (or both 

edges). For example, for w =1 and εi = 0.6, the DOS has a maximum for smaller 

values of kx and ky, reflecting the interface resonant state (see Fig.2a, bottom panel). 

The above example shows that seemingly small variations in the atomic potentials 

and hopping integrals near the interface may have a very strong and unexpected effect 
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on the shape of the interface DOS and, hence, on the conductance [30]. Since such 

variations are common in real materials, the behavior of the interface DOS for bands 

formed by localized 3d states in transition metals should be very sensitive to the 

interfacial structure and bonding. As we will see in the next Sections, these effects 

occur in real MTJs, affecting dramatically the SP of the tunneling current. 

 

3. Effect of surface oxidation on spin-dependent tunneling from Co through 

vacuum 

 

In this section we discuss our results of first-principles calculations of SDT from 

clean and oxidized Co surfaces through vacuum into Al and demonstrate the crucial 

role of the bonding between Co and O atoms [25]. We show that a monolayer of 

oxygen on the Co surface creates a spin-filter effect due to the Co-O bonding by 

producing an additional tunneling barrier in the minority-spin channel. This reverses 

the sign of the SP from negative for the clean Co surface to positive for the oxidized 

Co surface, thus revealing the crucial role of interface bonding in SDT. 

The first-principles calculations discussed in this Section, as well as in Sections  4, 

5, and 6 are based on a tight-binding linear muffin-tin orbital method (TB-LMTO) in 

the atomic sphere approximation (ASA) [31] and the local density approximation 

(LDA) for the exchange-correlation energy. All the atomic potentials are determined 

self-consistently within the supercell approach. We use a full-potential LMTO (FP-

LMTO) method [32] to check the correctness of the ASA in describing the band 

structure. The principal-layer Green's function technique is applied to calculate the 

conductance [33,34,35]. 

 

Fig.3 k||-resolved conductance (in a logarithmic scale) from clean and 

oxidized (111) Co surfaces through vacuum into Al: (a) clean surface, 

majority spin; (b) clean surface, minority spin; (c) oxidized surface, 

majority spin; (d) oxidized surface, minority spin. The first surface 

Brillouin zone is shown. Vacuum layer thickness is 2 nm for clean and 1.7 

nm for oxidized Co surface. Units are 10
-11

 e
2
/h  for (a), (b) and 10

-14 
e

2
/h 

for (c), (d). Geometry of tunnel junctions with clean and oxidized Co 

surfaces are shown in (e) and (f) respectively. After [25]. 
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We investigate the SP of the current tunneling from a ferromagnetic electrode to a 

non-magnetic material, Al (111), which serves as a detector of the tunneling SP in the 

spirit of the Tedrow-Meservey experiments [9,10]. First, we discuss the properties of 

a Co/vacuum/Al MTJ with a clean Co (111) surface. Figs.3a,b show the k||-resolved 

conductance for the majority- and minority-spin electrons within the first surface 

Brillouin zone of Co (111). The Fermi surface of Co viewed along the [111] direction 

has holes close to the Γ  point with no bulk states in both spin channels, which results 

in zero conductance in this area. The majority-spin transmission (Fig.3a) varies rather 

smoothly and is appreciable over a relatively large area of the Brillouin zone. On the 

other hand, the minority-spin transmission (Fig.3b) has a narrow crown-shaped “hot 

ring” around the edge of the Fermi surface hole. The analysis of layer and k||-resolved 

DOS shows that it is not associated with surface states [18], but rather with an 

enhancement of bulk k||-resolved DOS near the Fermi surface edge. 

As is seen from Figs.3a and b, the Fermi surface hole is smaller for majority spins. 

Since the conductance decreases exponentially with the thickness of the vacuum 

barrier d as 2 d
e

κ− , where the decay constant 2 2(2 / )m kκ φ= +
�

ℏ  and φ  is the work 

function, states which have smaller values of  k
�

 dominate the conductance in the 

limit of a thick barrier. Therefore, for thick barriers the conductance should become 

fully majority-spin polarized due to majority-spin states with smaller values of k
�

 

available for transmission. This occurs, however, only at barrier thickness d ~ 10 nm, 

while for typical values of d ~ 2 nm the SP is about -60% and depends weakly on d.  

