
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department of

10-2006

Exploiting Geographical and Temporal Locality to
Boost Search Efficiency in Peer-to-Peer Systems
Hailong Cai
University of Nebraska-Lincoln, hcai@cse.unl.edu

Jun Wang
University of Central Florida, juwang@mail.ucf.edu

Follow this and additional works at: http://digitalcommons.unl.edu/csearticles

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Cai, Hailong and Wang, Jun, "Exploiting Geographical and Temporal Locality to Boost Search Efficiency in Peer-to-Peer Systems"
(2006). CSE Journal Articles. 6.
http://digitalcommons.unl.edu/csearticles/6

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles/6?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages


Exploiting Geographical and Temporal Locality
to Boost Search Efficiency in

Peer-to-Peer Systems
Hailong Cai and Jun Wang, Member, IEEE

Abstract—As a hot research topic, many search algorithms have been presented and studied for unstructured peer-to-peer (P2P)

systems during the past few years. Unfortunately, current approaches either cannot yield good lookup performance, or incur high

search cost and system maintenance overhead. The poor search efficiency of these approaches may seriously limit the scalability of

current unstructured P2P systems. In this paper, we propose to exploit two-dimensional locality to improve P2P system search

efficiency. We present a locality-aware P2P system architecture called Foreseer, which explicitly exploits geographical locality and

temporal locality by constructing a neighbor overlay and a friend overlay, respectively. Each peer in Foreseer maintains a small

number of neighbors and friends along with their content filters used as distributed indices. By combining the advantages of distributed

indices and the utilization of two-dimensional locality, our scheme significantly boosts P2P search efficiency while introducing only

modest overhead. In addition, several alternative forwarding policies of Foreseer search algorithm are studied in depth on how to fully

exploit the two-dimensional locality.

Index Terms—Foreseer, unstructured peer-to-peer systems, geographical locality, temporal locality, search efficiency.

Ç

1 INTRODUCTION

UNSTRUCTURED peer-to-peer (P2P) systems are creating a
large portion of network traffic in today’s Internet due

to their good support for content lookup and sharing. A P2P
system typically involves thousands or millions of live
peers in the network. Providing object location service in
such a large-scale system requires an efficient search
technique to lookup contents shared by individual peers.
A good search scheme has to meet two goals: 1) high
performance, which tries to deliver high quality service
(high success rate and low response latency) to the end
users, and 2) low cost, which reserves system resources to
sustain a large number of users. A combination of both
factors consequently motivates us to formally introduce the
notion of search efficiency.

Webster dictionary interprets efficiency in computing

domain as the extent to which software performs its

intended functions with a minimum consumption of

computing resources. Applying this definition in P2P

systems, we can define search efficiency as the ratio of search

performance to search cost for a given scheme: E ¼ P=C,

where E, P , and C stands for search efficiency, perfor-

mance, and cost, respectively. Previous work defines or

measures P2P search efficiency with a focus on search cost

while the performance is either ignored or considered
separately [14], [35]. In this paper, we evaluate the efficiency
of a search scheme by taking both factors into account. As a
result, the search efficiency is able to directly tell how fast
and accurately a scheme locates desired contents involving
minimum system resource consumption.

Although a lot of search schemes have been presented
and studied during the past few years, they have limitations
on addressing the search efficiency problem. Existing search
solutions could be either blind or informed [33]. Blind search
is based on query flooding or random walks, in which no
content indexing information is used [1], [5], [15], [24]. As a
result, a peer may have to try repeated walks due to
previous walk failures or meaningless walks toward free-
riding peers. This is because the peers do not know what
contents, if at all, are shared on their neighbors before the
query is actually transmitted. This kind of blindness in
content lookup usually leads to substantial search cost and
low search efficiency. A straightforward solution to resolve
the blindness without using a centralized index server is to
maintain distributed indices among peers. Intelligent BFS
[20], APS [32], Local Indices [36], and Routing Indices [8]
are examples of this class. In order to effectively direct
searches and obtain an acceptable hit rate, however, the
indices to be maintained would be extraordinarily large
and, hence, the overhead involved in indices update may
become prohibitively expensive, thus partially offsetting the
benefits of the indices themselves. We have to seek a new
way to resolve the above problems.

Previous studies [13], [18] have shown that current P2P
systems have both geographical locality and temporal locality.
For node A, its physically nearby node B exhibits
geographical locality if it is likely to offer quality service to
node A in the near future. The rationale is that, queries
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served by proximate peers are likely to show better service
quality (such as small hop number and short response time)
than remote peers. Fessant et al. [13] found that peers
requesting an object may mostly get it from peers in their
own country, thus achieving low latency and network
usage. On the other hand, node C, which has successfully
served requests from node A in the past, exhibits temporal
locality if it is likely to be able to offer further service to
node A in the near future. This locality has been extensively
studied and exploited in previous research work [7], [9],
[29], [34]. From a system designer’s point of view, the
temporal locality implies good directions of query propaga-
tion while the geographical locality indicates a preference to
nearby peers (instead of remote ones) as long as they can
answer the query. It remains a challenge how to simulta-
neously consider both locality properties in overlay con-
struction and search algorithm design, such that the search
efficiency can be further improved.

In this paper, we attempt to improve search efficiency in
decentralized unstructured P2P systems by exploiting two-
dimensional locality and distributed indices. Our major
contributions are as follows:

1. We develop a locality-aware P2P system architecture
called Foreseer, which novelly constructs two ortho-
gonal overlays: a neighbor overlay based on geogra-
phical locality, and a friend overlay based on temporal
locality.

2. We propose an efficient, locality-aware search
algorithm that is performed in two phases (local
matching and selective dispatching) for query resolu-
tion and forwarding.

3. Based on different properties of the neighbor and
friend overlays, we develop several advanced for-
warding policies that can be implemented in our
Foreseer search algorithm. We carefully study and
analyze these policies and validate them through
comprehensive experiments.

Trace-driven simulation results show that Foreseer can
improve the search performance by up to 63 percent and
significantly reduce the search cost by more than 91 percent,
compared with other baseline search schemes. By both
improving the search performance and reducing the search
cost, Foreseer boosts the search efficiency by a factor of up
to 35 while introducing only modest system maintenance
overhead.

2 RELATED WORK

We review several representative search schemes in
unstructured, decentralized P2P system architectures in
this section. Search mechanisms in DHTs are also discussed.

2.1 Blind Searches

Without content indexing information, blind searches
propagate a query to a sufficient number of nodes to satisfy
a request. The early version of Gnutella [17] uses flooding,
which often incurs a lot of query messages and limits its
scalability. One possible solution is to reduce the number of
redundant messages by forwarding queries only to a subset
of neighbors. The neighbors are either randomly picked or

selectively chosen based on their capability of answering a
query. Lv et al. [24] suggest random walk, in which a query
is forwarded to a randomly chosen neighbor at each step
until there are sufficient responses. Adamic et al. [1]
recommend that the search algorithm bias its walks toward
high-degree nodes. GIA, designed by Chawathe et al. [5],
exploits the heterogeneity of the network and employs a
search protocol that biases walks toward high-capacity
nodes. Unfortunately, in these approaches, a query search
may require multiple walks due to previous walk failures or
undergo meaningless walks toward free-riders. Recently,
Gkantsidis et al. [16] propose a generalized search scheme
that uses a given budget to limit the total number of
messages produced in a search. Although this scheme is
able to achieve search performance of flooding with a
limited bandwidth consumption, its performance largely
depends on the measurement of the criticality of the overlay
connections and the allowed search cost.

