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Abstract

Scale-free organizations, characterized by uneven distributions of linkages between nodal elements, describe the structure and function

of many life-based complex systems developing under evolutionary pressures. We explore motivated behavior as a scale-free map toward

a comprehensive translational theory of addiction. Motivational and behavioral repertoires are reframed as link and nodal element sets,

respectively, comprising a scale-free structure. These sets are generated by semi-independent information-processing streams within

cortical–striatal circuits that cooperatively provide decision-making and sequential processing functions necessary for traversing maps of

motivational links connecting behavioral nodes. Dopamine modulation of cortical–striatal plasticity serves a central-hierarchical

mechanism for survival-adaptive sculpting and development of motivational–behavioral repertoires by guiding a scale-free design. Drug-

induced dopamine activity promotes drug taking as a highly connected behavioral hub at the expense of natural-adaptive motivational

links and behavioral nodes. Conceptualizing addiction as pathological alteration of scale-free motivational–behavioral repertoires unifies

neurobiological, neurocomputational and behavioral research while addressing addiction vulnerability in adolescence and psychiatric

illness. This model may inform integrative research in defining more effective prevention and treatment strategies for addiction.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Rapid gains in understanding the neurobiology of
addiction (Nestler, 2004; Volkow and Li, 2004) have been
possible in large part because the disease model is
particularly amenable to scientific investigation. In contrast
to other psychiatric disorders, the primary inciting agent
(the drug) is tangible, and core clinical phenomenology
(drug self-administration) can be objectively measured in
animals or humans. Nonetheless, addictions remain the
leading cause of preventable medical morbidity and
mortality in the United States (Services, 1994; NORC,
1999) and rank among the most difficult to treat and highly
stigmatized mental disorders. Thus, addiction research
arguably holds the greatest but most unrealized promise in
utilizing a leading edge of psychiatric neuroscience to
address a tremendous public health problem.

As in all areas of translational neuroscience, addiction
research faces tremendous obstacles of biophysical com-
plexity. The brain expresses up to 10-fold more genes than
other organ systems (Yu and Rasenick, 2004) and collects,
processes, stores, and manufactures neural-encoded infor-
mation—a product that is considerably elusive to biologi-
cal investigation. In parallel to this complexity, large
volumes of data concerning the genetic, cellular, neural
circuit, developmental, behavioral–clinical, and epidemio-
logical aspects of addiction have been collected but remain
poorly integrated. Paramount to a deeper and more
comprehensive understanding of addictive disease, transla-
tional theories that bind and understand the causal
relationships between these observational domains are
needed (Volkow, 2005).

Non-biological fields such as mathematics, engineering,
physics and computer science have significant potential for
addressing the extreme complexities of addiction. These
fields routinely develop and employ models of structure
and process that integrate and organize seemingly dis-
parate data as a means to ‘see the forest through the trees.’
This paper applies one such mathematical approach to
addiction: the study of scale-free structural maps. The
realization that many complex biological and psychosocial
systems conform to a scale-free organization, in which a
few nodal elements within a structure are richly inter-

connected, while most have few connection links, has
already achieved broad attention and applicability in
biomedical science (Khanin and Wit, 2006). Here, we
explore how re-defining motivated behavior as a complex
scale-free structure provides translational scaffolding that
bridges neurobiological and behavioral levels of observa-
tion in the pathology of addiction. At the core of this
application, a novel perspective emerges on how cortical–
striatal circuits, as modulated by dopamine (DA) neuro-
transmission, organize and adapt motivated behavior via
the management and revision of sequential neural repre-
sentations. According to a scale-free organizational plan,
such information management would entail decision-
making and habit formation capacities as features of
motivational processing increasingly implicated in addic-
tive disease (Bechara, 2003; Bickel and Johnson, 2003; Yin
and Knowlton, 2006). This neuroinformatic aspect of the
scale-free application incorporates contemporary views of
addiction as a disease of motivational process (Kalivas and
Volkow, 2005) and dopamine-mediated learning (Hyman,
2005) into a broader model that links neurobiological,
developmental, behavioral, clinical and epidemiological
data in the study of addiction.