 

Fig.4 Layer-resolved density of states as a function of energy for oxidized 

Co(111) surface: (a) O monolayer; (b) Co monolayer adjacent to O; (c) 

second Co monolayer; (d) third Co monolayer. Top sub-panels show the 

majority spin and bottom sub-panels show the minority spin. The Fermi 

energy lies at zero and is denoted by a solid line. 
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An oxidized Co surface is modeled by placing an O monolayer on top of the 

Co(111) electrode such that O atoms lie in the 3-fold hollow-site positions above the 

sub-surface Co layer (Fig.3f). To find the equilibrium interlayer distances, we relax 

the atomic structure of the MTJ using the pseudopotential plane-wave method [36] 

within the generalized gradient approximation [ 37 ] for the exchange-correlation 

energy. We use the same method in Sections 4 and 5.  

The oxygen monolayer dramatically changes the electronic structure of the 

underlying Co monolayer making it almost magnetically-dead. This is evident from 

Fig.4 which shows the local DOS for the oxidized Co electrode and can be 

understood as follows. When an O monolayer is deposited onto the Co surface, two 

sets of bands are formed corresponding to bonding and antibonding mixing of Co and 

O orbitals. As is seen from Fig.4a,b, the bonding bands lie well below the bulk Co 3d 

band, whereas the broad band of antibonding states lie around the Fermi energy EF 

with a pronounced peak at about 1eV above the EF. As a result of this bonding the 

local DOS for the monolayer of Co adjacent to O is strongly reduced at EF, so that, 

according to the Stoner criterion, magnetism in this layer is almost completely 

suppressed. The magnetic moment of Co atoms in this monolayer is only 0.17 µB. As 

is seen from Figs.4c,d, the DOS of the second and third Co monolayers is very similar 

to the Co bulk DOS. 

 

Fig.5 k||-resolved minority-spin local DOS at the Fermi energy  for the 

oxidized Co(111) surface (arbitrary units): (a) bulk Co; (b) sub-surface Co 

monolayer; (c) surface O monolayer. After [25]. 

Interestingly, the presence of the almost magnetically-dead monolayer of Co at 

the interface does not kill the spin polarization of the conductance; it rather changes 

sign of the SP from negative to positive. This fact is evident from Figs.3c,d which 

shows the k||-resolved majority- and minority-spin conductance for the oxidized Co 

surface. The overall reduction in the conductance being the consequence of oxidation 

is accompanied by the dominant suppression of the conductance of minority-spin 

electrons. 

The origin of this behavior can be understood from Fig.5 which displays the k||- 

and layer-resolved minority-spin DOS at the Fermi energy. For bulk Co the Fermi 

surface edges are strongly emphasized in the DOS (Fig.5a). One of them representing 

a ring around the Γ  point and corresponding to smaller ( )κ k
�

 dominates the 

minority-spin conductance for the clean Co surface (compare to Fig.3b). The 
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oxidation results in the strong covalent bonding between Co and O atoms at the 

surface producing an antibonding band which is clearly seen in the k||-resolved DOS 

for Co and O surface monolayers (Figs. 5b,c). This resonant band appears only for 

minority-spin electrons due to the selection rule that prevents them from mixing with 

bulk states in this channel (for details, see Ref. [25]). The minority-spin surface states 

lie rather far from the center of the surface Brillouin zone, and hence are suppressed 

by the vacuum decay, as is seen from the minority-spin conductance in Fig.3d. At the 

same time, the interface bonding removes the spectral weight from the center of the 

Brillouin zone. As a result, the bulk minority-spin states responsible for most 

tunneling transmission from the clean surface encounter a band gap in the surface Co 

and O layers which is equivalent to adding an additional tunneling barrier. Thus, the 

tunneling conductance for the MTJ with the oxidized Co surface is fully dominated 

by the majority-spin channel, resulting in SP of about +100%. 

Experimentally, the reversal of the SP associated with surface oxidation may be 

detected using spin-polarized STM measurements [38]. Since the ferromagnetic tip is 

sensitive to the SP of the total local DOS above the surface (see, e.g., Ref. [39]), the 

TMR in the system surface/vacuum/tip should change sign when the Co surface is 

oxidized. In other words, for the clean Co (111) surface the tunneling current should 

be higher when the magnetizations of the tip and the surface are aligned parallel (the 

dominating minority channel is then open), but for the oxidized surface it should be 

higher for the antiparallel configuration. 