2.2 Informed Searches

In contrast to blind searches, informed searches maintain
and utilize content information to guide the query
propagation directions. Unlike Napster-like systems that
keep all indexing information on centralized servers, most
recent systems distribute the content information among
participating peers to avoid single point of failures.
Intelligent BFS [20] maintains query-neighbor tuples on
each peer. These tuples map classes of queries to neighbors
who have answered most of the queries that are related.
This technique tries to reuse paths that were used for
previous queries of the same class, but cannot be easily
adapted to object deletion and node departures. In addition,
its search accuracy highly depends on the assumption that
nodes specialize in certain documents. In APS [32], each
node keeps a local index of the relative probability for each
object it requests per neighbor. This approach saves
bandwidth, but may suffer long delays if the walks fail.

Local Indices, proposed by Yang et al. [36], suggests each
node maintain the content indices of other nodes within a
certain radius r, and queries are answered on behalf of all of
them. If r is small, however, the indices cannot satisfy many
queries; whereas if r is big, the indices update will be very
expensive. This approach introduces a simple way to
implement indices in unstructured P2P systems, but does
not consider any kind of localities. In Routing Indices [8],
each node stores an approximate number of documents
from every category that can be retrieved through each
outgoing link. This technique can be efficient for searches,
but it also requires appropriate document categorization
and a relatively high content replication ratio. PlanetP,
proposed by Cuenca-Acuna et al. [10], summarizes the
contents on each peer using Bloom filters, and disseminates
new information to the entire system by gossiping.

2.3 Searches on DHTs

Built on top of structured overlays, Distributed Hash Tables
(DHTs) are another alternative for keyword searches. They
are different from the aforementioned schemes in the
strategy of document distribution. In unstructured systems,
a document can be placed on any peer and each node
maintains the metadata of its own document set. In order to
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support complex searches, DHTs distribute and locate
contents according to a partition that maps each keyword
to peers who are responsible for it. As a consequence, nodes
in unstructured overlays are able to handle queries locally
while in DHTs the results set intersection may consume
some network bandwidth for multiterm searches.

Li et al. [21] present several optimizations for searching
in DHTs, such as caching, Bloom filters and document
clustering. Reynolds and Vahdat [25] adopt database
techniques and Bloom filters to make the results join more
efficient. Recently, Tang et al. [30] propose a hybrid
indexing structure that processes multiterm queries locally
at the cost of maintenance and storage. Similarly, Shi et al.
[28] develop another index partitioning scheme, the multi-
level partitioning to improve keyword search performance
and efficiency.

Besides DHTs and unstructured overlays, researchers
also propose hybrid P2P systems that attempt to combine
the advantages and avoid the problems of both approaches.
Loo et al. [23] present a hybrid search infrastructure, in
which popular items are located using traditional flooding
while rare items are searched using a DHT query. Based on
random walks, hybrid overlay structure (HONet) [31]
organizes peers into structured clusters with network
proximity and creates connections between clusters through
random walks. HONet extends DHT routing to support
hierarchical structure and uses intercluster connections to
expedite the routing process.

2.4 Searches with Semantic Locality

Semantic clustering has been studied and successfully
exploited in a lot of research work. Semantic overlay
networks (SON), proposed by Crespo et al. [9], organizes
nodes into semantic groups according to a predefined
content classification. A query is first sent to an appropriate
SON and then floods only to other peers in that SON.
Cohen et al. [7] use guide-rules to organize nodes that bear
semantic similarity into an associative network. Queries are
guided using possession-rules until they are satisfied or
resource limits exceeded. The performance of these schemes
largely depends on the quality of content classification or
guide-rules which, on one hand, require some stability for
performance gains, and on the other hand, should be able to
adapt to changes in peers preference. This limitation stems
from the tight couple of system design with the semantic
classification which tends to change over time.

In other schemes, semantic locality is only exploited as an
incremental improvement to traditional flooding or random
walk mechanisms. For example, Sripanidkulchai et al. [29]
present interest-based shortcuts that are generated and
updated after each successful query, and used to serve future
requests. The Acquaintance, proposed by Cholvi et al. [6],
takes a similar approach. Voulgaris et al. [34] study three
alternative strategies of maintaining semantic links, two of
which are further evaluated in another paper [19]. Unlike
SONs and associative search, this kind of scheme does not
rely on content classification. Instead, the semantic links are
created based on previous query hits, which implicitly
capture the temporal locality. In these schemes, however,
semantic links are only used as possible routing shortcuts,

and in case they fail, the search has to resort to traditional
search methods such as flooding or random walks.

3 FORESEER SYSTEM ARCHITECTURE

Foreseer is comprised of three components at different
layers, as shown in Fig. 1. The neighbor and friend overlays
are built on top of the Internet by exploiting geographical
and temporal locality, respectively. The indices implemen-
ted by Bloom filters are distributed according to the
relationships between peers within the two overlays. By
directing searches along the overlay links and resolving
queries by the distributed indices, Foreseer sustains a high
search efficiency for keyword searches with a low main-
tenance cost.

The rationale behind Foreseer comes from real life.
Everyone has neighbors who live nearby and friends who
live further away. Neighbors and friends constitute one’s
social connections. One gets to know his neighbors upon
settlement, and makes friends when doing business with
someone else. Consequently, friends and neighbors show
different characteristics: friends are able to serve future
requests with a high probability (temporal locality), while
neighbors can offer quality service such as quick response
and low resource consumption if they happen to possess
the requested objects (geographical locality).

Suppose each person has a business card and knows
about others only through their business cards. Upon
receiving a new business request, one wants to get it solved
efficiently. Thus, he first looks at his business cards of his
friends and neighbors. If these cards imply that a friend
and/or neighbor can help, he immediately contacts that
person. If none of them can help, he passes the request to
his friends and/or neighbors who, in turn, seek help from
their friends and neighbors. The design of this approach is
based on two facts: 1) the well-maintained relationship
between peers indicates the most promising directions for
future searches and 2) the business card enables one to
predict whether its neighbors or friends can help or not
before the request is transmitted.

3.1 Content Filters

In Foreseer, the business card refers to a peer’s content filter
derived by computing the Bloom filter [2] on all its shared
contents. A Bloom filter is a hash-based data structure that
efficiently represents a set to support membership queries.
The membership test returns false positives with a
predictable probability, but it never returns false negatives.
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Given an optimal choice of hash functions, we can obtain
the minimum probability of false positive as ð12Þ

k, or
ð0:6185Þ

m
n , where k is the number of hash functions used,

m is the number of bits in the filter, and n is the number of
elements in the set. In this paper, we use Counting Bloom
filters proposed by Fan at al. [12] to summarize the contents
shared on each peer.