2. Scale-free networks: structure, properties and natural

examples

Complex networks defined by nodal elements and their
connections are ubiquitous in nature (Kitano, 2002; Fewell,
2003; Jasny and Ray, 2003). Molecules in a volume of gas
may be considered nodal elements making random
electrostatic contact with other molecules per unit time.
In the brain, neurons are related via axodendritic connec-
tions (Laughlin and Sejnowski, 2003), while individuals are
connected by social relationships (Fewell, 2003). On larger
scales, cities can represent nodes interconnected by high-
ways or flight routes (Jasny and Ray, 2003).
Until recently, it was often assumed that natural

complex networks are defined by random distributions of
connections (Erdos and Renyi, 1960; Bollobas, 1985;
Amaral et al., 2000). In such networks, a randomly
sampled node has the greatest probability of having a
total number of connections k equal to the mean number of
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connections per node in the network. Very few nodes have
substantially smaller or larger numbers of connections than
this mean. The connection structure of these ‘random’ or
‘exponential’ networks are depicted by a probability
distribution revealing the bell-shaped Poisson distribution
(Barabasi and Bonabeau, 2003) where the proportion of
nodes bearing significantly fewer or greater connections
than the mean connections/node in the network declines
exponentially as e�k.

As indicated in the work of Barabasi and colleagues, real
complex networks are often not best defined by a random
connection structure (Barabasi and Bonabeau, 2003).
Instead, they may be better classified as scale-free, where
most nodes have a relatively low number of connections,
but an increasingly exclusive minority have an increasingly
high degree of connectivity (Fig. 1) (Barabasi and Albert,
1999). In this architecture, the probability (frequency) of
identifying nodes having k connections follows a power law
distribution k�g, where g is usually identified as 2ogo3 in
real-world systems (Barabasi and Albert, 1999; Barabasi
and Bonabeau, 2003). In scale-free as opposed to random
networks, a small but significant number of nodes (termed
‘hubs’) will have numbers of connections far exceeding the
limited scale determined by a small range around the mean
connections/node in the network (hence the term ‘scale-
free’). These networks are also ‘free-of-scale’ in the sense
that regardless of what observational scale the network is
being viewed (i.e. whether you are looking at smaller or
larger portions, or the whole network), examination of sub-
regions will reveal self-similarity, or constancy, in the
overall hierarchical organization. That is, any reasonably
sized sub-region will have the same scale-free connection
distribution as that of the whole network (Barabasi et al.,
2001).

Different connection structures of random vs. scale-free
networks are associated with different functional proper-
ties. First, scale-free networks are more efficient in terms of
pathways of interactions between non-directly connected
nodes. In a random network, the mean number of
connections traversed in going from any one node to any
other (‘network diameter’) is much larger than for a scale-

free network with a similar number of nodal elements
(Barabasi and Bonabeau, 2003; Cohen and Havlin, 2003;
Kim et al., 2003). This property emerges from the ability of
the few highly connected hubs of the scale-free network,
which are essentially non-existent in a random network, to
act as way stations between much larger collections of
elements that are not mutually interconnected (Shargel
et al., 2003). Second, scale-free networks are more robust
to, or tolerant of, the elimination of connections associated
with the random loss of nodes (Barabasi and Bonabeau,
2003; Shargel et al., 2003). That is, if nodes (and their
associated connections) are randomly eliminated, the
overall scale-free structure tends to be self-maintaining,
and network diameter does not substantially decrease with
significant proportions of nodal losses. In contrast, random
networks are more susceptible to random nodal losses,
where network diameters are readily increased and subsets
of nodes are more susceptible to becoming completely
isolated from the rest of the network. Third, and
conversely, scale-free networks are more highly vulnerable
to non-random, targeted elimination of the fewer highly
interconnected nodes, where the loss of these hubs can
rapidly produce a catastrophic breakdown in global
network connectivity (Kim et al., 2003; Shargel et al.,
2003).
In investigations spanning the microscopic to macro-

scopic continuum and diverse scientific fields, a variety of
naturally occurring complex networks have been described
as scale-free. Within the cell, several molecular-based forms
of scale-free networks exist (Bray, 2003). Metabolic path-
ways involve networks of enzymes that are linked by
common substrates; most enzymes interact with only a few
substrates, but a vital minority interacts with a very large
number (Jeong et al., 2000; McAdams and Shapiro, 2003).
Networks of proteins and their interactions have similarly
been described as scale-free (Jeong et al., 2001; Qian et al.,
2001; Bray, 2003). The known universe of protein
structures is definable as a scale-free system where protein
families are related by common structural folds: the
number of families with increasing numbers of structural
folds diminishes with a power law (Koonin et al., 2002). On

ARTICLE IN PRESS

number of connections (k) 

Y=k-γ

Scale-Free Network

Random Network 

Mean connections/node 

fr
e
q
u
e
n
c
y
 o

f 
n
o
d
e
s

Fig. 1. Frequency distribution of nodes by number of connections/node in scale-free vs. random networks.