 

4. Positive spin polarization driven by O adsorption in Co/Al2O3/Co tunnel 

junctions 

 

In this section we consider spin-dependent tunneling in Co/Al2O3/Co MTJs [26].  

Assuming crystalline epitaxy at the interface between Co and Al2O3 we consider two 

fully-relaxed atomic configurations of the O-terminated interface that differ only by 

the presence or absence of an adsorbed oxygen atom at the interface. We show that 

these structures exhibit opposite signs of the spin polarization of the tunneling current, 

reflecting features of the electronic structure and bonding at the Co/Al2O3 interface 

and, thereby, showing the crucial role of the interface in controlling the spin 

polarization. 

The interface structure for the two structural models is shown in Fig.6. Both 

models have (111)-oriented fcc Co electrodes. Model 1 (Figs.6a,b) represents the O-

terminated Co/Al2O3/Co structure studied previously [ 40 ]. In this structure the 

interface contains three oxygen atoms per unit cell. The oxygen atoms are located 

close to the bridge adsorption sites of the Co surface. These oxygen atoms participate 

in bonding with the two adjacent Al atoms, making the bonds of the latter fully 

saturated. Model 2 (Figs.6c,d) adds an additional O atom in the 3-fold hollow site. 

This O atom and the neighboring Co atoms are labeled “II” in Fig.6c,d, whereas the 

other O and surface Co atoms are labeled “I”. Structural sites occupied by O(I) and 

O(II) atoms are very dissimilar. O(II) atoms lie much closer to the Co surface 

compared to O(I) atoms. In fact, within a few hundredths of an angstrom these sites 

are identical to the O adsorption sites for monolayer coverage. Thus, O(II) atoms are 



 11 

more strongly coupled to Co than to O(I) and Al atoms. Qualitatively, O(II) atoms 

may be regarded as “Co adsorbates”, while O(I) atoms, as “Al2O3-terminating”. 

 

 

Fig.6 Interface structure of the Co/Al2O3/Co MTJ for model 1 (a, b) and 

model 2 (c, d). Panels (a) and (c) show “front” views from a direction 

normal to the 3-fold axis; panels (b) and d) show “top” views along the 3-

fold axis. There are two types of Co and O atoms at the interface for model 

2: three O(I) atoms, one O(II) atom, one Co(I) atom, and three Co(II) atoms 

per unit cell. After [26]. 

This distinction is evident in the local DOS for the interfacial atoms shown in 

Fig.7. Similar to the Co (111) surface with an adsorbed oxygen monolayer, Co(II) and 

O(II) atoms in model 2 form bonding and antibonding orbitals which are clearly seen 

in the local DOS plots shown in Fig.7. The bonding states lie below the bottom of the 

Co 3d-band, while the antibonding states are slightly above the Fermi level. Some of 

the DOS weight is removed from the Fermi level to these hybridized states, so that 

the Stoner criterion for Co(II) atoms is weakened. The magnetic moments at the 

interface layer are 2.09 µB for Co(I) and 1.30 µB for Co(II). While the magnetic 

moment of Co(II) atoms is notably reduced, this effect is much smaller compared to 

the oxidized Co surface, because in model 2 there is only one “adsorbed” O(II) atom 

per three Co(II) atoms. The local DOS for Co(I) atoms remains quite similar to bulk 

Co, while the local DOS for O(I) atoms shows a small but notable “echo” of the 

Co(II)-O(II) antibonding states. 

In order to obtain the spin asymmetry of the conductance for these tunnel 

junctions, we calculate the spin-resolved conductance for the parallel orientation of 

electrodes. For model 1 we find that the majority-spin conductance G↑↑  is 0.0042 e
2
/h 

per unit cell area. It is smaller than the minority-spin conductance G↓↓ which is 0.023  

e
2
/h  per cell area. This implies that the spin polarization 

G G
P

G G

↑↑ ↓↓

↑↑ ↓↓

−
=

+
 is negative 

and equals –70%. Note that, although this quantity is not directly measurable, it 

correlates with the measurable spin polarization.  
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Fig.7 Local densities of states per atom for interfacial atoms in model 2. In 

each panel, top half shows the majority-spin DOS, and bottom half, the 

minority-spin DOS per atom. The vertical line denotes the position of the 

Fermi level. After [26]. 

