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Effects of growth-promoting agents and season on blood metabolites
and body temperature in heifers1,2

T. L. Mader*3 and W. M. Kreikemeier†

*Department of Animal Science, University of Nebraska, Concord 68728; and †Alltech Biotechnology,
Heartland Regional Office, Columbus, NE 68601

ABSTRACT: To assess the efficacy of growth-promot-
ing agents among seasons, triiodothyronine (T3), thy-
roxine (T4), plasma urea nitrogen (PUN), IGF-I, and
tympanic temperature (TT) were measured in summer
and winter studies. Heifers (n = 9/pen) were allotted to
12 pens in both December and June. Pens were assigned
to 1 of 6 growth promotant treatments: control (no
growth promotant), estrogenic implant (E), trenbolone
acetate implant (TBA), E + TBA (ET), melengestrol
acetate (MGA), and ET + MGA (ETM). Blood samples
were collected from 4 heifers per pen per study on d 0,
28, 56, and 84 via jugular puncture. Near the midpoint
of both studies, TT were obtained from the heifers.
There was a season by sample day interaction for all
blood metabolites (P < 0.05). During the winter, IGF-I
levels peaked on d 28, whereas T3, T4, and PUN peaked
on d 56. In the summer, IGF-I levels increased from d
0 to 28 and remained elevated throughout the study.

Key words: anabolic steroid, body temperature, feedlot, heifer, season, serum hormone
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INTRODUCTION

Extreme or rapid changes in environmental condi-
tions can often be detrimental to cattle performance
and well-being (Webster, 1973; Hahn, 1995). However,
if climatic changes are not too abrupt, cattle can buffer
effects of and adapt to changing environmental condi-
tions through physiological and metabolic processes.
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Season by growth promotant interactions (P < 0.05)
indicated that in the winter ET increased T3, whereas
TBA alone decreased both T3 and T4, compared with
control, or ET, and ETM treatment groups. Across sea-
sons, treatments ET and ETM increased (P < 0.05) IGF-
I and decreased (P < 0.05) PUN. However, E, TBA, and
MGA alone had no effect on IGF-I or PUN concentra-
tions. The maximum TT was greater (P < 0.01) in the
summer than in the winter, whereas the minimum TT
was lower (P < 0.01) in the summer. Mean TT did not
differ among growth-promoting treatments. However,
in the summer and over both seasons, the maximum
TT was lower (P < 0.05) in E-, MGA-, and ETM-treated
heifers. Although limited growth promotant by season
interactions existed, changes in blood metabolite levels
resulting from the use of growth promotants do not
appear to influence seasonal changes in body tempera-
ture as measured by TT.

Kamal and Ibrahim (1969) reported that thyroid
gland activity in summer was 16% less than in winter
allowing for a decrease in metabolic rate and muscle
activity to occur, and overall heat production to be re-
duced. In addition, when cattle were exposed to heat
stress, blood urea nitrogen levels were found to decrease
by 16% in lactating cows and by 28 to 30% in calves
(Habeeb et al., 1992). The depression in blood urea ni-
trogen appears to be a result of resorption from the
blood to the rumen to compensate for the decrease in
ruminal ammonia-N due to reduced feed intake (Ha-
beeb et al., 1992). When cattle are exposed to cold stress,
gastrointestinal tract motility increases due to an ele-
vated metabolic rate, resulting from an increase in thy-
roid hormone activity (Westra and Christopherson,
1976; Kennedy et al., 1977). Thus, feed intake is often
enhanced in cattle exposed to cold environments
(NRC, 1996).

There is evidence that estrogenic compounds also in-
crease plasma concentration of thyroxine (Trenkle,
1997). In addition, when ruminants are administered  
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anabolic agents, IGF-I concentrations are increased
(Breier et al., 1988; Johnson et al., 1998). Change in
body temperature, particularly when cattle are under
environmental stress, is another physiological charac-
teristic that could be influenced by anabolic agents.
However, no data are available regarding effects of ana-
bolic agents on body temperature. The objective of this
experiment was to assess feedlot heifer responses to
cold and heat exposure when administered growth pro-
moting agents as determined by blood endocrine levels,
plasma urea nitrogen (PUN), and tympanic tem-
perature.