R.A. Chambers et al. / Neuroscience and Biobehavioral Reviews 31 (2007) 1017–1045 1019



still higher levels, functional networks of the brain may be
co-activated in a scale-free manner (Eguiluz et al., 2005).
Animal and human social networks also conform to scale-
free structures (Fewell, 2003). For instance, in dolphin
societies, most dolphins interact with only a few peers,
while a few interact with many (Lusseau, 2003). The same
has been observed for human social interaction or
communication including linkages defined by sexual
contacts (Liljeros et al., 2001; Schneeberger et al., 2004),
motion-picture acting relationships (Albert and Barabasi,
2000), scientific publication co-authorship (Bilke and
Peterson, 2001) Internet links (Albert et al., 1999) and
sequential word usage in human language (Ferrer et al.,
2001).

The applicability of scale-free models to diverse real-
world phenomena appears related to two major issues.
First, it is possible to apply the structure of nodes and their
connections to a wide variety of objects and their
relationships. Increasingly powerful methods of data
gathering and analysis facilitate investigations into the
degree to which specific systems conform to scale-free
architectures (Barabasi and Bonabeau, 2003). Second,
studies of both artificial and real-world scale-free networks
indicate a fundamental theme of their formation: they are
self-organizing in a manner consistent with processes
identified in natural evolution (Gibson and Honeycutt,
2002; Koonin et al., 2002; Aldana and Cluzel, 2003).
Therefore, complex natural systems, particularly those
composed of elements that result from biological processes,
commonly conform to scale-free architectures (Wolf et al.,
2002).

Unlike random networks, the formation of scale-free
networks requires both the addition of new nodes over time
and their preferential attachment to other more highly
connected nodes in the network (Barabasi and Albert,
1999; Jeong et al., 2003). Thus in a generic scale-free
network, the probability (P) that a newly introduced node
will form a connection with another node i in the network
is

PðkiÞ ¼
kiP

kj

,

where ki is the number of already existing connections
associated with node i, and Skj is the total number of
connections already present in the network (Barabasi and
Albert, 1999). Under these conditions, the status of the
more highly connected hubs of the network will be
maintained or accentuated with network growth analogous
to the ‘rich-get-richer’ concept (Barabasi and Bonabeau,
2003). Although variations on this general formula account
for real-world possibilities such as competition between
nodes for connections (Bianconi and Barabasi, 2001), the
core aspect of preferential attachment as most succinctly
expressed above appears to be necessary for scale-free
system formation.

Preferential attachment has two major implications as a
developmental and evolutionary process. First, it allows

objects serving as nodes in a given evolving network (e.g.
enzymes in a metabolic network of an evolving unicellular
organism) to gain an ever-increasing diversity of connec-
tions (e.g., exert enzymatic effects on an increasing number
of substrates). In this manner, greater adaptive and
organizational efficiency occurs as functionally vital net-
work objects (hubs) evolve to take on new roles (Jeong
et al., 2000, 2001; Ravasz et al., 2002). Such interpretations
of the scale-free organization of molecular constituents of
various species have been proposed to indicate the
evolutionary age of different molecular substrates within
or across species, and the degree of evolutionary related-
ness between different species (Jeong et al., 2001; Podani
et al., 2001; Koonin et al., 2002). Second, the develop-
mental organizing principals of scale-free systems endow
them with functional robustness to random degradation as
a natural pressure in evolution (Aldana and Cluzel, 2003;
Barabasi and Bonabeau, 2003). Indeed, just as many
biological and other real-world scale-free networks show
connection structures defined by a power law distribution
k�g, where g often empirically ranges between 2 and 3
(Barabasi and Albert, 1999; Jeong et al., 2000; Barabasi
and Bonabeau, 2003), simulated scale-free systems using
values of g ranging beyond these limits show loss of
network robustness to random degradation, suggesting
that evolutionary forces determining survival fitness bound
this parameter (Aldana and Cluzel, 2003 ; Cohen and
Havlin, 2003; Kim et al., 2003).