This distinction is evident in the local DOS for the interfacial atoms shown in 

Fig.7. Similar to the Co (111) surface with an adsorbed oxygen monolayer, Co(II) and 

O(II) atoms in model 2 form bonding and antibonding orbitals which are clearly seen 

in the local DOS plots shown in Fig.7. The bonding states lie below the bottom of the 

Co 3d-band, while the antibonding states are slightly above the Fermi level. Some of 

the DOS weight is removed from the Fermi level to these hybridized states, so that 

the Stoner criterion for Co(II) atoms is weakened. The magnetic moments at the 

interface layer are 2.09 µB for Co(I) and 1.30 µB for Co(II). While the magnetic 

moment of Co(II) atoms is notably reduced, this effect is much smaller compared to 

the oxidized Co surface, because in model 2 there is only one “adsorbed” O(II) atom 

per three Co(II) atoms. The local DOS for Co(I) atoms remains quite similar to bulk 

Co, while the local DOS for O(I) atoms shows a small but notable “echo” of the 

Co(II)-O(II) antibonding states. 

In order to obtain the spin asymmetry of the conductance for these tunnel 

junctions, we calculate the spin-resolved conductance for the parallel orientation of 

electrodes. For model 1 we find that the majority-spin conductance G↑↑  is 0.0042 e
2
/h 

per unit cell area. It is smaller than the minority-spin conductance G↓↓ which is 0.023  

e
2
/h  per cell area. This implies that the spin polarization 

G G
P

G G

↑↑ ↓↓

↑↑ ↓↓

−
=

+
 is negative 

and equals –70%. Note that, although this quantity is not directly measurable, it 

correlates with the measurable spin polarization.  

This situation changes dramatically when an additional O atom is placed at the 

interface. We find that the model 2 exhibits a reversal of the spin polarization from 

negative to positive. The total conductances per cell area are G↑↑ = 0.087 e
2
/h and 
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G↓↓ = 0.045 e
2
/h, and the P = +32%. This is similar to the vacuum barrier case, 

showing that the deposition of a monolayer of O on the Co (111) reverses the spin 

polarization compared to the pure Co surface (Section 3). However, the mechanism of 

the reversal in the case of the Al2O3 barrier is different as explained below.  

 

Fig.8 k||-resolved conductance per unit cell area in a logarithmic scale in 

units of e
2
/h for Co/Al2O3/Co tunnel junctions with different interface 

structures: (a) model 1, majority spin; (b) model 1, minority spin; (c) model 

2, majority spin; (d) model 2, minority spin. After [26]. 

Fig.8 shows the calculated spin- and k||-resolved conductance within the two 

models. We see that the minority-spin conductance is qualitatively similar for the two 

models (Figs.8b,d), whereas the majority-spin conductance is quite different 

(Figs.8a,c). For model 2 we observe that the majority-spin tunneling current is 

dominated by a rather narrow hexagonally shaped region encircling the central region 

of the low conductance (Fig.8c). This feature is not present in model 1 (Fig.8a) and is 

induced by interface states [26]. It is the consequence of the antibonding Co(II)-O(II) 

states present at the Fermi energy for majority-spin electrons (see Fig.7). The 

corresponding minority-spin states lie more than 1 eV above the Fermi level due to 

exchange splitting, and hence do not contribute to the conductance. 

Thus, we see that the interface adsorption of O atoms is responsible for the 

positive spin polarization of the tunneling current in Co/Al2O3/Co tunnel junctions. 

The bonding of the adsorbed O atoms with Co produces antibonding Co-O states that 

are present at the Fermi level in the majority-spin channel. These interface states 

moderately mix with the bulk states, forming interface resonances which strongly 

assist tunneling. On the other hand, the minority-spin antibonding Co-O states lie 

above the Fermi energy due to exchange splitting and do not affect the conductance. 

Our results suggest that the common argument of the dominant s-electron 
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contribution to tunneling, which is often used to explain the positive spin polarization 

of the alumina-based tunnel junctions is not fully justified. The interfacial adsorption 

of oxygen may be the major factor resulting in the positive spin polarization as is 

observed in experiment. 

 

5. Interface resonant states in Fe/MgO/Fe tunnel junctions 

 

In this section we consider epitaxial Fe/MgO/Fe(001) magnetic junctions [27]. 