MATERIALS AND METHODS

The experiment was conducted at the University of
Nebraska Haskell Agricultural Laboratory with the ap-
proval of the University of Nebraska-Lincoln Institu-
tional Animal Care and Use Committee. Facility design
and layout was reported by Mader et al. (1997). Facili-
ties are located at 42°23′ N latitude and 96°57′ W longi-
tude, with a mean elevation of 445 m above sea level.
Details of the vaccination, parasite control, and diet
regimens utilized for these experiments were reported
by Kreikemeier and Mader (2004). Within a season,
heifers had been stepped up to a 1.43 NEg (Mcal/kg;
DM basis) high-energy finishing diet at the beginning
of each study. Heifers were fed Rumensin and Tylan
(Elanco Animal Health, Indianapolis, IN) throughout
the experimental feeding period. Diets were formulated
to meet or exceed NRC (1996) nutrient requirements.
Data reported herein were obtained from a subset of
540 heifers that were used in the experiment reported
by Kreikemeier and Mader (2004). Experimental de-
sign, performance assessment procedures, and addi-
tional climate data were also reported by Kreikemeier
and Mader (2004). Respective indicators of heat and
cold stress were based on the temperature-humidity
index (THI; Thom, 1959; NOAA, 1976) and the wind-
chill index (WCI; US National Weather Service, 2005).

During a winter and a summer season, crossbred,
nonpregnant Angus yearling heifers (108/season; mean
initial BW = 382 kg) were utilized for obtaining blood
samples and tympanic temperatures (TT). In early De-
cember (winter season), and early June (summer sea-
son), heifers were stratified by BW and assigned ran-
domly to 12 pens (9/pen per season). Six growth promo-
tant treatments (2 pens of heifers/treatment per season)
were imposed as follows: 1) control; 2) estrogenic im-
plant [E, Compudose (24 mg of estradiol-17β), Vetlife,
West Des Moines, IA]; 3) androgenic implant [TBA,
Finaplix-H (200 mg of trenbolone acetate), Intervet,
Inc., Millsboro, DE]; 4) E + TBA (ET); 5) no implant
and fed melengestrol acetate (MGA; Pharmacia and
Upjohn, Kalamazoo, MI); and 6) ET implant and fed
MGA (ETM). Cattle were fed over 104 and 105 d for
the winter and summer feeding periods, respectively.

Blood Collection and Assays

For both seasons, blood samples were taken via jugu-
lar venipuncture and BW were obtained from the heif-
ers (4 per pen) on d 0, 28, 56, and 84 of treatment,
beginning at 0800 and prior to being fed. For each
heifer, blood (10 mL) for plasma was collected into tubes
containing sodium heparin; blood (5 mL) was also col-
lected for serum. After blood collection, the tubes were
centrifuged (1,380 × g) for 10 min. Plasma and serum
fractions were isolated and stored frozen at −20°C un-
til analyzed.

Serum samples were analyzed for IGF-I concentra-
tions using RIA, with acid-ethanol extraction (Echtern-
kamp et al., 1990). The intra- and interassay CV for
3 IGF-I assays were 7.5 and 11.5%, respectively. The
sensitivity of the assay was defined as 95% of the total
binding. Plasma concentrations of total thyroxine (T4)
and triiodothyronine (T3) were quantified with solid-
phase RIA kits (Coat-A-Count, Diagnostic Products,
Los Angeles, CA). Samples for T3 and T4 analysis were
analyzed in separate assays. Duplicate analyses were
performed on each sample for each hormone. The intra-
and interassay CV were 5.5 and 5.4%, respectively, for
T3, and 5.0 and 5.1%, respectively, for T4. Plasma con-
centrations of urea-N were determined using proce-
dures described by Marsh et al. (1965).

