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1. Introduction 

Physiological, psychological and physical factors all 
influence human reliability. Over the years, many ap-
proaches to human reliability assessment have been pro-
posed (Swain and Guttmann, 1983; Embrey et al., 1984; 
Hannaman et al., 1985; Weston et al., 1987). Most ap-
proaches estimate the probability of human error. Estima-
tions are usually derived from historical data and/or ex-
pert judgment, under static conditions. 

In many cases, human operators may be required to 
work in dynamic situations where conditions are contin-
uously changing over time. In addition, individuals per-
forming a particular task vary widely in capabilities and 
in their response to external situations (Kolarik, Wolds-
tad, Lu and Lu, 1998; Kolarik, Woldstad and Lu, 2000). 

In this paper, a new approach to human reliability pre-
diction is developed to accommodate the dynamic nature 
of human performance. Human performance is assessed 
in real-time based on past, present and forecasted perfor-
mance with reference to given failure criteria. This real-
time human reliability model consists of three major func-
tions: (i) on-line performance monitoring; (ii) real-time 

performance forecasting; and (iii) performance reliabil-
ity assessment, which are discussed in Section 3. A spe-
cific method utilizing a fuzzy knowledge base to convert 
the forecasted performance to reliability estimates is de-
scribed in Section 4. Key issues in implementation include 
performance measure identification, failure definitions 
and performance forecasting. Figure 1 shows the func-
tional block diagram of the assessment model structure. 

2. Human performance reliability and prediction model 

2.1. The concept of human performance reliability 

Human performance reliability is proposed in order 
to evaluate and predict an individual’s performance un-
der dynamic conditions when one is performing a task 
(Kolarik, Woldstad, Lu and Lu, 1998; Kolarik, Woldstad 
and Lu, 2000). Human performance reliability is defined 
as “the conditional probability that human performance 
measures/metrics are greater (or less) than given crit-
ical limits/thresholds for a given future period of time” 
(Kolarik, 1995; Kolarik, Woldstad, Lu and Lu, 1998; Lu, 
Kolarik and Lu, 2001). Human performance measures/
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metrics are physical variables/signals that are highly cor-
related with performance. The critical limits are clearly 
defined boundaries for the human performance mea-
sures/metrics that separate unacceptable performance 
from acceptable performance. Human performance reli-
ability is essentially the extension of its physical counter-
part (Lu, Lu and Kolarik, 2001).

In general, humans may exhibit different failure modes 
(errors) in performing a task. Each failure mode may 
be affected by several performance measures/metrics. 
Hence, multiple performance measures/metrics and mul-
tiple failure modes (errors) are a general scheme in model 
consideration (Lu, 1999). Suppose that there are p perfor-
mance measures and m failure modes (errors) regarding a 
defined human task. Assume that each failure mode (er-
ror) is defined by a function in terms of performance mea-
sures/metrics y1, y2, ..., yp : 

si (y1, y2, ..., yp) = 0,   i = 1, 2, ..., m,

where si represents the failure mode function regarding 
failure mode i. 

For failure mode (error) i, its conditional failure proba-
bility (for the smaller-is-better case where a system is de-
fined as a failure when the performance measure exceeds 
an upper critical limit during time Δt) can be calculated 
by: 

(1)

Here, ft (y1, y2, ..., yp) represents the joint probability den-
sity function of performance variables yi at time t. It can 
be obtained from a forecasted mean vector and covari-
ance matrix associated with the performance measures. 
Assuming the joint statistical distribution is multivariate 
normal, Ωi is the surface defined by failure mode defini-
tion function si (y1, y2, ..., yp) >0. 

The human performance reliability considering all fail-
ure (errors) modes is given by: 

(2) 

where Ω represents: Ω1 È Ω2 È … È Ωm, which implies 
that any human failure mode will lead to the failure of 
the task. 

For example, assume that there are two performance 
measures and two failure modes in a specific human task. 
Figure 2 shows a corresponding multivariate performance 
reliability concept. The ellipses are contours of probabil-
ity density function ft (y1, y2). The two straight lines S1(y1, 
y2) and S2(y1, y2) are critical surfaces corresponding to 
failure modes 1 and 2. The integration of probability den-
sity function  ft (y1, y2) over area Ω1 represents the failure 
probability regarding failure mode 1. The integration of  ft 
(y1, y2) over area Ω2 represents the probability regarding 
failure mode 2. The integration over the union of Ω1 and 

Figure 1. The functional block diagram of the assessment model structure. 