Experimental results show that in these junctions TMR decreases precipitously for 

barrier thickness below 2 nm [7]. Here we demonstrate that the reduction of TMR at 

small barrier thickness is controlled by the minority-spin interface band. We predict 

that a monolayer of Ag epitaxially deposited at the interface between Fe and MgO 

suppresses tunneling through this interface band and may thus be used to enhance 

TMR for thin barriers. 

To calculate the tunneling conductance in Fe/MgO/Fe(001) MTJs we use the 

atomic structure given in Ref.[14]. Results of the calculation are shown in Figs.9a-c 

which display the spin-resolved conductance for the MTJ with 4 monolayers (MLs) 

of MgO for the parallel and antiparallel magnetization. As is evident from Fig.9b, the 

conductance in the minority-spin channel is strongly enhanced. This enhancement is 

due to a resonant interface band which is clearly seen in red in this figure. The 

presence of this interface band can also be seen in the energy-resolved DOS as a 

narrow peak near the Fermi level (e.g., Fig.3b in Ref.[14]) and in the k||-resolved 

local DOS as a curve of finite width in the interface Brillouin zone [27]. The 

enhancement of the conductance is most pronounced for small barrier thickness, 

because the interface band lies away from the Γ  point, and therefore the resonant 

contribution to the transmission decays faster with barrier thickness compared to the 

non-resonant contribution. We find that for MgO thickness smaller than 6 MLs the 

contribution from minority-spin electrons in the parallel configuration becomes 

higher than that from majority-spin electrons. 

An important property of the minority-spin interface resonances is that they 

strongly contribute to the conductance in the parallel configuration only for ideal, 

symmetric junctions, and only at zero bias. This follows from strong sensitivity of the 

location of the interface resonances in the interface Brillouin zone to energy [27]. A 

bias voltage of the order of 0.01 eV is sufficient to destroy the matching between 

resonances at the two interfaces. We checked this by calculating the conductance for 

a small bias voltage and found that at 0.02 eV bias voltage the conductance becomes 

fully dominated by majority-spin electrons. Disorder also tends to break the matching 

of the interface resonances even at zero bias. Within the real-space picture, disorder  

localizes the interface resonances differently at the two interfaces, so that tunneling 

between them is suppressed. Within the reciprocal-space picture averaging over 

disorder configurations increases the damping γ of the interface resonances. 

Assuming that γ is much greater than the natural damping γ0 due to mixing with bulk 

states, interface resonances are smeared out over an area of the interface Brillouin 

zone proportional to γ. If the spectral weight is approximately conserved (which is 
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true if the real part of the self-energy due to disorder is relatively small), the 

magnitude of the k||-resolved surface DOS at its maximum decays as 1/γ. For the 

parallel magnetization with matching interface resonances, the transmission function 

then decreases as 1/γ2
, and the conductance as 1/γ. Therefore, disorder reduces the 

conductance in this channel by a factor of γ/γ0. A similar effect should occur due to 

inelastic scattering, e.g., by phonons. Thus, we argue that in real Fe/MgO/Fe MTJs 

the minority-spin channel in the parallel configuration is closed. 

 

 

Fig.9 Conductance (in units of e
2
/h) as a function of k||. (a)-(c): Fe/MgO/Fe 

junction with 4 MgO MLs; (d)-(f): Same junction with Ag interlayers.  (a), (d): 

Majority spins; (b), (e): Minority spins; (c), (f): Each spin channel in the 

antiparallel configuration. After [27]. 

 

Unlike the parallel configuration, the interface resonances do contribute to the 

conductance in the antiparallel configuration, where they tunnel into majority-spin 

states of the other electrode. The latter have no fine structure in the Brillouin zone, 

and hence the conductance is weakly sensitive to a potential mismatch at the two 

interfaces which might occur in real junctions. The enhanced contribution of these 

interface resonances, which is clearly seen in Fig.9c, leads to the decrease of TMR at 

low barrier thickness.  

In order to enhance TMR for thin MgO barriers we propose to use thin epitaxial 

Ag interlayers deposited at the Fe/MgO interfaces. Since the lattice parameter of Ag 

is close to both Fe and MgO lattice parameters, epitaxial Fe/Ag/MgO/Ag/Fe(001) 

tunnel junctions are feasible. It is known that an epitaxial Ag overlayer on Fe(001) 

surface notably modifies the electronic structure of the surface states [41]. If the 

minority-spin interface DOS is reduced by Ag, the antiparallel conductance will be 

suppressed. On the other hand, the majority-spin conductance should not be strongly 

affected due to almost perfect transmission through the Fe/Ag(001) interface [42]. 