Temperature Measures

Tympanic temperatures were obtained from individ-
ual heifers (2 heifers/pen; 4 heifers/treatment per sea-
son) selected from the group of heifers from which blood
was obtained. Tympanic temperatures were obtained
during periods when the ambient temperature was pre-
dicted to be <0°C in the winter and >25°C in the sum-
mer. Tympanic temperatures were recorded using data
loggers and thermistor cables (Stowaway, XTI; Onset
Computer Corporation, Pocassatt, MA) based on proce-
dures described by Mader et al. (2002) and Davis et al.
(2003). Data loggers were secured in an ear of the heifer
using self-adhesive bandages (Vet-Wrap; 3M Corpora-
tion, St. Paul, MN) and 2.25 cm of athletic tape (Ando-
ver Coded Products, Inc., Salisbury, MA). Tympanic
temperature was read every 2 min, with the average
recorded every 15 min over 7- and 5-d periods for winter
and summer, respectively. On d 28 of each study period,
at the time of weighing, ear surface temperature was
measured on 4 heifers from each pen using a Raynger
3i infrared gun (Raytek Corporation, Santa Cruz, CA).

Statistical Analysis

Data were analyzed using the Mixed Models proce-
dures of SAS (SAS Inst., Inc., Cary, NC). Individual
animal data were pooled by pen. The model for blood
hormones and metabolites included season, growth pro-
motant treatment, and sample day plus the 2- and 3-
way interactions. Performance data were analyzed
within season with growth promotant treatment in-
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Table 1. Environmental conditions during periods for which tympanic temperatures were obtained in summer and
winter, mean ± SD

Environmental variable1

Temperature, RH, WS, BG,
Item °C % m/s °C THI BGTHI WCI2

Summer
Mean 26.7 ± 1.3 77.8 ± 1.9 2.5 ± 0.5 31.5 ± 2.2 76.6 ± 2.4 83.6 ± 4.0 —
Maximum 34.2 ± 0.9 95.8 ± 1.9 5.5 ± 1.7 45.8 ± 3.0 85.2 ± 1.9 100.2 ± 5.5 —
Minimum 19.9 ± 2.5 48.9 ± 5.1 0.6 ± 0.2 17.8 ± 2.4 67.6 ± 4.4 63.9 ± 4.3 —

Winter
Mean −2.9 ± 3.5 67.6 ± 6.2 3.1 ± 1.0 −1.6 ± 3.5 — 19.2 ± 4.6 20.3 ± 10.9
Maximum 5.2 ± 6.2 88.4 ± 6.3 7.3 ± 0.8 11.1 ± 8.2 — 46.5 ± 11.4 47.1 ± 10.7
Minimum −9.6 ± 4.8 41.5 ± 8.3 0.6 ± 0.3 −11.2 ± 4.1 — −0.4 ± 4.7 −2.1 ± 6.6

1Collected using a weather station located in the feeding facility; RH = relative humidity, WS = wind speed, BG = black globe temperature,
THI = temperature-humidity index, BGTHI = THI using black globe temperature. THI = (0.8 × temperature) + [(RH/100) × (temperature –
14.4)] + 46.4.

2WCI = (91.4 − [0.475 – {0.0091 × WS} + {0.453 × WS−2}]) × (109.178 – {T/1.8}), in which WS = wind speed in m/s and T = ambient temperature
in °C.

cluded in the model according to the procedures out-
lined by Kreikemeier and Mader (2004). Tympanic tem-
perature and ear surface temperature were analyzed
according to procedures outlined by Davis et al. (2003),
and included season, growth promotant treatment, and
the 2-way interaction in the model. The containment
method was used to determine the degrees of freedom
in the Mixed Models analysis. Least squares means
were compared using an F-protected LSD (P < 0.05).