3. Scale-free maps as an organizational structure of

motivated behavior

3.1. Motivational–behavioral repertoires

Based on contemporary perspectives in behavioral
neuroscience (Berridge, 2004; Wise, 2004) we define
motivation as neural processes that determine the prior-
itization, ordering and performance of specific behaviors
required to achieve a specific goal(s). Motivation entails
multiple, non-mutually exclusive constructs. One is deci-
sion-making, in which multiple options of specific beha-
viors, their sequences, or their associated goals may be
pursued. A second is will, or intent, strategy or plan. This
component is experienced subjectively prior to or during
the performance of goal-oriented behavior, but is only
objectively confirmed upon performance of the goal-
oriented behavior. From an evolutionary perspective,
motivational structures underlying behaviors promoting
survival and reproduction are selected. From a behavioral
economic perspective (Glimcher and Rustichini, 2004),
time (e.g. lifespan of the individual) and physical capability
constrain the collection of motivations and related
behaviors to a large but finite resource collection for any
one individual—the motivational behavioral repertoire
(Bickel and Marsch, 2000, 2001).
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3.2. Development of motivational–behavioral repertoires as

scale-free maps

As suggested by Berridge, re-conceptualizing motivation
is a vital process for interpreting new neurobiological data
in terms of observable behavior (Berridge, 2004). In this
section, we synthesize an earlier iteration in this process
discussed by behaviorists in the 1960s, with modern
concepts of motivation as defined above. Here, motivation
and behavior are couched in terms of discrete units that are
inter-related in a complex but finite system comprising an
individual’s motivational–behavior repertoire.

In work describing social behavior of rats in the early
1960s, Grant and Mackintosh characterized a diverse but
finite repertoire of discrete, recurring behavioral motifs
displayed in sequences by rats during social interactions
(Grant, 1963; Grant and Mackintosh, 1963). These
behavioral repertoires have been studied as mechanisms
of socio-affective communication relating to fear, aggres-
sion, territorial bargaining, sexual attachment, and dom-

inance hierarchies (Takahashi, 1990; Sajdyk and Shekhar,
1997; Panksepp, 1998a; Insel, 2003; Sheehan et al., 2004).
In an effort to characterize a system of rat social behavior
based on hundreds of empirical observations, Grant
labeled discrete, identifiable sets of social behavior and
plotted them as nodes in a network (Grant, 1963). The
connections in this network represent the highest empirical
probabilities that one social behavior would follow another
in a temporal sequence (Fig. 2A, reprinted with permis-
sion). Although scale-free topologies would be described 35
years after Grant’s work, his data are organized in a way
that is amenable to evaluation as a scale-free system. We
have re-assessed these data as a frequency histogram of
behavioral nodes categorized by the number of connections
per node (Fig. 2B). Connections to or from behavioral
nodes were analyzed separately to account for the temporal
flow of behavior. Although the small number of nodes
(23) precludes definitive characterization (simulated and
empirically defined scale-free systems usually encom-
pass hundreds to thousands of nodes), the connectivity
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architecture of Grants’ social behavioral repertoires is
suggestive of a scale-free like organization. Most behaviors
are sequentially connected to only 1 or 2 others, and a
more limited but significant set of behavioral nodes serve as
hubs. A curve fitting approximation over the nodes with k

ranging from 1 to 5 connections/node gives a connection
probability distribution P(k) ¼ k�g where g ¼ 1.71 for
connections to nodes and g ¼ 1.88 for connections from
nodes. Both of these values approach the typical range of
2ogp3 observed in much larger, empirically verified scale-
free systems. In addition, some of the most highly
connected hubs in this system (e.g. ‘retreat’) may represent
the most vital nodes in the social behavioral repertoire
from a survival standpoint.

While not intended as a proof that complex behavioral
data conforms to a scale-free organization, this re-
examination of Grant’s data illustrates two important
points. First, it shows a concrete approach for mapping
behavioral data in terms of a complex network that may be
assessed for scale-free motifs. Second, to the extent that
Grant’s social data might be organized as a scale-free
structure, social behavior could represent a local neighbor-
hood embedded within a much larger system encompassing
the entire behavioral repertoire (including non-social
behavior) that is itself scale-free. This notion follows from
the property of self-similarity of scale-free systems in which
appropriately sized samples of sub-regions within the
greater system are similarly scale-free. These concepts lead
to the central thesis of this manuscript. Specifically, we
postulate that the very large but finite set of behaviors
encompassing the entire behavioral repertoire of the
individual can be understood as a complex map of nodes
(discrete observable behaviors) connected by links implied
by the temporal sequencing of discrete behaviors. Motiva-
tion is formalized as the connection pathways linking
discrete behavioral nodes, and the entire set of links and/or
pathways in this network encompass the individual’s
motivational repertoire. Motivational–behavioral reper-
toires are then theorized to follow scale-free organizational
motifs in which motivational pathways are distributed
between behaviors approximating a non-random power
law distribution P(k) ¼ k�g, and g may approach or lie
within the range (2,3).