The content filters can be created in a straightforward
way on each peer. Assume Dp is the set of documents
shared on node p, and Kp¼fkwjkw appears in di; di2Dpg is
the set of keywords that appear in any document in Dp. The
content filter of node p, denoted by F content p, is initialized
by hashing all the keywords in Kp and setting the
corresponding bits to 1. Clearly, free-riders have a null
content filter since they share nothing and Kp is empty. If
the number of hash functions in use is fixed, the cardinality
of the maximum keyword set Kmax determines the space
requirement for the filter with the least false positive rate as
m¼ nk

ln 2¼
jKmaxjk

ln 2 . We believe that the size of the maximum
keyword set will not be arbitrarily large for several reasons.
First, the number of shared files on most peers is limited.
The measurement studies on Gnutella [27] indicate that
about 75 percent of the clients share no more than 100 files,
and only 7 percent of the peers share more than 1,000 files.
The results in [13] show that 68 percent of 37,000 peers
share no files at all (free-riders), and most of the remaining
clients share relatively few (between 10 and 100) files.
Second, the documents on the same peer tend to share
common topics. The overlap of semantics among docu-
ments on one peer reduces the number of unique keywords
to be mapped to the content filter. Third, according to [13],
[18], most files shared in current P2P systems are multi-
media streams, where only a few unique keywords can be
derived from one document. Even with jKmaxj¼10; 000 and
k¼8, the length of the filter with least false positive rate is
m¼ 10;000�8

ln 2 ¼114; 416 bits¼14:4KB. When transmitted over
the network, this filter can be packed into several IP
packets. For those peers who share few files and keywords,
we use a compressed representation of the filter as a
collection of 2-tuples ði; xÞ, which means that the ith bit is
set for x times. Only the first number in each tuple (location
of a 1 in the filter) is transmitted over the network.

However, as the network size increases, some peers may
share so many files that the cardinality of their keyword sets
becomes larger than current Kmax. This problem can be
solved in two ways. One solution is to migrate some
contents from heavily loaded peers to lightly loaded peers,
or increase the length of the filters according to the
maximum keyword set Kmax. The other way is to use
Bloom filters with varying size. While this approach
releases the constraint on the maximum keyword set, it
complicates the system design in other aspects. First of all,
the hash functions have to be revised to support variable
filter length. We may define a set of universal hash
functions fh1; h2; . . . ; hkg agreed among all nodes. When
mapping or querying any item on a filter F with length
lðFÞ, we have to use a different set of hash functions
ranging from 0 to lðFÞ�1, for example, by defining them as
fh01; h02; . . . ; h0kg, where h0i ¼ hi mod lðFÞ. Furthermore, a
node may have to compute the query filter multiple times

using different lengths for a search request. We choose
Bloom filters with fixed size in this paper for simplicity.

3.2 Locality-Aware Overlay Construction

Foreseer constructs two orthogonal overlays: 1) the neighbor
overlay, which captures geographical locality, and 2) the
friend overlay, which captures temporal locality. For a node
with a request, its friends have a better chance to serve while
its neighbors can provide instant response if they have the
contents. In addition to maintaining its own content filter,
each node p saves copies of the content filters of the peers in
both its neighbors list NðpÞ and friends list F ðpÞ. If a peer
becomes a neighbor and a friend at the same time, it is allowed
to act as both a neighbor and a friend. To limit the number of
filters one peer maintains, we restrict the size of N and F as
follows: For node p, nmin�jNðpÞj�nmax, fmin�jF ðpÞj�fmax,
where nmin, fmin and nmax, fmax are the lower bound and
upper bound for the number of neighbors and friends,
respectively. Fig. 2 illustrates both overlays in a simple
network where NðaÞ¼fb; c; d; eg and F ðaÞ¼fb; f; g; h; ig.

3.2.1 Finding and Maintaining Neighbors

The bidirectional neighbor overlay is constructed with
network proximity, so that only peers that are physically
nearby can become each other’s neighbors. As the joining
node discovers several nearby peers, it tries to make them
its neighbors as long as they can accept more neighboring
connections. The content filters are transmitted along with
the replies so that the new peer can initialize its neighbors
list quickly. If the number of its neighbors is smaller than
the lower bound, the node issues a PING_NEIGHBORS
message to its current neighbors. The current neighbors, in
turn, propagate this message to their neighbors. Upon
receiving this message, peers with less than the maximum
number of neighbors reply positively along with their
content filters. This process repeats until the new arrival
peer has a minimum number of neighbors.

Geographical locality implies that an object near the
querying peer is more likely to be quickly reached than
distant objects, thus minimizing network latency and
bandwidth consumption. The construction of the neighbor
overlay ensures that each peer keeps a list of its nearby
peers, and resolves the query locally if the requested object
can be found on any of its neighbors.

3.2.2 Making and Refreshing Friends

The friend overlay is constructed as a directed graph
independent of the physical network topology. Unlike
bidirectional friendships in real life, the friend relationship
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in this paper is designed to be unidirectional. Each peer
knows a number of friends. Each peer may also be a friend
of other peers, who are called its reciprocal friends and
denoted by F�1. Tracking a reverse direction of the friends
relationship, this list is used to notify those reciprocal
friends of its content filter updates when necessary. In
Fig. 2, fa; ig�F�1ðhÞ, and any filter update on node h
would cause node a and i to take corresponding action:
updating filter copies of node h accordingly.

It is obvious that any peer who has ever answered a
request from node p should be a candidate of p’s friends,
according to temporal locality principles. However, when a
brand new peer issues its first query, it has no friends to
consult. To mitigate this problem, we recommend an active
“friends making” stage for the new node as soon as it
builds up its neighbors list. To find potential friends, new
node p sends out PING_FRIENDS messages to its neigh-
bors, who in turn forward this message to their friends.
Upon receiving this request, peer q checks whether it can be
accepted (jF�1ðqÞj<f�1

max, where f�1
max is the maximum

number of a peer’s reciprocal friends) or not. Those peers
who can accept this “friends making” request will reply to p
along with their content filters. Based on these replies,
node p can fill out its initial friends list by selecting those
peers who have more 1’s in their content filters, because the
documents shared on these peers contain more keywords.

Node p’s friends are ordered and replaced in an LRU
manner as new information is learned. After each successful
transaction, p has a chance to refresh its friends list. If the
serving peer is already one of p’s friends, this peer comes to
the top of the list because it is the most recently used. If the
serving peer is not on p’s friends list, and jF ðpÞj<fmax, this
peer becomes a new friend of p with the highest priority.
However, if jF ðpÞj¼fmax, p has to remove a least recently
used friend and insert the new friend as the most recently
used. To reduce bandwidth consumption, the content filter
of the new friend node can be piggybacked with the
downloading traffic toward node p. When an old friend q is
replaced, the friendship connection is dropped and node q
removes p from its reciprocal list as well.