RESULTS

Climatic conditions during the 2 seasons were re-
ported by Kreikemeier and Mader (2004). For the sum-
mer and winter periods during which TT were obtained,
the ambient temperature averaged 26.7 and −2.9°C,
respectively, and ranged from a daily average of 17.5
to 34.9°C for summer and −16.4 to 11.0°C for winter
(Table 1). Mean THI was 76.6 with an average maxi-
mum of 85.2 for the summer, and a mean of 17.4 with
an average minimum of 1.6 for the winter.

Based on the livestock safety index chart (LCI, 1970),
heifers exposed to hot conditions were on the average
in the alert category (THI > 74), but were also exposed
to emergency category (THI > 83) conditions, suggesting
they were under heat stress during most of this period.
During the winter, ambient temperatures averaged ap-
proximately −3°C and were slightly above the normal
of −6°C (Mader et al., 1997). The lower than normal
wind speed (3 vs. 5 m/s) and relatively high WCI would
suggest that environmental conditions during the win-
ter were only moderately cold. The recorded wind
speeds were approximately half of the normal wind
speeds in both seasons due to shelter and shelterbelts
located near the feedlot facilities. In general, environ-
mental conditions during these studies were within nor-
mal ranges, with adverse but not particularly severe
weather occurring during the course of both seasons
(Kreikemeier and Mader, 2004).

Sample day by season interactions (P < 0.01) were
found for all blood metabolites (Table 2). However,
growth promotant by sample day and growth promo-
tant by sample day by season interactions were not
found. In general, IGF-I increased (P < 0.05) from d 0
to 28 in the winter and in the summer (Table 2). How-
ever, IGF-I levels declined (P < 0.05) after d 28 to d
0 levels in the winter but remained near d 28 levels
throughout the summer. Thyroid hormone levels (T3

and T4) followed similar trends between seasons across
sample days. As expected, T3 and T4 levels were ele-
vated (P < 0.01) in the winter compared with the sum-
mer, but distinctly different trends were found between
seasons from d 56 to 84. By d 84, average ambient
temperatures were declining in the summer; this was
associated with increased thyroid hormone concentra-
tions. The opposite was true for the winter study. On
d 56, PUN was elevated in the winter and lower in the
summer when compared with d 28 levels (P < 0.05);
thus, PUN tended to peak around d 56 in the winter
and d 28 in the summer.

In the winter and summer, ET and ETM treatment
groups had greater (P < 0.05) ADG than the control
group (Table 3). Within a season, DMI were similar
among growth promotant treatments. In both winter
and summer, ET, MGA, and ETM treatment groups
had greater (P < 0.05) G:F than the respective control
groups. There was no growth-promoting agent by sea-
son interaction for serum IGF-I or PUN concentration
(Table 3). Across both seasons, IGF-I was increased (P
< 0.05) in ET- and ETM-treated heifers when compared
with control heifers. There was a growth promotant by
season interaction (P < 0.05) for T3 and T4 concentra-
tions. In the winter, the ET-treated heifers had in-
creased (P < 0.05) T3 levels. Also in the winter, the
ETM-treated heifers had increased (P < 0.05) T4 levels,
whereas TBA-treated heifers had decreased (P < 0.05)
T3 and T4 when compared with control heifers. In the
summer, MGA-treated heifers had greater (P < 0.05)
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Table 2. Effects of season and sample day on blood hormone and metabolite concentrations
in feedlot heifers1

Day of blood collection2

Item 0 28 56 84 SE

IGF-I, ng/mL
Winter 96.9a 130.0b 103.3a 90.9a 6.43
Summer 60.6a 104.5b 95.0b 108.5b 6.43

T3, ng/mL
Winter 1.42a 1.49a 1.62b 1.48a 0.037
Summer 1.19b 0.94a 0.95a 1.33c 0.037

T4, ng/mL
Winter 66.3a 68.1a 77.9b 69.0a 1.77
Summer 66.0bc 53.4a 63.2b 69.5c 1.77

PUN, mg/dL
Winter 9.7a 13.5b 19.2c 12.3b 0.55
Summer 13.7b 17.6c 13.1b 11.6a 0.55

a–cMeans within a row without a common superscript differ (P < 0.05).
1Means included control and growth-promotant treatment groups (n = 12). T3 = triiodothyronine; T4=

thyroxine; PUN = plasma urea nitrogen.
2Number of days of treatment. Day by season interaction (P < 0.01) for all metabolites.