Understanding behavioral repertoires as hierarchical
organizations of discrete behavioral units was of general
interest to leading experimentalists and theorists in the
1960s (Lorenz, 1965; Skinner, 1966). A central dilemma of
this work was how one might define a ‘behavioral unit’ or
develop a conventional language for a system of behavioral
units. For example, is an individual conducting a ‘recrea-
tional behavior’ as a behavioral unit, or is she ‘playing
golf’? When playing golf is she linking the unit behaviors of
‘club selection,’ ‘swinging at the ball,’ ‘walking to the ball,’
etc., or is she linking even more elemental behaviors such
as the numerous cognitive and motor steps of a single
swing at the ball? McFarland addresses this issue in work
proposing a hierarchical mapping of discrete behavioral

activities according to motivational factors. He suggests
that an experimentally viable system of discrete behavioral
units can be arrived at without the need for adherence to
universal criteria concerning functionality, or scale of
classification, as long as the system is internally consistent
and defined by mutually exclusive and discretely observable
categories of behaviors (McFarland and Sibly, 1975). Once
such a system is adopted, it may also be viewed in terms of
behavioral evolution. According to Skinner, ‘‘The entire
repertoire of an individual or species must exist prior to
ontogenic or phylogenic selection, but only in the form of
minimal units. Both phylogenic and ontological contin-
gencies ‘shape’ complex forms of behavior from relatively
undifferentiated material’’ (Skinner, 1966).
Based on these ideas, we can conceptualize the develop-

ment of motivational–behavioral repertoires as the growth
of a scale-free like system, as exemplified here around three
general behavioral domains (Fig. 3). From ontological or
phylogenic perspectives, spheres of behavior encompassing
(1) neurovegetative/homeostatic (e.g. eating), (2) social
(e.g. mating), and (3) motor/instrumental (e.g. ambulation)
are core requirements of survival in animals and are
genetically encoded. They manifest at birth as a small
set of primitive forms but are elaborated upon, grow
and diversify through development across the lifespan
(Fig. 3A). The notion that these behaviors emerge
according to a scale-free developmental principal is
consistent with contemporary theories of psychomotor
development as a self-organizing process (Sporns and
Edelman, 1993; Thelen, 1995).
In the newborn, fundamental spheres of behavior

manifest early as discrete behaviors typical of the limited
and undifferentiated, but developmentally appropriate
behavioral repertoire of the infant (Fig. 3B). These few
discrete behavioral nodes are interconnected by links
representing the sequential progression of one discrete
behavior (e.g. nursing) to another (e.g. sleep). Infantile
motivation may be conceptualized as the links or pathway
of links between nodes (e.g. crying followed by nursing
may be viewed as hunger motivation). Certain behaviors
(e.g. random limb movements, babbling) might seem
meaningless and random. Yet these behaviors represent
the buds, or initial scaffolding, of multiple and more
elaborate behaviors that emerge during the substantial
expansion of behavioral repertoires throughout childhood
(Frossberg, 1999).
Into and through childhood (Fig. 3C), as forebrain

circuits develop (Hughlings-Jackson, 1958; Gallistel, 1980),
the emergence of thousands of new skills and behaviors
creates a system of sufficient numbers of behavioral nodes
whereby hierarchical clustering can occur. Such structuring
reflects the self-organizing nature of psychomotor devel-
opment, produced by an interaction between neurobiolo-
gical and developmental events and multiple repetitions of
sensory–motor interactions with the environment that
favor the emergence of the most functional behaviors
(Sporns and Edelman, 1993; Thelen, 1995). In the
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terminology of Piaget behavior becomes increasingly
differentiated: emerging sets of behavioral nodes are often
the ontological and functional descendents of infantile
behavioral nodes (Yates, 1996). Many new behavioral
nodes may also represent the fusion of already developed

behavioral nodes that had previously occurred separately.
Hierarchical structuring within the system emerges as
certain behavioral nodes are performed more frequently
than others by virtue of being linked with a greater variety
of other functionally vital behavioral nodes. These hubs are
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Fig. 3. Conceptual schematic of the ontological development of motivational–behavioral repertoires according to a scale-free organizing principal.

Functional spheres and emerging behavioral nodes that may be classified as closely related to these functional spheres are correspondingly color coded.