This is the rationale for using Ag interlayers. 
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Figs.9d-f show the k||- and spin-resolved conductance of Fe/MgO/Fe junctions 

with Ag interlayers. Not unexpectedly, the majority-spin conductance is weakly 

affected by the Ag interlayers, whereas the minority-spin conductance and the spin 

conductance in the antiparallel configuration change dramatically. The most 

pronounced difference for the latter two is the disappearance of the interface 

resonances that dominated the conductance of the Fe/MgO/Fe junction that lacked Ag 

interlayers (compare Figs.9b,c and Figs.9e,f). This strong change occurs due to the 

Fe-Ag hybridization which makes the interface resonant band more dispersive and 

removes the Fermi level crossing responsible for the highly conductive resonant 

states. The significant reduction of the conductance in the antiparallel configuration 

leads to a dramatic enhancement of the TMR. Thus, Ag interlayers practically 

eliminate the contribution from the interface resonances and enhance TMR for thin 

barriers. 

Thus, interface resonant states in Fe/MgO/Fe(001) tunnel junctions contribute to 

the conductance in the antiparallel configuration and are responsible for the decrease 

of TMR at small barrier thickness, which explains the experimental results of Yuasa 

et al.[7] Depositing thin Ag interlayers at the Fe/MgO interfaces suppresses tunneling 

through these resonant states and thereby enhances the TMR for thin barriers. These 

results further support our main statement about the decisive role of the electronic 

structure at the interface in controlling the spin polarization and TMR. 

 

6. Negative spin polarization in Co/SrTiO3/Co tunnel junctions 

 

In this section we analyze spin-dependent tunneling in epitaxial Co/SrTiO3/Co(001) 

MTJs [28]. The motivation for this study is the work of de Teresa et al. [19], who 

found that the tunneling SP depends on the insulating barrier. They used a half-

metallic La0.7Sr0.3MnO3 (LSMO) as a spin detector in Co/Al2O3/LSMO and 

Co/SrTiO3/LSMO MTJs. Since LSMO has only majority states at the Fermi energy, 

its tunneling SP is positive and close to 100%, regardless of the insulating barrier. As 

expected, Co/Al2O3/LSMO MTJs was found to have a normal TMR. Surprisingly, 

Co/SrTiO3/LSMO MTJs showed an inverse TMR. De Teresa et al. proposed that the 

SP of the Co/SrTiO3 interface must be negative, opposite to that of the Co/Al2O3 

interface. They interpreted the sign change of the SP in terms of interface bonding 

[17], arguing that it allows the transmission of d electrons across the Co/SrTiO3 

interface, contrary to the Co/Al2O3 interface where the transmission of s electrons is 

dominant. In this section we demonstrate that it is the complex band structure of 

SrTiO3 that enables efficient tunneling of the minority d-electrons from Co, causing 

the SP of the conductance across the Co/STO interface to be negative which explains 

experiments of de Teresa et al. 

Our method employs the structural model of an epitaxial Co/SrTiO3/Co(001) MTJ 

obtained by Oleinik et al. [43] and shown in Fig.10a. The lattice parameters of bulk 

fcc Co and bulk SrTiO3 in its equilibrium perovskite structure have a 10% lattice 

mismatch which would normally prevent epitaxial growth. However, good metals 

usually accommodate various lattice structures with only a small energetic penalty 

because their binding energy depends primarily on density. Therefore, in the 
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calculation of Oleinik et al. the strained Co layer proceeded along the Bain path from 

the fcc to the slightly distorted bcc structure. It is therefore likely that the top Co 

electrode in the experiments of de Teresa et al. [19]  grew in the bcc phase on SrTiO3, 

and that fully crystalline bcc Co/SrTiO3/Co(001) MTJs may be grown on a suitable 

substrate (see, e.g., experimental papers  [44,45] on growth of bcc Co and a recent 

paper [46] showing a large TMR in bcc Co/MgO/Fe(001) MTJs). 