With these semantic links, Foreseer can easily provide
incentives for peers to share contents by limiting the
number of friends. As a proof of concept, we can define
the maximum number of friends node p can have as
fmaxðpÞ ¼ f0 þ k � jF�1ðpÞj, where f0 and k are positive
constants and F�1ðpÞ is the number of p’s reciprocal friends.
Since free-riders share nothing, they have no reciprocal
friend (i.e., F�1 ¼ ;). If f0 is set to 0, then free-riders will
have no friends at all. At current stage, Foreseer does not
implement this feature since our concern is mostly focused
on the system search efficiency rather than fairness.

3.3 System Maintenance

Due to indices distribution and update, Foreseer brings
design complexity and maintenance cost. With this in mind,
however, we develop and adopt several techniques to
maximize performance gain in search efficiency with
minimum overhead. We use Bloom filters to summarize
the contents shared on peers. The space efficiency of Bloom
filters reduces the bandwidth consumed to transfer the
indices. Moreover, the number of friend and neighbor links

maintained on each node is limited, so that nodes are not
overloaded by the index distribution and updates.

3.3.1 Object Publishing and Removal

When a node is about to share new files, this information
should be quickly made visible to its neighbors and
reciprocal friend peers. To do this, the peer extracts
keywords from new documents, and selects new keywords,
if any, to map to its content filter. Any change in the filter is
recorded and sent in an update message to all peers in its
lists N and F�1. At the same time, the counters associated
with corresponding bits are also updated locally on the
peer. The process of removing a document is similar to this
object publishing procedure.

3.3.2 Node Join and Departure

When a new node joins the system, it needs to set up its
neighbor and friend relations as described in Section 3.2.
When a node departs, it notifies all its neighbors and
reciprocal friends. A total of (jN j þ jF�1j) small messages
are involved per update if necessary. The nodes that receive
this notification message simply remove the node from their
neighbors or friends lists, along with the corresponding
content filter copies. Like the caching scheme used in the
Gnutella system, the departing node caches its neighbors and
friends on its local disk. When it rejoins the system, it first tries
to contact the old neighbors and friends to build up its initial
relations quickly. Recent research results [3], [18] show that
the node departure-and-rejoin pattern is a common feature of
current P2P systems. By this caching scheme, not only is the
join process simplified and speeded up, but the workload of
bootstrapping nodes is also reduced.

When a node fails unexpectedly, it has no chance to
notify other peers of its absence. But, when live nodes try to
contact it, they would find this node has already departed.
Since each node maintains multiple neighbors and friends,
random node failures do not affect the overall system
performance.

4 FORESEER SEARCH ALGORITHM

The most fundamental but challenging task a P2P system
has to fulfill is the content lookup and location, mostly
triggered by keyword searches. In existing systems, overlay
links only function as a logical connection. But, in Foreseer,
friend and neighbor links not only connect peers to form a
two-dimensional overlay, but also supply good search
directions, by which queries can be efficiently answered.
This section describes the Foreseer search algorithm and
studies several alternative forwarding policies in detail.

4.1 Basic Search Algorithm

Table 1 shows the main process of object lookup algorithm in
pseudocode. When initiating a new query request or
receiving a query message that contains one or more terms
kw1; kw2; . . . kwr, node p runs a search algorithm that consists
of two phases: local matching and selective dispatching. In the
local matching phase, node p computes the query filter F query

by mapping all the query terms, and compares it with the
content filter F content q for each node q2NðpÞ[F ðpÞ by the
logical “AND” operation. If F query ^ F content q¼F query, then
there is a match, indicating that node q seems to have the
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document containing all the keywords with a high prob-
ability. Otherwise, none of p’s neighbors or friends has the
requested document. This matching is conducted on node p
locally and consumes no network bandwidth.

The query message is then selectively forwarded based
on the result of the first phase. If there is a match, i.e., the
query is likely to be answered by one of p’s neighbors or
friends q, the message is sent to q, which looks up its local
folder for the document that matches the query. If a false
positive occurs, however, the query is returned to node p. In
either situation, whether the local matching fails or a match
turns out to be a false positive, the query message needs
further forwarding to other peers until matching documents
are found or the maximum number of hops are travelled, as
accomplished in the selective dispatching phase. Similar to
other search approaches, a randomly generated identifier is
assigned to each query message and saved on passing peers
for a short while so that the same message is not handled by
the same peer again. Since this identifier is only useful for a
running query session, the timeout could be very small, for
example, one or several seconds. The high efficiency of our
search algorithm is obtained from three key ideas in our
scheme as follows:

1. The peer who issues the query tries to resolve the
query locally without any network bandwidth con-
sumption. If successful, only one more message is
needed to reach the first matching document with a
high probability.

2. As soon as the local matching is successful at some
nodes, the query is resolved and only one more
message is needed for success confirmation in case
of no occurrence of false positives.

3. If the local matching fails, the query will be
selectively forwarded along the friend links or the
neighbor links or both, and conduct local matching
at each node encountered. This query dispatching is
selective based on different features of the two
orthogonal overlays instead of randomly or prob-
abilistically as in other search approaches.

As shown in Fig. 2, where NðaÞ¼fb; c; d; eg and F ðaÞ ¼
fb; f; g; h; ig, a query from node a for objects shared on these
nodes can be resolved locally and satisfied in one hop. In
other cases, the query needs to be spread out according to the
forwarding policies explained in the next section.

4.2 Forwarding Policies

In order to further study different functions of friend links
and neighbor links, we introduce the notion of potential
friends and potential neighbors in Foreseer. For a node p, any
other peer p1 is called one of p’s potential friends if it can be
reached by following friend links from node p for i hops,
where i is the distance of this potential friend. Node p’s
current friends can be considered as a special case of
potential friends with a distance 1. Compared to other
“strange” peers, p’s potential friends have a better chance of
answering queries from node p, i.e., they are likely to
become node p’s friends in the future. For example, suppose
r2F ðqÞ and q2F ðpÞ, documents shared on node r, which
tend to interest node q, may also interest node p because p is
likely to request more contents from q in the near future
according to temporal locality. This locality transitivity
stems from interest overlap between the transactions from
node r to node q and transactions from node q to node p.
However, when there are more nodes on this friend link
chain, the degree of interest overlap will be weaken. This
implies that as the distance increases, the probability of a
potential friend to answer queries from p and become p’s
new friend decreases.

Similarly, any other peer p2 is called one of p’s potential
neighbors if it can be reached by following neighbor links
from node p for j hops, where j is the distance of this
potential neighbor. Node p’s current neighbors can be
considered as a special case of potential neighbors with a
distance 1. Due to physical proximity maintained by
neighbor links, peers on a path containing only neighbor
links are potential neighbors. When a peer’s current
neighbor departs or fails, its potential neighbors may
become new neighbors, according to our neighbor overlay
construction method. For node p, its potential neighbors
with a small distance are nearby and have a good potential
to be its neighbors in the future. But, those potential
neighbors with a long distance may or may not be nearby to
node p, so their potential is indeterministic on the whole.