Only a small number of the much larger number of nodes comprising real behavioral repertoires are depicted here for conceptual clarity. In the childhood

and adult systems, each graphically represented node may also be viewed as representing a local scale-free neighborhood of many interrelated motivational

links and behavioral nodes. Fundamental survival-dependent spheres of function (A) emerge in the form of the behavioral repertoire of the newborn (B).

Into and throughout childhood (C), the emergence of numerous new skills and behaviors are hierarchically clustered around key behavioral hubs that

subserve fundamental survival functions. In adolescence/adulthood (D), new behavioral nodes form from integrative events between behavioral nodes of

childhood origin, and motivational repertoires are re-aligned according to the exploration and mastery of adult social, sexual and occupational roles.

R.A. Chambers et al. / Neuroscience and Biobehavioral Reviews 31 (2007) 1017–1045 1023



critical elements within the behavioral repertoire because
they represent core elements in a local neighborhood of
related behaviors directly mediating survival (e.g. eating
lunch), or because they link functionally different neigh-
borhoods and/or spheres of behavior (e.g. eating lunch
with friends links neurovegetative and social spheres). As
in the newborn, the links between behavioral nodes
represent the temporal progression from one activity to
another, and motivational repertoires entail pathways of
such links. Although many behaviors and the motivational
pathways between them may not have an immediate
functional/survival consequence (e.g. play, elementary
school reading and writing), they represent the foundation
upon which the adult motivational–behavioral structure
will be built. The daily activities of the child may be
conceptualized as a traversing of the nodal network of
behaviors along motivational pathways, much of which
will include play and learning behavior within the social
and motor/instrumental spheres (Panksepp, 1998b).

Through adolescence and young adulthood, the struc-
ture of the motivational–behavioral repertoire continues to
develop according to trends set forth through childhood
(Fig. 3D). However, many of the previously discrete
behavioral nodes of childhood, such as those involved in
play and learning become reorganized and integrated in
preparation for the competent performance of adult roles
of family life, child rearing and occupation-related
behaviors. These changes correlate with a host of
neurodevelopmental events involving primary motivational
circuits, supporting cognitive and limbic areas, and the
frontal cortex in particular (Chambers et al., 2003).
A robust area of development in adolescence is in the
domain of sexuality, in which newly differentiated nodes,
or new nodes formed by the integration of earlier ones
within the neurovegetative, social or motor spheres,
become an increasingly organized cluster of motivational
pathways (Gorski, 1999).

In the adult, key psychological or behavioral motifs
relevant to contemporary theories of motivation and
addiction may be viewed from a structural perspective
(Hyman, 2005; Kalivas and Volkow, 2005). Decision-
making is the neurocompuational process that determines
which inter-nodal connections or series of connections
(motivational pathways) the individual will take in moving
across behavioral nodes. In habit formation, a series of
behavioral nodes become sequentially linked in an increas-
ingly invariant sequence (i.e. erosion of the decision-
making component of the process), such that behavioral
node A leads to node B with increasing invariance. This
process would essentially be the same as the integrative
process described above whereby new behavioral nodes are
created by the fusion of previously independent behavioral
nodes (i.e. habitual behavior as acquisition of a locked-in
sequence of behavior).

Understanding motivational–behavioral repertoires as
scale-free like systems thus provides a new concept for
understanding the functional organization and develop-

ment of behavior as a biophysical product subject to
evolutionary pressures. Structurally, discrete behaviors are
organized hierarchically whereby certain behaviors (e.g.
eating, crying, sexual behavior) operate as hubs within
local behavioral sets (functional clusters) crucial to
survival. As in scale-free systems, this organizational
structure would: (a) allow the efficient execution of
behavioral sequences or strategies to achieve survival goals
by virtue of minimizing motivational–behavioral network
diameters; and, (b) be tolerant to random degradation (e.g.
varieties of mental or physical illness that eliminate subsets
of behavioral nodes do not completely impair the survival
of the individual). Developmentally, newly introduced
behavioral nodes, whether formed de novo or by differ-
entiating or integrating events involving previously existing
nodes, would show preferential linkage attachment with
already existing behavioral nodes serving as hubs for
survival-dependent behavioral clusters. Many survival-
dependent behavioral hubs (e.g. eating, crying, sexual
behavior) would both instantiate behaviors that are the
most conserved across species while representing the most
early formed nodes in the behavioral evolution of the
species or in the development of the individual.