Figure 2. Human performance reliability concept (two perfor-
mance measures and two failure modes). 
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Ω2 represents the probability with respect to both failure 
modes; an overall human failure probability (Lu, 1999).

2.2. Human performance reliability prediction model 

As discussed above, the implementation of human per-
formance reliability is based on forecasted results of per-
formance measures. Performance measures, monitored 
and sampled at specified intervals, serve as the input of 
the Human Performance Reliability Prediction (HPRP) 
model. They are a realization of a stochastic process and 
can be treated as a multivariate time-series (Lu, 1999). 
They are modeled and forecasted by multivariate time-
series forecasting methodologies. Assuming these vari-
ables/measures are multivariate-normal distributed, then 
the joint probability density function in Equation (1) can 
be obtained from the forecasted mean vector and covari-
ance matrix. Human performance reliability is calculated 
by Equation (2), while the integration area is defined by 
the failure definition (discussed in Section 3). 

HPRP models provide a means for human reliabil-
ity assessment in real-time. Compared with traditional 
human reliability models, the proposed human perfor-
mance reliability models differ in several critical respects 
(Lu, Lu and Kolarik, 2001): (i) each working individual is 
the subject of modeling; (ii) the model is implemented in 
real-time, using on-line sensors; (iii) the model is driven 
by a time-varying function that can accommodate con-
tinuously changing situations and/or environments; and 
(iv) the model can influence operational decisions in real-
time. The HPRP model can be applied to human-task re-
lated reliability applications where human performance 
measures can be sampled and collected over time. A spe-
cific human-task related implementation example is de-
scribed in Section 4. In practice, a full understanding of 
task requirements is a must for proper model application. 
In addition, the following facets should be considered for 
a specific application: (i) the selected performance vari-
able/measures should be highly correlated with the hu-
man performance; (ii) these variables should be mon-
itored over time; and (iii) the failure mode(s) function 
should be defined in terms of performance measure(s) ei-
ther in a crisp or fuzzy form. 

3. HPRP model implementation 

Procedures for implementation of the HPRP model 
generally are: (i) understanding the task specification; 
(ii) analyzing possible human performance failures; (iii) 
identifying human performance measures; (iv) defining 
performance failures in terms of performance measures; 
(v) monitoring and modeling performance on-line; and 
(vi) predicting real- time performance reliability (Kolarik 
et al., 2000). Here, task specifications and requirements 
serve as the basis of failure definition. The following sec-
tions will discuss the key issues in the implementation of 
HPRP models. 

3.1. Human performance measures 

Physiological, psychophysical and physical factors im-
pact on human performance. In addition to these factors, 
the situational conditions (external situation) of environ-
ment, equipment and human-machine interface influence 
human performance. The interactions between these fac-
tors complicate human reliability modeling and assess-
ment (Kolarik, Lu and Lu, 1998). Traditional means to 
consider the impact of these factors on human reliability 
include performance shaping factors (Embrey et al., 1984) 
in which the probability of human performance failure is 
modified according to tabulated values or expert (subjec-
tive) opinions. 

In HPRP applications, performance parameters are 
monitored in real-time. Applications pose challenges for 
monitoring and modeling due to situational complex-
ity and the resulting multiple dimensions in performance 
matrices. In some cases one selects indirect measures that 
are highly correlated with human performance. They are 
generally the resultant characteristics of human perfor-
mance metrics (physiological, psychophysical and phys-
ical) and the work environment (environment, equipment 
and human- machine external interface), instead of cause-
related metrics (those parameters that impact on human 
performance). For example, if accuracy in positioning op-
erations is the main concern in a task, then position rel-
evant performance parameters can be chosen as perfor-
mance measures. Three basic criteria for the selection of 
performance metrics exist: 
1. The performance metrics selected must characterize an 

important aspect of human performance for the task 
under study. 

2. For each performance metric, there must be a clearly 
defined criterion (failure mode function) that sep-
arates unacceptable performance from acceptable 
performance. 