For a query issued from node p, if it is not locally
resolved and answered by one of p’s neighbors or friends, it
will be spread out along neighbor links or friend links or
both. As we discussed above, following friend links
approaches potential friends, while following neighbor
links approaches potential neighbors. This enriches Fore-
seer with a lot of flexibilities in realizing selective dispatch-
ing in the aforementioned search algorithm. According to
different propagation priorities and degree of walking
parallelism, we develop the following representative for-
warding policies.

4.2.1 Friend First Search

This policy is denoted as FFS: fFh1Nh2g. For a query issued
from a node p0, this policy firstly propagates the query
along friend links for up to h1 hops, and then along the
neighbor links for up to h2 hops, until the query is
answered. Let h be the current hop count of the query
message. For node p processing this query, given h<h1, the
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query is forwarded to its friends. If h1�h<h1 þ h2, the
query will be forwarded to its neighbors. The query stops
travelling when h¼h1 þ h2.

Policy FFS searches along the friend links before walking
on the neighbor links based on several reasons. First, as we
explained, the potential friends have a better chance to
answer the query than other “strange” peers. The temporal
locality maintained in the friend overlay is further exploited
in this way. Second, the construction of the friend overlay
implies that the friend links point to peers who share many
objects and never refer to free-riders. These peers have a
better chance of answering the query than other peers sharing
few or no files. Third, the construction of the friend overlay
ensures that, by following friend links, the query quickly
scatters over a large network diameter and reaches distant
peers in few hops. By giving search priority to potential
friends, this policy is able to answer many queries in few hops
and avoid a lot of meaningless messages involving free-
riders. However, the friend overlay may consist of discon-
nected subgraphs because some unpopular or new docu-
ments may not be reachable by following existing friend links.
To ensure a high success rate, this policy propagates the query
along neighbor links after walking h1 hops in the friend
overlay. At this stage, free-riders may serve as an inter-
mediate router for the query messages.

Let FiðpÞ be the set of potential friends of node p with a
distance i, and F 0ðpÞ¼fpg. Formally,

FiðpÞ ¼ fqjr0 ¼ p; ri ¼ q; rkþ1 2 F ðrkÞ; 0 � k � i� 1g:

If the requested object resides on any peer

pi2NðfiðpÞÞ[F ðfiðpÞÞ; 8fiðpÞ2FiðpÞ; 0� i�h1;

it can be resolved in i hops and reach the destination peer in
iþ1 hops. At each hop, the query touches some new potential
friends, and checks the content filters of their neighbors and
friends. If the query fails in the friend overlay, it spreads by
following the neighbor links. Similarly, we use Njðfh1ðpÞÞ to
denote the set of potential neighbors of node fh1ðpÞ with a
distance j, where fh1ðpÞ2Fh1ðpÞ. Formally,

Njðfh1ðpÞÞ ¼ fqjr0 ¼ fh1ðpÞ 2 Fh1ðpÞ; rj ¼ q; rkþ1 2 NðrkÞ;
0 � k � j� 1g:

If the requested object resides on any peer

p0j2Nðnjðfh1ðpÞÞÞ [ F ðnjðfh1ðpÞÞÞ; 8njðfh1ðpÞÞ 2 Njðfh1ðpÞÞ;
1�j�h2;

it can be resolved in h1þj hops and reach the destination
peer in h1þjþ1 hops.

4.2.2 Neighbor First Search

Similar to FFS, this policy is represented as NFS: fNh1Fh2g. As
the name implies, for a query issued from node p0, this policy
propagates first along neighbor links for up to h1 hops and
then along friend links for up to h2 hops, until the query is
answered.

Let NiðpÞ be the set of potential neighbors of node p with
a distance i, and N0ðpÞ¼fpg. Formally,

NiðpÞ ¼ fqjr0 ¼ p; ri ¼ q; rkþ1 2 NðrkÞ; 0 � k � i� 1g:

If the requested object resides on any peer

pi2NðniðpÞÞ[F ðniðpÞÞ; 8niðpÞ2NiðpÞ; 0� i�h1;

it can be resolved in i hops and reach the destination peer in

iþ1 hops. If the query fails in the neighbor overlay, it spreads

by following the friend links. Similarly, we use Fjðnh1ðpÞÞ to

denote the set of potential friends of node nh1ðpÞ with a

distance j, where nh1ðpÞ2Nh1ðpÞ. Formally,

Fjðnh1ðpÞÞ ¼ fqjr0 ¼ nh1ðpÞ 2 Nh1ðpÞ; rj ¼ q; rkþ1 2 F ðrkÞ;
0 � k � j� 1g:

If the requested object resides on any peer

p0j2Nðfjðnh1ðpÞÞÞ[F ðfjðnh1ðpÞÞÞ; 8fjðnh1ðpÞÞ2Fjðnh1ðpÞÞ;
1�j�h2;

it can be resolved in h1þj hops and reach the destination
peer in h1þjþ1 hops.

This policy exploits the temporal locality only locally at
hop h ¼ 0, and after that it directs queries along neighbor
links before walking along friend links. Due to the
geographical locality maintained by the neighbor overlay,
the query can reach p0’s potential neighbors with a short
latency. As a result, queries answered at this stage are likely
to be returned with a low response time. However, NFS
may not be a good forwarding policy because of its low
success rate. According to neighbors overlay construction,
propagation along neighbor links cannot quickly reach
distant peers who may have the requested documents.
Furthermore, peers touched by following friend links after
traveling along neighbor links are no longer node p0’s
potential friends. Hence, following friend links at this stage
does not show any advantage over other search algorithms
without locality exploitation. We include NFS in our
discussion because it helps to understand the algorithm
and the differences among alternative forwarding policies.

4.2.3 Concurrent Two-Dimensional Search

We develop another more aggressive forwarding policy
denoted as CTS: fFh1==Nh2g. This policy propagates the
query through both friend links (for up to h1 hops) and
neighbor links (for up to h2 hops) simultaneously. Let h be
the current hop count of the query message, which is being
processed by a node p. In this policy, given h<minðh1; h2Þ,
the query is forwarded to both its friends and neighbors. If
minðh1; h2Þ�h<maxðh1; h2Þ, the query will be forwarded
to either its neighbors (if h1<h2) or to its friends (if h1>h2).
Notice that the initiating peer’s potential neighbors and
potential friends are subsets of the peers visited. The
aggressiveness of this policy contributes to its high success
rate and low response time. However, more query
messages are generated in this policy for a query since
more peers are visited.