Table 3. Effects of growth-promoting treatment and season on performance and blood
hormone and metabolite concentrations in feedlot heifers1

Treatment2

Item C E TBA ET MGA ETM SE

Performance data
ADG, kg

Winter 1.33a 1.40ab 1.39ab 1.49b 1.41ab 1.47b 0.04
Summer 1.16a 1.26ab 1.24a 1.37b 1.27ab 1.37b 0.04

DMI, kg
Winter 10.81 10.86 10.78 10.92 10.42 10.50 0.17
Summer 9.11 9.23 9.15 9.39 9.14 9.65 0.17

G:F
Winter 0.123a 0.129ab 0.129ab 0.137bc 0.135bc 0.140c 0.004
Summer 0.127a 0.137abc 0.136ab 0.147c 0.139bc 0.142bc 0.004

Blood hormone/metabolite data
IGF-I, ng/mL

Winter 94.3 109.9 102.2 116.8 91.5 117.1 7.88
Summer 80.2 90.2 92.5 98.8 82.5 108.9 7.88
Mean 87.2a 100.1abc 97.3ab 107.8bc 87.0a 113.0c 5.57

T3,3 ng/mL
Winter 1.51b 1.46ab 1.37a 1.77c 1.43ab 1.50b 0.045
Summer 1.12ab 1.19b 1.14ab 1.02a 1.06a 1.08ab 0.045
Mean 1.31 1.32 1.24 1.39 1.25 1.29 0.032

T4,3 ng/mL
Winter 70.6b 70.6b 63.9a 70.9b 67.7ab 78.0c 2.17
Summer 58.4a 63.0ab 63.1ab 62.6ab 67.8b 63.1ab 2.17
Mean 64.5 66.8 63.5 66.8 67.8 70.6 1.53

PUN, mg/dL
Winter 13.8 14.9 13.0 12.2 15.1 13.0 0.68
Summer 15.0 15.2 15.2 12.6 14.0 11.9 0.68
Mean 14.4b 15.0b 14.1b 12.4a 14.6b 12.4a 0.48

a–cMeans within a row without a common superscript differ (P < 0.05).
1Means (n = 8/season). T3 = triiodothyronine; T4= thyroxine; PUN = plasma urea nitrogen. Means of pooled

growth promotant treatment and season performance data have previously been reported (Kreikemeier and
Mader, 2004). Season effects were found for ADG, DMI, G:F, IGF-I, T3, and T4, (P < 0.05).

2C = Control (no growth promotant), E = estrogenic implant, TBA = trenbolone acetate implant, ET =
estrogenic + TBA, MGA = melengestrol acetate, ETM = E + TBA + MGA.

3Growth promotant by season interaction (P < 0.05). 
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Table 4. Effects of season on ear surface temperature
(EST) and tympanic temperature (TT) in feedlot heifers1

Season

Item Summer Winter SE

EST, °C 33.5b 13.6a 0.4
TT
Mean, °C 39.0 38.9 0.3
Maximum, °C 40.0b 39.4a 0.1
Minimum, °C 37.9a 38.4b 0.1

a,bMeans within a row without a common superscript differ (P <
0.01).

1Means included control and growth promotant treatment groups.
For EST, n = 12/season. For TT, n = 72/season.

T4 levels than control heifers. Across season, heifers
receiving ET (ET and ETM treatments) had lower
PUN levels.