3. Metrics must be measurable and monitored in real-time. 

3.2. Definition of human performance failure 

Task specifications and requirements serve as the ba-
sis for model application, calibration and failure defini-
tion. Two basic methods are applicable in failure defini-
tion: (i) the analytical method (clear-cut definition); and 
(ii) the intelligent method (fuzzy definition). In the ana-
lytical method, failure is defined in the form of mathe-
matical functions in terms of performance measures, such 
as si (y1, y2, ..., yp) > 0, where y1 ... yp are performance mea-
sures. For each failure mode i, the function may include 
all the performance measures or part of them. Failure def-
inition requires a careful analysis of the human task. Def-
inition may involve off-line experimentation (and/or sit-
uation simulation) and statistical data analysis methods 
such as multivariate regression. From these analyses, fail-
ure surfaces are generated. 

In the case that a clear-cut critical limit is difficult to ob-
tain, an expert’s knowledge about human performance 
failures can be incorporated in failure definitions. This 
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method is called fuzzy failure definition. In this method, 
human performance reliability regarding each failure 
mode is defined by a set of linguistic fuzzy: “if-then” rules 
based on experiences or knowledge of experts about fail-
ures. For example: “if performance variable one is ex-
tremely low and performance variable two is moderately 
high, then the probability of failure mode 1 may be ex-
tremely low and failure mode 2 moderately high.” In cases 
such as these human performance reliabilities can be esti-
mated by implementing corresponding fuzzy rules. 

Fuzzy rules are stored and implemented in a fuzzy re-
liability estimator. A fuzzy reliability estimator may be 
viewed as a real-time expert system for performance reli-
ability assessment. The core of a fuzzy reliability estima-
tor is a linguistic description of conditional reliability un-
der a given input performance state. The configuration 
of a fuzzy performance reliability estimator is depicted 
in Figure 3. The inputs to the estimator are performance 
measures forecast in real-time in the form of crisp values. 
The outputs of the estimator are the crisp values pertain-
ing to overall human performance reliabilities, or sepa-
rate performance reliabilities corresponding to different 
failure modes. The estimator usually includes six compo-
nents: normalization and denormalization, fuzzification 
and defuzzification, fuzzy rule and rule inference (Hines, 
1997; Driankov et al., 1999). 

In Figure 3 normalization is first used to perform scale 
transformations in which the performance variables are 
mapped into a common (normalized) discourse of the 
same magnitude. Fuzzification is then applied to transfer 
normalized performance measures into linguistic vari-
ables (called fuzzy sets). In this transformation, a crisp 
value is represented by fuzzy sets together with their cor-
responding membership functions in a value between 
[0,1], which indicates the degree to which a fuzzy variable 
belongs to the fuzzy set. In general, a crisp performance 
measure can be represented by different fuzzy sets with 
different membership functions. A fuzzy rule base is a da-
tabase of fuzzy “if-then” rules. These fuzzy rules are built 
based on the knowledge about performance reliability 
from historical information and/or experience of experts. 
They are a set of linguistic relationships between the con-
ditions of performance measures and the estimated reli-

ability in the form of “if-then” rules. In rule inference, mul-
tiple fuzzy rules corresponding to definite performance 
measures are fired. The Degree of Fulfillment (DoF) value 
for each rule is implemented by “AND” fuzzy set opera-
tions and then used in the defuzzification step. Using de-
fuzzification, all multiple fuzzy rules fired in the fuzzy rule 
inference are combined and converted to a crisp value. In 
this description, the technique of “center-of-mass” is ap-
plied in this step. After defuzzification, performance reli-
ability is obtained as a normalized crisp value converted 
to its original universe of discourse [0,1] by denormaliza-
tion. This conversion serves as the output of the perfor-
mance reliability estimator. By implementation of the 
fuzzy rules for each failure mode, the estimator can out-
put a separate performance reliability for each failure 
mode and an overall performance reliability (considering 
all failure modes). 