Like the other two policies, we use ðF jNÞiðpÞ to denote
the set of peers with i hops distance along neighbor or
friend links from node p, and let ðF jNÞ0ðpÞ¼fpg. Formally,

ðF jNÞiðpÞ ¼ fqjr0 ¼ p; ri ¼ q; rkþ1 2 F ðrkÞ[NðrkÞ;
0 � k � i� 1g:
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If the requested object resides on any peer

pi2Nððf jnÞiðpÞÞ[F ððf jnÞiðpÞÞ; 8ðf jnÞiðpÞ2ðF jNÞiðpÞ;
0� i�minðh1; h2Þ;

it can be resolved in i hops and reach the destination peer in
iþ1 hops. If h1 ¼ h2, then the query will terminate when the
number of hops h is equal to h1. Otherwise, if h1 > h2, the
query will continue travelling along friend links for up to
h1 � h2 hops unless it is answered. We use Fjððf jnÞh2ðpÞÞ to
denote the set of peers with j hops distance along the friend
links from node ðf jnÞh2ðpÞ, where ðfjnÞh2ðpÞ2ðF jNÞh2ðpÞ.
Formally,

Fjððf jnÞh2ðpÞÞ ¼ fqjr0 ¼ ðfjnÞh2ðpÞ 2 ðF jNÞh2ðpÞ;
rj ¼ q; rkþ1 2 F ðrkÞ; 0 � k � j� 1g:

If the requested object resides on any peer

p0j2NðfjððfjnÞh2ðpÞÞÞ[F ðfjððf jnÞh2ðpÞÞÞ;

8fjððf jnÞh2ðpÞÞ2Fjððf jnÞh2ðpÞÞ; 1�j�h1 � h2;

it can be resolved in h2þj hops and reach the destination
peer in h2þjþ1 hops. The case of h1 < h2 can be analyzed
similarly.

Table 2 compares the three forwarding policies, in terms
of aggregated delay, the number of messages produced,
and the number of peers foreseen at each hop. We use f and
n to denote the average number of one peer’s friends and
neighbors, respectively, and df and dn to denote the average
delay by following a friend link and a neighbor link,
respectively. According to the overlay construction, friend
links usually have a longer latency than neighbor links.
Thus, we have df > dn, and use df to estimate the latency
for each hop in CTS policy when i � minðh1; h2Þ.

5 EXPERIMENTAL METHODOLOGY

We develop a trace-driven simulator to evaluate the
performance of Foreseer compared with other state-of-the-
art P2P systems. We describe the experimental methodol-
ogy in this section and present the simulation results and
our analysis in the next section.

5.1 Experiment Setup

We choose several representative search schemes, such as
Flooding (FLD), Interest-Based Shortcuts (IBS) [29], Local
Indices (LI) [36], and Routing Indices (RI) [8] as baselines.
We configure each scheme according to its default config-
uration to guarantee a fair comparison, as shown in Table 3.
The Foreseer parameters are selected according to the
experimental results.

We choose the Transit-Stub model [37] to emulate a
physical network topology for all testing systems. This
model constructs a hierarchical Internet network with
51,984 physical nodes randomly distributed in an Euclidean
coordinate space. We set up nine transit domains, with each
containing, on the average, 16 transit nodes. Each transit
node has nine stub domains attached. Each stub domain has
an average of 40 stub nodes. Nine transit domains at the top
level are fully connected, forming a complete graph. Every
two transit or stub nodes in a single transit or stub domain
are connected with a probability of 0.6 or 0.4, respectively.
There is no connection between stub nodes in different stub
domains. The network latency is set according to the
following rules: 50 ms for intertransit domain links; 20 ms
for links between two transit nodes in a transit domain;
5 ms for links from a transit node to a stub node; and 2 ms
for links between two stub nodes in a stub domain. We
randomly pick peers out of these 51,984 nodes to construct
the testing P2P systems in our experiments. Notice that only
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some of the physical nodes participate in the P2P system
while all nodes contribute to the network latency for
messages passing by.

For baseline schemes, we apply the crawled topology data
of Gnutella network downloaded from the Limewire Web site
[22] to set up the logical network connections. The average
node degree of this topology is 3.35. Foreseer builds its own
neighbor and friend overlays as described in Section 3.2. It is
notable that the average node degree of Foreseer is greater
than in other schemes. As the experimental results show,
however, Foreseer produces much less search messages than
other approaches. In each run of the trace replaying, we
randomly select 5 percent nodes to depart and 5 percent
nodes to fail on the fly to emulate dynamic activities in P2P
systems.

We measure the search efficiency using a variety of
metrics shown in Table 4. The first three metrics demon-
strate how well a system conducts searches for a given
query (search performance), while the last three metrics
indicate the bandwidth consumed in finding the first
matching document (search cost). For a failed query, the
response time is set to the predefined response timeout,
1,000 ms. This is because the system has to wait for the
timeout before the query failure is acknowledged. Besides
these metrics, we also compare the indices maintenance
overhead involved in both LI schemes and Foreseer because
their work in updating indices affects the entire system
performance and its scalability.

5.2 Trace Preparation

Because there is no real-world trace publicly accessible that
contains keyword query and download history information
needed in our experiments, we carefully rebuild such a trace
by processing a content distribution trace of an eDonkey [11]
system obtained from [13]. The eDonkey trace, probed during
the first week of November 2003, contains the names of
923,000 files shared among 37,000 peers. More analysis of this
trace, such as file popularity distribution, can be seen in [4].
This trace only contains a snapshot of the system, but we need
a query trace. To reasonably reconstruct a keyword query
trace, we conduct the following preprocessing:

1. First, we set the current trace (a file distribution
snapshot) as the system final state Sfinal, and create
an initial system snapshot Sinit containing less
documents. To do this, we construct a set of all the

file items with more than one copies in Sfinal. And,
from this set, we randomly pick 60 percent items and
assume that one copy of each item is downloaded
from another peer. By removing these items from
Sfinal, we have the initial system state Sinit. Since
only one copy is removed for the selected items, the
resultant initial system state keeps similar proper-
ties, such as popularity distribution, with the
observed system snapshot Sfinal.

2. By comparing the system initial state Sinit and final
state Sfinal, we can create a document requesting
trace in terms of target document.

3. Then, we conduct a simple lexical analysis and
extract keywords from each document by converting
its file name to a stream of words. We then calculate
the total number of occurrence per keyword. The
less occurrence, the higher weight a keyword has.

4. When the above jobs are completed, we transform
the document requesting trace into a keyword query
trace. To do this, we choose several query terms
from keywords that have relatively high weights out
of the requested document in each event, since these
terms are more effective to reflect the search reality
than those with light weights.

5. When the keyword query trace is restored, we feed it
into each testing system, replay the queries, and
collect the results.

6 EXPERIMENTAL RESULTS

We conduct comprehensive experiments to evaluate the
search efficiency of Foreseer compared with other ap-
proaches. First, we compare the Foreseer forwarding
policies and study the different functions of neighbor links
and friend links at each hop. Second, we pick up one
instance from each forwarding policy, replay the query
trace to test search efficiency of Foreseer and other baseline
systems in terms of search performance and cost. After that,
we examine the system maintenance of Foreseer versus LI
schemes as other schemes either do not use indices, or
trigger indices update in a different manner [8]. We finally
conduct sensitivity study of the system parameters to
investigate their impacts.