 
 

Fig.10 (a) Schematic graph of the most stable interface structure of the 

Co/SrTiO3/Co(001) MTJ taken from Ref.[43]. Projections on two 

perpendicular planes are shown. (b) Conductance G (solid symbols) and spin 

polarization P (open symbols) versus barrier thickness d for Co/SrTiO3/Co 

magnetic tunnel junctions. P(MTJ) denotes the spin polarization obtained by 

calculating the majority- and minority-spin conductance for parallel-aligned 

MTJ. P(interface) denotes the spin polarization obtained for the Co/SrTiO3 

interface as described in text. After [28]. 

 

The spin-resolved conductance of a Co/SrTiO3/Co MTJ is shown in Fig.10b as a 

function of barrier thickness. It is seen that the conductance decreases exponentially 

with a similar decay length for parallel and antiparallel configuration of the electrodes. 

The conductance of the minority-spin channel in the parallel configuration G↓↓  is 

greater than that of the majority-spin channel G↑↑ , or of any spin channel in the 

antiparallel configuration G↑↓ . The SP of the conductance in the parallel 

configuration, 
G G

P
G G

↑↑ ↓↓

↑↑ ↓↓

−
=

+
, is negative for all barrier thicknesses (see P(MTJ) in 

Fig.10b). Moreover, except for the thinnest barrier of 3 monolayers (ML), the P is 

almost constant at –90%, and the TMR is very large (about 2000% for 7 and 11 MLs, 

and about 1000% for 15 MLs of SrTiO3).  

The fact that the tunneling current is dominated by minority-spin electrons can be 

explained by taking into account the band structure of bcc Co and decay rates of the 

Co states in SrTiO3. The majority-spin 3d band in bcc Co is filled, so that the DOS at 

the Fermi level has a large negative SP [47]. If the 3d states could efficiently tunnel 
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through the barrier, the tunneling SP would also be negative. As seen from the 

complex band structure of SrTiO3, shown in Fig.11a at the Γ  point (k||=0), the ∆5 and 

∆1 states have comparable decay rates in the gap of SrTiO3. Therefore, both the 

majority-spin ∆1 band and the minority-spin ∆5 band of bcc Co [47] can tunnel 

efficiently through the SrTiO3 barrier.  

 

 

Fig.11 (a) Complex band structure of SrTiO3 at the Γ  point. The position 

of the Fermi level Ef in a Co/SrTiO3/Co MTJ is shown by a dashed line. (b) 

Three lowest decay rates (in units of 2π/a) of the evanescent states in 

SrTiO3 as a function of k|| at the Fermi energy. After [28]. 

While the Γ  point analysis is instructive, it is not sufficient because the 

conductance is not dominated by this point. This fact can be understood from Fig.11b, 

showing the three lowest decay rates of the evanescent states at the Fermi energy. It is 

seen that a very large area of the Brillouin zone, forming a cross pattern along the Γ –

M directions, exhibits two lowest decay rates that are very close to those at the Γ  

point. Clearly, at large barrier thickness the states lying in this “cross” area should 

dominate the conductance. This feature is in sharp contrast to sp-bonded insulators 

like MgO and Al2O3 where the decay rate has a deep parabolic minimum in the 

vicinity of the Γ  point. This difference is due to the conduction band of SrTiO3 
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which is formed by fairly localized 3d states of Ti instead of free-electron-like states 

of a metal atom in simple oxides. Therefore, the minority-spin d states which have 

much larger DOS at the Fermi energy than the majority-spin states dominate the 

conductance providing a negative SP of the tunneling current in Co/SrTiO3/Co MTJs. 

The analysis of k||-resolved conductance over the interface Brillouin zone for the 

parallel alignment of Co/SrTiO3/Co MTJs reveals a significant mismatch between the 

majority and minority spin channels [28]. Since tunneling electrons must traverse 

both interfaces and k|| is conserved, this makes the conductance in the antiparallel 

configuration much smaller than the conductance in the parallel configuration 

resulting in a very large TMR. 

Now we make a quantitative comparison of our results with the experiments of de 

Teresa et al. [19] who found that the SP of the Co/SrTiO3 interface is –25%.  We 

determine the SP of the interface from the metal-induced DOS in the barrier. In doing 

this, we approximate the LMSO electrode as an ideal spin analyzer, similar to the 

Tersoff-Hamann model for an STM tip [48], and assume that the DOS in the barrier is 

simply the sum of DOS induced by the left and right electrodes (this is valid as long 

as the barrier is not too thin). Since in our case pure surface states are absent, the 

entire barrier DOS is metal-induced. Therefore, we can use the total DOS in the 

middle of the barrier with no ambiguity. The SP of the Co/SrTiO3 interface obtained 

in such a way is close to –50% and is almost independent of barrier thickness (see 

P(interface) in Fig.10b). Thus, our model explains the negative value of the SP of the 

Co/SrTiO3 interface obtained by de Teresa et al.; some quantitative difference may be 

related to the effects of disorder unavoidable in experiment. 