Ear surface temperatures were 33.5 and 13.6°C (P <
0.01) respectively, for summer and winter (Table 4).
The ear surface temperatures were recorded in the
event that interactions of growth-promoting agent by
season could be attributable to payout of the implant,
although effects of ear temperature on blood flow in
and around the implant site are unknown. Average TT
was not different between seasons. When cattle were
exposed to hot conditions in the summer, TT displayed
a greater range than when cattle were exposed to cold
conditions in the winter. Maximum TT was greater (P
< 0.01) and minimum TT was lower (P < 0.01) in the
summer than in the winter. Analysis of hourly data
(Figure 1) indicated that peak summer TT occurred
around 1700 whereas peak winter TT were not as evi-
dent. Also, minimum summer TT were found at 0700.
Difference in TT between summer and winter were
found at 0500, 0600, 0700, 0800, 1600, 1700, and 2100
with the diurnal TT pattern being less variable in the
winter than in the summer.

There was a growth-promoting treatment by season
interaction (P < 0.05) for ear surface temperature (Table
5). In the summer, there was no difference between ear
surface temperatures across growth-promoting treat-
ments. In the winter, the MGA-treated heifer had ear
surface temperatures similar to control but lower (P <
0.05) than groups receiving TBA, ET, and ETM.

Mean TT were similar among treatments within sea-
son. A growth promotant by season interaction was
evident for average maximum TT (P < 0.05) and for
average minimum TT (P < 0.07). Numerically, control
heifer groups had greater maximum TT, particularly
in the winter, with the MGA heifers having the lowest
maximum TT in both seasons. The ET-treated cattle
had greater (P < 0.05) maximum TT in the summer
when compared with MGA-fed groups (MGA and ETM).
However, in the winter, cattle receiving E or MGA, or
both (E, ET, MGA, and ETM groups) had lower (P <
0.05) maximum TT than did control cattle. Differences
in minimum TT tended to be found only in the summer,

with E-treated cattle having greater (P < 0.05) mini-
mum TT than TBA and ETM treatment groups.

DISCUSSION

Over both seasons, the rise in IGF-I concentration
from d 0 to d 28 ranged from 34.2% in the winter to
72.4% in the summer. After d 28, IGF-I concentrations
returned to near d 0 (96.9 ng/mL) concentrations in the
winter, but remained elevated above d 0 (60.6 ng/mL)
concentrations during the summer, although mean
IGF-I concentration from d 28 through d 84 were similar
in winter (108.1 ng/mL) and summer (102.7 ng/mL).
Dunn et al. (2003) reported increases in sera IGF-I
concentrations of 52 and 84% because of using growth-
promoting implants in steers. In that study, the 28-d
gain response to implanting ranged from 0.52 to 0.97
kg/d. From this study, it appears that the early rapid
gain response could be partially attributed to the rapid
rise in IGF-I associated with the use of growth promo-
tants, particularly ET combinations.

Hersom et al. (2004) found that IGF-I concentration
is a function of the plane of nutrition. In that study,
IGF-I blood concentrations were between 45 and 90 ng/
mL for cattle consuming native range, whereas cattle
consuming greater quality wheat pasture had blood
concentrations between 115 and 158 ng/mL. Sarko et
al. (1994) and Richards et al. (1995) also reported that
IGF-I concentrations were positively correlated with
feed intake. In the current study, heifers were provided
lower energy diets before the start of the study. During
that period they were being stepped up or adapted to
the high-energy finishing diet. The increase in energy
density of the diet in combination with the cattle being
adapted to the diet likely contributed to a portion of
the increase in IGF-I concentrations from d 0 to 28,
even in the control cattle group, which had an average
increase to 12.9 ng/mL (data not shown) during this
period. The overall effects of season on IGF-I concentra-
tion appears to be nonsignificant, particularly after cat-
tle were on the finishing diet for 28 d. However, growth-
promoting implants had a significant influence on IGF-
I concentrations.