4. Neurobiological instantiation of scale-free

motivational–behavioral repertoires

If motivational–behavioral repertoires of individuals are
structured and develop according to a scale-free organiza-
tion, how might the design and function of the relevant
brain systems generate this organization? The proposed
behavioral level theory makes three major predictions that
can be explored in terms of available neuroscientific data.
First, nodes and connection links are the two distinct types
of elements in any scale-free system. They serve differing
but complimentary roles, are described by different
parameters, and in real-world systems are physically
instantiated by different types of observables. Given these
differences, we anticipate the existence of semi-independent
brain systems that manage information processing giving
rise to these nodal (behavioral) vs. connection (motiva-
tional) elements of the scale free-system. Second, the
execution of motivated behavior would be synonymous
to traversing a scale-free map of motivational links and
behavioral nodes in which different pathways can be
pursued. Therefore, these same neural substrates should
also be interactively dedicated to functions of decision-
making and/or sequencing. Third, given the evolutionary
and developmentally adaptive self-organizing attributes of
scale-free systems, we should be able to define an
additional neural sub-system that interacts with those
described above, that governs the behavioral and neural
systems plasticity of motivational–behavioral repertoires
according to a scale-free organizational motif.
Next we review how current neurobiological data

address these three predictions. In prefacing the following
sections, it is important to make clear that our aim is not to
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show that the physical substrates of the brain itself are
necessarily organized in some scale-free structural manner.
Rather, we aim to show how these substrates, however non
scale-free in themselves, may be built and integrated to
process and manage information that generates a scale-free
mapping of motivated behavior, enacted (or navigated by)
the organism. Thus, while it is certainly true that
independent scale-free organizations may be nested within
others, intervening levels of physical system organization
may be decidedly non-scale free, and yet serve as objects
within, or substrates that generate, larger scale-free-like
structures.

4.1. Semi-segregated circuits process nodal (behavioral) vs.

connection (motivational) information

The primary behavioral output system of the brain is
localized to its anterior half and comprises frontal cortical,
subcortical–striatal, and midbrain components (Chambers
et al., 2003). Although neural circuits external to this
primary system, but connected with it, including the
hypothalamus, lateral septum, amygdala and hippocampus
also process motivational/behavioral information (Sewards
and Sewards, 2003; Sheehan et al., 2004), this cortical–
striatal assembly is believed to be the major neural
platform that organizes, executes and adapts flexible,
goal-directed behavioral output (Haber, 2003; David et
al., 2005; Kelley et al., 2005).

The principal architectural feature of the cortical–striatal
assembly is defined by cortical–striato–thalamo–cortical
loops: serial polysynaptic projection pathways from the
frontal cortex to the striatum, through the globus pallidus,
to the thalamus and back to the cortex (Alexander et al.,
1986; Masterman and Cummings, 1997; Swanson, 2000).
Generally, these cortical–striatal circuits utilize excitatory
(glutamatergic) neurotransmission in/out of the cortex,
inhibitory (GABAergic) transmission between subcortical
stations, and are modulated by dopamine (DA) afferents
originating in the midbrain.

Accumulating evidence supports more detailed elabora-
tions on this architectural plan in two major ways. First, at
the level of the striatum, interactive ‘direct’ (Caudate-
Putamen (CA-PU)-globus pallidus interna-thalamus)
and ‘indirect’ (CA-PU-globus pallidus externa-subtha-
lamic nucleus-globus pallidus interna-thalamus) path-
ways may compete neuroinformatically as a mechanism in
support of decision-making or behavioral response selec-
tion (Graybiel et al., 2000; Rubchinsky et al., 2003).
Second, and most pertinent here, not one but many
parallel, anatomically segregated cortical–striatal loops
serve differential aspects or hierarchical levels of behavioral
control including motivational processing (Cummings,
1993; Rolls and Treves, 1998b; Kolomiets et al., 2001;
Chambers et al., 2003).