3.3. Forecasting of performance measures in HPRP model 

Several forecasting technologies are available for mul-
tivariate time series: exponential smoothing, state-space 
modeling, neural network modeling, fuzzy time-series 
modeling and ARIMA modeling. Considering timeli-
ness and accuracy, state-space modeling and exponential 
smoothing are feasible methods for real-time applica-
tions. State-space modeling has an advantage in accuracy 
for both one-step and multi-step (looking-ahead) forecasts 
over exponential smoothing; while exponential smooth-
ing has an advantage in timeliness due to less matrix 
computation (Lu, 1999). In addition, it is possible to com-
bine exponential smoothing with fuzzy performance reli-
ability in cases where timeliness is critical and high preci-
sion estimates are not required. 

3.4. Multivariate exponential smoothing 

Exponential smoothing models utilize time-decreas-
ing weighted averages. Success in applying exponential 
smoothing forecasting technology to physical system per-
formance reliability assessment for the univariate case 
was reported by Lu (1998). Enn et al. (1982) introduced 
a multivariate exponential smoothing model, which is an 
extension of univariate adaptive exponential smoothing. 

Figure 3. The structure of a fuzzy reliability estimator in the Multiple-Input-Multiple-Output (MIMO) case. 
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Suppose a multivariate time series yt (Î Rp×1) can be 
decomposed into a vector of permanent influences βt (Î 
Rp×1) and a vector of disturbances having mean zero and 
covariance matrix Σε (Î Rp×p): 

yt = βt + εt ,       t = 1, 2, ..., n.                    (3) 

Assume that the permanent component βt follows a first-
order Markov process: 

βt = βt – 1 + ηt ,                                             (4) 

where, ηt Î Rp×1 is a white noise vector with E(ηt ) = 0 
and covariance matrix Var(ηt ) = Ση . Suppose ŷt+1 repre-
sents the predicted vector of yt+1 , based on the informa-
tion available at an instant of time t with minimum condi-
tional mean-square error: 

ŷt+1 = E(βt |yt , yt–1, ..., y1).                      (5) 

The multivariate recursive equation for the one-step 
ahead forecast of the conditional mean of βt is: 

β̂ t = β̂ t–1 + t (yt –  β̂ t–1),                         (6) 

where t Î Rp×p is the smoothing matrix, which can be ob-
tained in a recursive fashion, and 

t = (S t–1 + λΣ)(S t–1 + Σ)–1                       (7) 
where 

                             λ =|Ση|/|Σ|,  
and 

Σ = Ση + Σε                                                 (8) 

Here, λ  is called the allocation parameter. S t–1 in Equa-
tion (7) is the conditional variance of βt–1, given the ob-
servations yt , yt–1, ..., y1, 

S t–1 = (1 – t–1)(S t–2 + Ση ).                     (9) 

3.5. State-space modeling and Kalman filtering 

The state-space model was first applied to time-series 
analysis in 1974 by Akaike. Since that time, many success-
ful applications have been described (Harvey, 1990; Ng 
and Young, 1990; Young et al., 1991; Young, 1994). Using 
Kalman filtering, both single and multiple time series can 
be processed recursively in the estimation of states and 
time forecasting. In this application, time series are usu-
ally first decomposed into a structural time-series form 
such as trend, stochastic perturbation, periodic and white 
noise components. Each component is then identified and 
modeled in a state-space form separately. The complete 
state-space model can be obtained by combining all these 
separate models together (Young et al., 1991). 

The general concept behind state-space modeling 
is that the time-series vector, y(t), is made up of obser-
vation variables that depend on a possibly unobserved 

state vector x(t). Here, the state vector x(t) is defined as 
a minimum set of information from the present and past 
such that the future behavior of the system can be com-
pletely described by the information about the present 
state and future inputs (Ogata, 1997). The state-space is 
represented by an observation equation and a transition 
equation: 

x(t) = Fx(t – 1) + Gη(t – 1),                              (10) 

y(t) = Hx(t) + ε(t),                                             (11) 

where, x(t) is a state vector; H, F, and G are parameter 
matrices (or vectors) of the state-space model; ε(t) is a 
white noise vector; and η(t) is a disturbance. 