Stick et al. (1998) found that an increase in IGF-I
was associated with an increase in ADG and improve-
ments in feed efficiency. In the study reported herein,
the greater IGF-I concentrations found in the ET- and
ETM-treated heifers may be indicative of the greater
ADG and G:F found in these same 2 groups when com-
pared with control heifers. According to Florini et al.
(1991), IGF-I is a somatotropin-dependent anabolic
peptide that stimulates proliferation and differentia-
tion of many cells including muscle cells. Previous stud-
ies indicated that implanting with an estrogenic com-
pound increased circulating concentrations of somato-
tropin and IGF-I (Grigsby and Trenkle, 1986; Breier et
al., 1988). However, TBA alone or in combination with
E had no effect on somatotropin (Hunt et al., 1991;
Hayden et al., 1992) whereas IGF-I levels were in- 
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Figure 1. Effects of season on tympanic temperature over a 24-h period in feedlot heifers. *Means within an hour
differ by season (P < 0.05; SE = 0.10). Each point represents the mean of 12 pens of cattle.

creased (Lee and Henricks, 1990; Hunt et al., 1991).
Studies reported herein would support these findings,
but suggest that an E + TBA implant combination is
more effective in elevating circulating IGF-I than sin-
gle-product implants.

Table 5. Effect of growth promotant treatment and season on ear surface temperature
(EST) and tympanic temperature (TT) in feedlot heifers

Treatment1

Item C E TBA ET MGA ETM SE

EST,2 °C
Winter 12.5ab 13.1ab 13.6b 15.1bc 10.6a 16.8c 1.0
Summer 33.7 33.8 32.8 33.6 34.0 33.0 1.0
Mean 23.1 23.5 23.2 24.4 22.3 24.9 0.6

Mean TT
Winter 39.24 38.77 39.03 38.69 38.66 38.87 0.67
Summer 38.97 39.03 38.94 39.70 39.36 38.75 0.67
Mean 39.11 38.90 38.99 39.20 39.01 38.81 0.43

Maximum TT,2 °C
Winter 40.08b 39.25a 39.52ab 39.14a 39.13a 39.44a 0.30
Summer 40.23bc 39.97abc 40.18bc 40.44c 39.72a 39.80ab 0.30
Mean 40.16b 39.61a 39.80ab 39.79ab 39.43a 39.62a 0.14

Minimum TT,2 °C
Winter 38.40 38.32 38.46 38.32 38.19 38.48 0.27
Summer 37.69d 38.32e 37.68d 37.95de 38.02de 37.62d 0.27
Mean 38.05 38.32 38.07 38.14 38.11 38.05 0.12

a–cMeans within a row without a common superscript differ (P < 0.05).
d,eMeans within a row without a common superscript differ (P < 0.10).
1C = Control (no growth promotant), E = estrogenic implant, TBA = trenbolone acetate implant, ET =

estrogenic + TBA, MGA = melengestrol acetate, ETM = E + TBA + MGA. For EST, n = 2/season. For TT,
mean n = 6/season.

2Growth promotant by season interaction (P < 0.10).

As expected, seasonal effects on T3 and T4 were appar-
ent throughout this study and changed with changing
environmental conditions. Yousef and Johnson (1985)
reported greater thyroid gland activity under cold expo-
sure, and, in contrast, thyroid gland activity declined 
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when cattle were exposed to heat stress (Kamal and
Ibrahim, 1969; Habeeb et al., 1992).

Thyroid activity influences digesta passage rate and
digestibility in ruminants (Christopherson, 1985). Thy-
roid gland responses are also influenced by level of feed
intake (Yousef and Johnson, 1985). Positive relation-
ships have been found between thyroid hormone con-
centrations and energy balance (Murphy and Loerch,
1994; Hersom et al., 2004). Based on seasonal differ-
ences in DMI in the current study, thyroid activity
would appear to be influencing DMI more than DMI
influencing thyroid activity. In addition, in this study,
the ET and ETM combination appeared to enhance the
normal thyroid responses (ET increased T3 and ETM
increased T4) that are found with declining environ-
mental temperature in the winter. However, opposite
shifts in T3 and T4 concentration were not observed in
the summer in these treatment groups.