Thus, the large negative tunneling spin polarization of the Co/SrTiO3 (001) 

interface is due to the complex band structure of SrTiO3 which is formed from 

localized 3d states of Ti and hence allows efficient tunneling of the minority d 

electrons of Co. This behavior is a significant departure from the mechanism of 

tunneling in MTJs based on sp-bonded insulators supporting conduction of majority-

spin electrons.  

Finally, we would like to note that there are two factors that should be kept in 

mind when making comparisons between local-density-approximation (LDA) 

calculations performed for ideal epitaxial structures and experiments. LDA has a 

tendency to underlocalize d electrons. Some of the consequences of this fact for 

transport spin polarizations were discussed by Mazin [ 49 ]. Also LDA has a 

deficiency in predicting correctly band gaps in insulators and band offsets between 

metals and insulators. This may have consequences for SrTiO3 where the electron-

phonon coupling is relatively strong [ 50 ]. Another important factor that affects 

transport properties is disorder unavoidable in real MTJs. Localized states in the 

barrier due to defects and impurities may affect the tunneling SP [8, 51] and under 

resonant conditions can even reverse the sign of TMR [52]. 

 

7. Conclusions 

 

This paper emphasizes the critical role of electronic and atomic structure of 

interfaces in spin-dependent tunneling in magnetic tunnel junctions. A simple single-
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band tight-binding model shows that small variations in atomic potentials and 

bonding near the interface have a very strong effect on the interface DOS and on the 

conductance. Such variations are common in real materials and the behavior of the 

interface DOS for bands formed by localized 3d states in transition metals is very 

sensitive to the interfacial structure and bonding. We have, indeed, found such effects 

in realistic first-principles models for Co/vacuum/Al, Co/Al2O3/Co, Fe/MgO/Fe, and 

Co/SrTiO3/Co MTJs, affecting dramatically the SP of the tunneling current and TMR. 

In particular, for Co/vacuum/Al junctions we found that depositing a monolayer of 

oxygen on the Co (111) surface reverses the spin polarization from –60% to almost 

+100% due to the formation of surface bands that mix well with majority-spin Bloch 

states but create an additional tunneling barrier for minority-spin Bloch states. For 

Co/Al2O3/Co MTJs, we demonstrated that a somewhat similar effect is produced by 

interfacial adsorption of oxygen at the Co/Al2O3 interface. Contrary to the 

Co/vacuum/Al MTJ, however, the spin dependence in this case is related to the 

exchange splitting of the antibonding Co-O states. Our results for Co/Al2O3/Co MTJs 

suggest a possible explanation of the experimentally observed positive spin 

polarization in these junctions. For Fe/MgO/Fe(001) MTJs we predicted that for small 

barrier thickness the minority-spin resonant bands at the two interfaces make a 

significant contribution to the tunneling conductance for the antiparallel 

magnetization which  explains the experimentally observed decrease in TMR for thin 

MgO barriers. A monolayer of Ag epitaxially deposited at the interface between Fe 

and MgO suppresses tunneling through the interface band and may thus be used to 

enhance the TMR. For Co/SrTiO3/Co MTJs with bcc Co(001) electrodes we predicted 

a very large TMR, originating from a mismatch of majority- and minority-spin states 

contributing to the conductance. In agreement with experimental data we found that 

the spin polarization of the tunneling current across the Co/SrTiO3 interface is 

negative. We attributed this property to the complex band structure of SrTiO3 which 

is formed from localized 3d states of Ti and hence allows efficient tunneling of the 

minority d electrons of Co.  

The strong sensitivity of the tunneling spin polarization and tunneling 

magnetoresistance to the interface atomic and electronic structure makes the 

quantitative description of transport characteristics of MTJs much more complicated; 

however, it broadens dramatically the possibilities for altering the properties of MTJs. 

In particular, by modifying the electronic properties of the ferromagnet/insulator 

interfaces it is possible to engineer MTJs with properties desirable for device 

applications. 
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