In performance failure prediction modeling, multivar-
iate performance measures are first decomposed into the 
low- frequency trend vector T(t), periodical component 
S(t) and residual vector P(t). T(t) can be modeled by a 
multivariate random walk a multivariate integrated ran-
dom walk or a multivariate smoothed random walk (Ng 
and Young, 1990). In the demonstration that follows, the 
Multivariate Integrated Random Walk (MIRW) is cho-
sen to represent the local low-frequency trend. The inte-
grated random walk has advantages in representing the 
local trend component (Harvey, 1990; Ng and Young, 
1990). 

Once a model has been written in a state-space form, 
Kalman filtering can be applied to make single-step or 
multi-step forecasts in a recursive manner. Kalman fil-
tering can be written conveniently in a general “predic-
tion-correction” form (Ng and Young, 1990; Young, 1994). 
One-step and multi-step forecasts are developed in the 
following equations: 

For a one-step forecast: 

x̂ (t + 1|t) = Fx̂ (t),                                             (12) 

ŷ (t + 1|t) = Hx̂ (t + 1|t).                                  (13) 

For a multi-step forecast 

x̂ (t + l|t) = F l x̂ (t),                                             (14) 

ŷ (t + l|t) = Hx̂ (t + l|t).                                    (15) 

The l-step ahead prediction error can be evaluated as: 

e(t + l|t) = y(t + l) – ŷ (t + l|t),                        (16) 

and the variance of this forecast can be calculated as 
(Young et al., 1991): 

Var{e(t + l|t)} = R[I + HP(t + l|t)HT].           (17) 

Once the mean value and covariance matrix of forecasted 
performance measures are obtained using the above 
equations, the probability density function in Equation 
(1) is then applied. 
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4. Model verification 

Real-time application of the HPRP model requires the 
use of computer aids. A software prototype has been de-
veloped based on the performance reliability model. Fig-
ure 4 shows the main interface panel of the prototype. 
Through the main panel, the user can select options to set 
up parameters for a specific human task application. The 
operating setup option includes forecast steps, number of 
performance variables and number of failure modes, etc. 
Through the user interface, the failure mode definition 
method can be chosen (between crisp failure mode defini-
tion and fuzzy failure mode definition). The sampled per-
formance measurements and one-step forecast results can 
be displayed in the chart “Display” on the main interface 
panel. The predicted (possible) failure mode for one-step 
ahead or multiple-step ahead is displayed in the “Alarm 
Information” message box. The performance reliability 
assessments for one-step and multiple-step are shown in 
the “Reliability Assessment” sub-panel. 

A demonstration is developed to test the HPRP model. 
In order to compare the results of analytical (Lu, Lu, and 
Kolarik, 2001) and fuzzy performance reliability models, 
both models are used in a human task related demonstra-
tion. In the demonstration, operators are required to per-
form a task in a predefined area. Any activities beyond 
the area are defined as failures. There are two failure 
modes defined in this demonstration. Failure mode 1 oc-
curs when the position of the hand is too close to a speci-
fied point (x0, y0), falling in a specific zone defined by cir-
cle 1, shown in Figure 5. Failure mode 2 occurs when the 
hand is too far from the specific point (x0, y0) defined by 

circle 2, shown in Figure 5. As depicted in Figure 5, sys-
tem failure for this example would result from either a 
mode 1 failure or a mode 2 failure. In this demonstration, 
the positions of a sensor in an x – y coordinate system 
are identified as performance matrices and monitored in 
real-time by an ISOTRAK II tracking system. The x and 
y coordinates and reliability estimates are viewed on the 
computer monitor in real-time and are also stored in the 
computer for off-line analysis. Reliability for this task is 
defined as the probability, given the current and past po-
sition of the sensor, that it will be positioned within the 
outer boundary and outside of the inner boundary at a 
specified future time. 

The demonstration compares two performance reli-
ability assessment methods: analytical and fuzzy perfor-
mance reliability. 

4.1. Analytical performance reliability method 

In the analytical performance reliability assessment, con-
ditional performance is obtained through multi-dimen-
sional integration using Equation (2). According to the 
task specification and failure definitions in the above 
paragraph, critical limits regarding failure mode 1 (the 
position of the operator’s hand too close to point (x0, y0)) 
are expressed as: 

(y – y0)2 + (x – x0)2 ≤  c1
2 ,                             (18) 

where c1 is a predefined distance defined by operational 
requirements. 