6.1 Forwarding Policies

To compare forwarding policies of Foreseer search algo-
rithm, we randomly choose 20,000 peers, and run the query
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events on these peers. The results of the forwarding policies

with typical h1 and h2 values are shown in Table 5.

Although not all cases of CTS policy are presented due to

space limitation, the trend is shown.
The FFS policy shows an increasing success rate and

decreasing response time when it travels more along friend

links before turning to the neighbor overlay. This is because

more potential friends are visited. However, if the policy

only searches in the friend overlay, as in FFS :fF 6N0g, the

search performance begins to decrease. This is because

without walking along neighbor links, the query is not able

to reach some unpopular documents that may be isolated

from the friend overlay components. By comparing the

search performance of policy FFS :fF 4N2g, FFS :fF 5N1g,
and FFS :fF 6N0g, we can see the functions of neighbor

links in two aspects: 1) they increase the overlay con-

nectivity, namely, improving the search success rate;

2) neighbor links have short delay and can help reduce

search response time.
As for policy NFS, when the search propagates more on the

neighbor links, the success rate drops sharply since it can not

reach distant peers due to physical proximity of neighbor

links. Because of low success rate, few friends can be made

after successful queries, which further reduces success rate in

future queries. With a low success rate, many queries fail and

suffer from long response latency. For this policy, only the

first two instances,NFS :fN1F 5g andNFS :fN2F 4g show an

acceptable success rate.
Compared to FFS, CTS policy shows even better search

performance because it tries to exploit both the temporal

and geographical locality since the beginning of a search.

But, it incurs relatively higher search cost due to a broader

search scope at each hop. For the same reason, a larger

portion of free-riders are touched during a search in this

forwarding policy.

We also present the performance and cost of Flooding
when running the query trace, and use them to normalize
the search efficiency of Foreseer forwarding policies, as
shown in the last column of Table 5. Taking the most
important factors into consideration, we measure a search
scheme’s performance by its success rate and average
response time, and measure the cost by the average number
of query messages. Thus, the search efficiency is computed
as E ¼ P=C ¼ �

t�m , where � is the success rate, t denotes the
average response time, and m stands for the average
number of query messages. The relative search efficiency is
computed by setting the search efficiency of Flooding as the
base unit, and normalizing the results of Foreseer policies.
Although the highest efficiency each policy can have is
comparable, it is shown that CTS may obtain the highest in
the policy CTS :fF 6==N6g. Among all the possible in-
stances of each policy, we choose the one with highest
search efficiency as the one to be used in the following
experiments. Unless explicitly expressed, FFS refers to
FFS :fF 4N2g, NFS to NFS :fN2F 4g, and CTS means CTS :
fF 6==N6g in the rest of this paper.

In order to demonstrate the probability of answering a
query by a peer’s relations at each step, we collect the
number of queries resolved by friends and by neighbors,
respectively, at hop h¼0; 1; . . . ; 6 in each of the three
forwarding policies. Notice that h¼0 indicates a successful
local matching at the peer who issues the query.

The results are shown in Figs. 3, 4, and 5. It can be seen
that, in each policy, more than 20 percent queries are
resolved locally (h ¼ 0) due to temporal locality in the
workloads and well constructed friend relationships be-
tween peers. These queries are answered very efficiently
with minimum network bandwidth consumption by only
one message. As the hop number increases and the search
touches more peers in the friend and/or neighbor overlay,
both the friend and neighbor links serve an increasing
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number of queries until the hop number reaches 3 in CTS, 4

in FFS, or 5 in NFS. When the hop number continues to

increase, however, the number of queries answered by

either type of links decreases since most of the queries are

already satisfied. One exception is that the neighbors at hop

6 serve more queries than neighbors at hop 5 in NFS due to

relatively low success rate of this forwarding policy.
Compared to NFS, policies FFS and CTS can serve more

queries in fewer hops. This is because both policies look up

the initiating peer’s potential friends when directing

queries, and these potential friends are more likely to

answer the queries than other “strange” peers in the

overlay.
These figures also show that for each hop number, the

friend links serve many more queries than the neighbor

links in each policy. One reason is that each peer maintains

up to eight friends while the average number of neighbors

is only around 2.43, which implies that there are many more

friend links existing in the system than neighbor links.

Another reason is that a large portion of neighbor links

point to free-riders while no friend links do. Although it

seems that the neighbor links do not contribute much to the

search performance, they also play a role in Foreseer: They
increase the success rate by connecting isolated nodes that
do not have many friend relationships, and reduce the
response delay and relative distance, as shown in Table 5.
This is important because the search is often followed by a
content download which favors a small relative distance.

6.2 Search Efficiency

In this experiment, we run the query trace with a varying
number of peers, and compare the search efficiency of
Foreseer algorithm against the baseline systems in terms of
search performance and cost.

6.2.1 Search Performance

The performance of each algorithm is tested and compared
in terms of query success rate, response time and relative
distance as shown in Figs. 6, 7, and 8. Based on similar
search methods, Flooding and IBS, both LI schemes and RI
have very close success rate, and they are shown together in
Fig. 6. We notice that, all the baseline systems have an
average success rate around 98 percent, while Foreseer
policies FFS and CTS can achieve an even higher success
rate of up to 100 percent. Because of uncontrolled data
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Fig. 3. Distribution of queries resolved by friends and neighbors at each

hop, with forwarding policy FFS.

Fig. 4. Distribution of queries resolved by friends and neighbors at each

hop, with forwarding policy NFS.

Fig. 5. Distribution of queries resolved by friends and neighbors at each

hop, with forwarding policy CTS.

Fig. 6. Comparison of search performance in query success rate.

Fig. 7. Comparison of search performance in average response time.

Fig. 8. Comparison of search performance in relative distance.



placement and finite TTL for query messages, no current
search algorithms in unstructured P2P systems can guar-
antee a 100 percent success rate. However, only a negligible
percentage of queries may fail in both Foreseer policies,
which is quite satisfactory for most users.

As for response time and relative distance, our results
show that IBS suffers the longest response time and the
largest relative distance although around 20 percent queries
are answered by the shortcuts. In IBS, a peer first contacts
all of its shortcuts to see if they can answer the query. If no
shortcut peer has the requested object, however, the search
has already been delayed before the peer floods the query to
its neighbors. By maintaining content filter copies, a peer in
Foreseer can resolve the query locally on behalf of its
neighbors and friends, and does not need to try any of them
before fanning out the query. Compared to IBS, Foreseer
reduces the average response time and relative distance by
up to 63 percent.

Compared to other baseline systems like Flooding, Local
Indices and Routing Indices, Foreseer reduces the average
response time by up to 53 percent and the average relative
distance by up to 52 percent. The benefit stems from
Foreseer’s ability to exploit both temporal and geographical
locality to propagate queries. Following the friend links
enables Foreseer to reach the destination peer in few hops
while following the neighbor links enables Foreseer to
answer the queries with short network latency.

Among the three Foreseer policies, CTS shows the
shortest response time and lowest relative distance due to
its aggressive searching. NFS has the longest response time
since the system has to wait for many unsuccessful queries
to time out. But, if the query is successful, it is answered
with a short relative distance because of the physical
proximity maintained by the neighbor links.