Overall, seasonal effects were not found for PUN con-
centrations. However, peak PUN concentrations were
found on d 56 in the winter and d 28 in the summer.
In the winter, during the period when ambient tempera-
tures declined and approached winter lows, feed intake
was stimulated and was associated with greater PUN
levels than were found on d 56. In the summer, ambient
temperature would be peaking around d 56, thus sup-
pressing feed intake and contributing to a lower PUN.
Similarly, a 16% decline in PUN in the summer com-
pared with winter-fed ruminants was reported pre-
viously (Habeeb et al., 1992). Habeeb et al. (1992) stated
that this decline in summer PUN levels could be due to
the decrease in DMI, thereby lowering ruminal nitrogen
recycling, and causing resorption of nitrogen into the
rumen from the blood. Kreikemeier and Mader (2004)
reported the greatest and lowest DMI during d 36 to
69 in the winter and summer studies, respectively.

Growth-promoting treatments were found to affect
PUN concentrations. Over the entire experiment, heif-
ers that had greater IGF-I concentrations (ET and ETM
treatment groups) also had lower PUN concentrations.
Changes in PUN concentrations could be attributed to
increased protein synthesis, decreased protein degrada-
tion, or a combination of both. However, in this study,
changes in weather patterns within a season tended
to result in greater changes in PUN than the use of
growth promotants.

These data suggest that, at least in the winter, im-
planting can elevate ear surface temperatures as much
as 6°C; however, overall ear surface temperatures in
the winter are less than one-half of temperatures found
in the summer. Ear surface temperature is likely influ-
enced by both core body and external ambient tempera-
tures. The data also indicate that when cattle get hot
in the summer, they tend to compensate at night by
ridding the body of heat in preparation for subsequent
heat episodes. Thus, the range in TT will be greater in
the summer. The lower nighttime TT enabled cattle to
prepare for the heat of the day; whereas greater overall
TT in the winter buffers the animal against cold threats.

Very few relationships were found between TT and
blood metabolites. In the summer, the E-treated heifers
had a greater minimum TT; the same heifers had
greater T3 than heifers receiving ET and MGA treat-
ments. Also in the summer, the MGA-treated heifers
had the lowest maximum TT; however, when compared
with control heifers, they had greater T4 concentrations.

The lower maximum TT found in the MGA treatment
group would be supportive of conclusions made by
Busby and Loy (1996); they reported that heifers fed
MGA were less likely to die from heat stress than heif-
ers not fed MGA. The greater minimum TT found in
the E-treated group in the summer would suggest that
E-implanted cattle might be more susceptible to heat
stress. Even though the growth-promoting response of
E and MGA are mediated through estrogen receptors,
effects on minimum TT were the opposite. The estrus-
suppressing effects of MGA might be responsible for
any lowering of TT and heat-related death loss as sug-
gested by Busby and Loy (1996). Also, heifers assigned
to the aggressive implant treatment (ET) had greater
maximum TT in the summer than did MGA-treated
heifers. These effects could influence cattle well-being
under extreme environmental conditions, particularly
in the summer. However, in the winter, growth promo-
tants generally lowered winter maximum TT but had
no effect on minimum TT when compared with control
cattle TT.

Based on these data, relative differences in cattle
performance due to growth promotants would likely be
similar between winter and summer feeding periods
and not significantly altered by seasonal influences on
blood hormone levels. Changes in environmental condi-
tions clearly elicit changes in animal thyroid activity,
whereas the combined use of growth promotants influ-
ences IGF-I and PUN concentrations. Differences in
measures of body temperature were observed among
growth-promoting treatments; however, more pro-
nounced differences were found between summer and
winter diurnal temperature patterns than among
growth promotant-treated cattle.
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