Likewise the critical failure mode 2 (the position of 
the operator’s hand too far from point (x0, y0)) can be ex-

Figure 4. The main interface panel of the prototype. 
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pressed as: 

(y – y0)2 + (x – x0)2 ≥  c2
2.                        (19) 

The performance reliabilities regarding these two fail-
ure modes are obtained by numerical, multi-dimensional 
integration over the area defined by Equations (18) and 
(19). The performance reliability result corresponding to 
this analytical method is shown in a previous paper (Lu, 
Lu, and Kolarik, 2001). 

4.2. Fuzzy performance reliability assessment 

Performance reliability is estimated by a fuzzy estimator 
that is established based on linguistic descriptions of hu-
man performance reliability, regarding the performance 
measures. In this demonstration, there are two perfor-
mance variables in a crisp domain serving as the inputs of 
the estimator. In the first step, the performance measures 
in crisp values are mapped into a universe of discourse 
of [-4,4] by normalization. Then the normalized values are 
converted to corresponding fuzzy values by fuzzification. 
In this demonstration, the variables (two performance 
measures and performance reliability itself) are described 
by five fuzzy subsets: very small (0), small (1), medium 
(2), large (3), and very large (4). Please note that a crisp 
value can be interpreted as different fuzzy subsets with 
different membership functions. For example, shown in 
Figure 6 (Hines, 1997), the normalized value –2.5 is con-
verted to the fuzzy subset “very small” with membership 
function µ2 or to fuzzy subset “small” with membership 
function µ1. In general, the more fuzzy subsets defined, 
the more accurate the output of the fuzzy estimator. 
However, as the number of subsets increases, more time 
is required in computation. Therefore, in practice, there is 
a trade-off between the number of fuzzy subsets defined 
and timeliness of the estimator. 

Corresponding to the five fuzzy subsets for each per-
formance measure used in the demonstration, there are a 
total of 5 × 5 = 25 fuzzy rules defined. These rules form 
the reliability algorithm for each failure mode. These 
rules are constructed from the knowledge about the fail-
ures: in this case, the performance reliability regarding 
failure mode 1 is getting lower when the hand position 
approaches the point C0(x0, y0), and the performance re-
liability regarding failure mode 2 is getting higher when 
the hand position approaches the point C0(x0, y0). The fol-
lowing are examples of the 25 fuzzy rules: 

Rule 1:  If variable Y is medium AND variable X is very 
small, then performance reliability regarding 
failure mode 1 is very large, ELSE 

Rule 2:  If variable Y is medium AND variable X is me-
dium, then performance reliability regarding 
failure mode 1 is very small, ELSE 

Rule 3:  If variable Y is medium AND variable X is very 
large, then performance reliability regarding fail-
ure mode 1 is very large, ELSE . . . 

Figure 5. Definition of system failure mode. 

Figure 6. Membership functions of fuzzy sets. 
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These fuzzy rules are summarized in Tables 1 and 2. 
Tables 1 and 2 are fuzzy rules of performance reliabil-
ity regarding failure mode 1 and failure mode 2, respec-
tively. Based on the above fuzzy rules, multiple fuzzy 
rules are fired in the fuzzy rule inference, corresponding 
to performance measures at every instant of time. A DoF 
value for each rule is calculated by a fuzzy “AND” opera-
tion (Hines, 1997):

 DoF = µA(V1) Ù µB(V2) = min(µA, µB)           (20)

By defuzzification, all the rules fired in the above step 
are combined and transferred to a crisp value with the 
method of “center-of-mass.” This method is demonstrated  
in Figure 7 (Hines, 1997). Here, there are four fuzzy rules  
fired at the same time. The crisp value is obtained by cal-
culating the gravity center of areas formed by the union 
of these fired fuzzy rules (Hines, 1997). The formula of 

Table 1. Fuzzy rule table for failure mode 1 in the demonstra-
tion of human performance reliability R1

                         y  Very  Small  Medium  Large  Very 
x          R1                 small (0)       (1)           (2)            (3)    large (4)

Very small (0)  4  4  4  4  4 
Small (1)  4  3 2 3  4
Medium (2)  4  2  0  2  4
Large (3)  4  3 2 2  4
Very large (4)  4  4  4   4   4 

Table 2. Fuzzy rule table for failure mode 2 in the demonstra-
tion of human performance reliability R2 

                         y  Very  Small  Medium  Large  Very 
x          R2                         small (0)       (1)          (2)            (3)    large (4)

Very small (0)  0  0  0  0  0 

Small (1)  0  2 3 2  0 

Medium (2)  0  3  4  3  0 

Large (3)  0  2 3 2  0 

Very large (4)  0  0  0  0  0 

In the above tables, 0: very small; 1: small; 2: medium; 3: large; 4: very 
large. 