6.2.2 Search Cost

Flooding has poor system scalability because its blind
flooding results in a large number of redundant messages
and touches too many unrelated peers during the object
searches. Routing Indices produces even more query
messages since a node may have to receive and forward
multiple query messages for the same query session due to
its DFS (Depth First Search) search algorithm. Other
baseline systems also require a lot of messages if the query
is not satisfied by the shortcuts (in IBS) or the local indices
(in LI schemes). We collect the total number of query

messages and touched nodes in all the queries, and
compute the average number of messages produced and
the average percentage of touched nodes in a search, as
shown in Fig. 9 and Fig. 10, respectively. Compared with
IBS, which shows the best results among the baseline
systems, all Foreseer forwarding policies can reduce both
the number of messages and the percentage of touched
nodes by more than 91 percent. In our experiments,
Foreseer only touches less than 3 percent live nodes for
each query on average. From Fig. 9 and Fig. 10, we can see
that both IBS and LI-2 show capabilities of reducing the
number of redundant messages and touched nodes. IBS
achieves this improvement by exploiting temporal (interest)
locality, while LI-2 by maintaining abundant index in-
formation. By combining their advantages, Foreseer im-
proves the search performance and simultaneously slashes
the search cost.

One of the valuable features of the friend overlay is that
no free-riders can become a friend since they share nothing
and cannot serve any query. Therefore, the search will
never touch free-riders while propagating along friend
links. In other systems, however, even a peer knows that
some of its neighbors are free-riders (by looking at the
indices as in LI schemes), it still sends the query to them
when fanning out the query. We conduct the experiments,
calculate the percentage of free-riders among nodes
touched in a search and depict the results in Fig. 11. More
than 67 percent of nodes touched in baseline systems are
free-riders, while only less than 34 percent of nodes touched
in Foreseer policies could be free-riders. This avoids a lot of
meaningless query messages in other systems since free-
riders involved in the query cannot serve a query directly.
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Fig. 9. Comparison of search cost in the number of messages produced

in a search.

Fig. 10. Comparison of search cost in the percentage of nodes touched

in a search.

Fig. 11. Comparison of search cost in the free-rider percentage among

nodes touched in a search.



Since NFS policy firstly searches a few potential neighbors,

but never comes back to the neighbor overlay, the

percentage of free-riders in touched nodes is steadily as

low as 2 percent. As the network scale increases, both FFS

and CTS policies visit relatively more free-riders when they

propagate the query along neighbor links. And, the

percentage for FFS increases at a faster speed because when

there are more nodes in the system, more free-riders have to

be visited to reach other peers that are isolated from the

friend overlay.
Based on the above results, we can compute how much

improvement on search efficiency Foreseer (policy FFS and

CTS) can achieve compared to the baseline systems (using

the search efficiency equation S ¼ P=C). Compared to

Flooding, IBS, LI, and RI schemes, Foreseer on average

improves the search efficiency by a factor of around 35, 18,

24, and 38, respectively. Notice that RI does not work well

in our experiments, possibly because the documents have a

rather low replication ratio, which makes it difficult for the

routing indices to spread over the network.

6.3 System Maintenance Costs

When a query is answered, the peer who issued that query

has a new document to be published to other peers (we

assume this is a requirement). We compare the number of

messages used to update indices in LI schemes and

Foreseer, as shown in Fig. 12. The data of Foreseer is

computed by averaging the results obtained with all the

three forwarding policies. It is clear that LI-1 only needs to

send several update messages after a query on the average.

But, for LI-2, since each peer stores the indices of files

shared on all the nodes within radius r¼2, an index update
results in a large number of update messages.

With an average of 13 update messages after each query,
Foreseer pays a modest cost for its good search efficiency as
seen in the previous sections. Furthermore, by using Bloom
filters, the update messages are quite small and do not
consume much network bandwidth. For an object addition,
a peer only needs to transmit the locations of changed bits
in its content filter. Suppose T ¼100 unique keywords are
extracted from the document and k¼8, m¼8KB for the
Bloom filter implementation. Each changed bit requires B¼
2 bytes to specify its location in the filter. The information to
be sent out is limited by L�T�k�B¼1; 600 bytes, which
can be easily packed in few IP packets.

6.4 Scheme Optimization

We study Foreseer’s sensitivity to the number of neighbors
and friends by running query events on 20,000 peers with
various configuration parameters. Since peers keep making
new friends after their queries are satisfied until they have the
maximum number of friends, the upper bound of friends
(Max jF j) approximates the number of friends each node
maintains in the system. On the other hand, a peer may have a
lower bound number of neighbors and will not look for new
neighbors until some of its current neighbors depart. We
collect the number of neighbors for each node and compute
the average value as jN j¼1:33 for nmin¼1 and nmax¼5, jN j¼
2:43 for nmin¼2 and nmax¼10, jNj¼4:54 for nmin¼4 and
nmax¼20, and jN j¼9:37 for nmin¼8 and nmax¼40.

As shown in Figs. 13, 14, 15, and 16, we present the
search performance and cost of Foreseer search algorithm in
terms of query success rate, response time, number of query
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Fig. 12. Comparison of indices maintenance cost in the number of

update messages produced for this purpose.

Fig. 13. Sensitivity of search performance to peer’s number of neighbors

and friends, in terms of query success rate.

Fig. 14. Sensitivity of search performance to peer’s number of neighbors

and friends, in terms of response time.

Fig. 15. Sensitivity of search cost to peer’s number of neighbors and

friends, in the number of query messages produced.



messages, and search efficiency relative to Flooding scheme.

Due to space limitation, we only present the results of FFS

policy, and other policies show the same trend.
We notice that when MaxjF j¼4, a large portion of

queries fail because the query could only reach a small

number of nodes due to the upper bound on the number of

friends. When MaxjF j>4, as shown in these figures, the

search performance keeps increasing, and the number of

query messages produced keeps decreasing as more

neighbors and more friends are maintained on peers.

And, thus, the search efficiency steadily increases as the

peers maintain more relations in the network. However, a

larger number of neighbors and friends also results in more

indices update workloads, as shown in Fig. 17.

7 CONCLUSIONS

In this paper, we propose a new P2P system architecture

called Foreseer, which constructs two orthogonal overlays

based on geographical and temporal localities and main-

tains distributed indices for objects shared on peers’

neighbors and friends. By selectively directing searches

along the friend links and neighbor links, Foreseer is able to

achieve an extremely high search efficiency with modest

maintenance overhead. Simulation results show that Fore-

seer can boost the search performance by up to 63 percent,

with regard to response time and relative distance, and

slash the search cost by more than 91 percent in terms of the

number of query messages produced and nodes touched,

compared with other state-of-the-art P2P systems. The

performance improvement and cost reduction altogether

contribute to a high search efficiency of Foreseer search

algorithm. We also discuss several alternative forwarding

policies in detail and study their efficiency by experiments.
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