Figure 7. Fuzzy performance reliability assessment at time t0. 
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combination/defuzzification is as follows: 

(21)

In the last step, the crisp value obtained by defuzzifica-
tion is converted into an original magnitude [0,1], which 
is the performance reliability output from the fuzzy reli-
ability estimator. 

Figures 8–10 show the performance reliability assess-
ment results regarding failure mode 1, failure mode 2, 
and overall failures, based on fuzzy failure estimation. 
These figures show three-dimensional plots of the human 
performance reliability as a function of hand position. 

A validation test for the model is considered in mod-
eling human performance measurements. The fore-
cast model validation is based on the following mea-
sures: Mean- Square Error (MSE), Mean Percentage Error 

(MPE), Root-Mean-Square Prediction Error (RMSPE), and 
a white noise test for the forecasting errors. The white 
noise test is based on the Portmanteau or Q test. If the se-
ries {Yt } is from a white process, then the statistic (Brock-
well and Davis, 1991): 

(22) 

The hypothesis of white noise is rejected if Q > χ 
1
2
– ,m . 

The human performance reliability prediction model 
is validated based on MSE, MPE, RMSPE, and the white 
noise test. A comparison of results between the analytical 
failure definition (Lu, Lu, and Kolarik, 2001) and fuzzy 
failure definition was also conducted (Lu, 1999). The com-
parison results show that these two methods can pro-
duce similar results, as long as the fuzzy rules are defined 
appropriately. 

A fuzzy performance reliability model is a better 
choice than a crisp performance reliability model in a 
complex system, where performance measures are dif-
ficult to measure precisely and/or the relationship be-
tween performance measures and failure modes cannot 
be represented through analytical models. Fuzzy perfor-
mance reliability also provides an alternative in the case 
where there are many performance measures to deal 
with and numerical integration methods cannot meet 
timeliness requirements for real-time implementation. 
Results show that the fuzzy performance model has ad-
vantages in simplicity and timeliness, and is capable of 
satisfying basic accuracy requirements. It appears to be 
a promising method, capable of accommodating the un-
certainty and subjectivity associated with predicting hu-
man performance reliability. 

Figure 8. A three-dimensional plot of the human performance 
reliability as a function of hand position for failure mode 1 
(fuzzy failure definition). 

Figure 9. A three-dimensional plot of the human performance 
reliability as a function of hand position for failure mode 2 
(fuzzy failure definition). 

Figure 10. A three-dimensional plot of the human performance 
reliability as a function of hand position for all failure modes 
(fuzzy failure definition). 
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 5. Conclusions 

This paper addresses a real-time HPRP model that is 
suited to monitoring and predicting an individual’s per-
formance when performing a task. Successful implemen-
tation of the HPRP model primarily depends on suitable 
performance measure identification, performance fore-
casting and failure definitions. Two multivariate forecast-
ing methods, multivariate exponential smoothing and 
state-space modeling, can be used for performance mea-
surement forecasting. Two failure definition methods, an-
alytical failure definition and fuzzy failure definition, can 
be used in failure mode definition. 

Analytical failure definition is preferred when high- 
accuracy assessment is needed. Fuzzy performance reli-
ability estimators serve as alternative methods: with ad-
vantages in simplicity and timeliness. For example, the 
exponential smoothing forecasting method and fuzzy 
failure definition are a possible combination when time-
liness is critical in the assessment. In such a situation, 
one may be forced to make a trade-off between timeli-
ness and accuracy. Fuzzy logic in the reliability estima-
tor, as opposed to analytical methods, allows flexibility 
in this trade-off. 
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