Consistent with a design reflecting the need for semi-
independent information processing streams for pre-motor
planning vs. execution of concrete motor behavior, these

parallel circuits follow a functional–anatomical plan along
an anterior-ventral to posterior-dorsal gradient (Alexander
et al., 1990; Weinberger, 1993; Masterman and Cummings,
1997; Haber and McFarland, 1999). Loops traversing at
the anterior-ventral extent of the cortical–striatal assembly,
whose glutamatergic fibers originate in the orbital, medial
and anterior cingulate regions of the prefrontal cortex
(PfC), project into the ventral striatum (Nucleus Accum-
bens (NAc)) (Heimer and Wilson, 1975). This ventral
cortical–striatal module mediates pre-motor output proces-
sing including executive decision-making functions that
incorporate emotional, homeostatic, and contextual mem-
ory information guiding the flow of thought and motiva-
tion (Weinberger, 1993; Groenewegen et al., 1999;
Chambers et al., 2003). Meanwhile, loops residing at the
posterior-dorsal extent of the cortical–striatal assembly,
including supplementary motor areas and the motor–
sensory strip of the cortex, project into the dorsal striatum
(CA-PU) and handle processing that most directly informs
concrete motor output.
Transitional zones between the ventral and dorsal

cortical–striatal modules entail mixed functional and
biological features typical of the ventral or dorsal
territories, and/or they serve associative functions between
these zones (Zahm and Brob, 1992; Joel, 2001). For
example, the ventral striatal NAc is composed of a ventral-
medial ‘shell’ region and a more dorsal-lateral ‘core.’ The
‘core’ is anatomically juxtaposed to the CA-PU (dorsal
striatum), and is associated with a mixture of ventral and
dorsal striatal-like functions, protein expression profiles
and extrinsic connectivity patterns (De Olmos and Heimer,
1999; Kelley, 2004). In the CA-PU, islands of neurons
termed ‘striosomes,’ which share some functional, histo-
chemical and connectivity characteristics with neurons in
the NAc shell, are suspended in the ‘matrix’ of the dorsal
striatum, seemingly separated from related ventral striatal
territories (Haber and McFarland, 1999; Joel and Weiner,
2000; Grande et al., 2003).
At the level of the midbrain, the semi-segregated nature

of the ventral vs. dorsal cortical–striatal modules becomes
even more apparent. The ventral tegmental area (VTA)
contains DA cell bodies projecting predominantly into the
NAc and associated PfC (Kalivas, 1993; Haber and
McFarland, 1999). Conversely, the substantia nigra (SN)
projects predominantly into the CA-PU (Kalivas, 1993;
Haber and McFarland, 1999). Projections into these
midbrain areas are similarly segregated: while VTA
receives reciprocating input from both NAc (GABAergic
projections) and PfC (glutamatergic projections), the SN
receives inputs predominantly from subcortical regions
(Sesack et al., 1989; Kalivas, 1993; Celada et al., 1999).
In sum, available evidence suggests that while the

behavioral output system of the brain follows one over-
riding architectural plan, there are semi-segregated infor-
mation processing streams within this design. Two closely
related, but semi-segregated brain modules generate and
process information relevant to the two categories of
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elements in the proposed scale-free structure of motivated-
behavior: (1) a dorsal cortical–striatal module serving as a
neural representational processing stream for generating
behavioral repertoires as the nodes; and, (2) a ventral
cortical–striatal module that processes motivational repre-
sentations as the connections. In the following sections we
explore how the functional anatomy and neuroinformatics
of the dorsal (see Section 4.2) and ventral (Section 4.3)
cortical–striatal modules might allow trajectories across a
scale-free map of motivated behavior via their sequencing
and decision making functions, and how the structure of
the scale-free map might change in habit learning.

4.2. The dorsal cortical–striatal module: neuroinformatics of

behavioral nodes

The function of the dorsal cortical–striatal module is
clinically evident from a survey of neurological diseases
affecting its extrapyramidal (dorsal striatum) vs. its
pyramidal (projections from motor cortex to spinal motor
neurons) components. Lesions of the motor cortex can
completely abolish movement in the contralateral side of
the body, while pathology in spinal motor neuron tracts
weaken or destroy motor activity in specific muscle groups.
However, strokes and other pathologies of the striatum
such as Parkinson and Huntington disease typically impair
the flow and sequencing of behavior (Pryse-Phillips and
Murray, 1985). These observations suggest the striatum is
specialized for maintaining the sequential flow of beha-
vioral output, and for storing reproducible patterns of
behavioral programs. These aspects implicate the dorsal
striatum as a key substrate that allows individuals to
perform sets of reproducible behaviors instantiating nodes
in a scale-free-like system.

4.2.1. The dorsal striatum stably sequences motor

representations comprising behavioral nodes

A more detailed understanding of the specialized
sequencing role of the striatum has been elaborated upon
by functional and anatomical comparisons with the cortex.
The striatum appears to be optimally designed for the
reliable generation of serial neural representations required
for the performance of stable-habitual motor programs
(James, 1890; Jog et al., 1999). This functional allocation to
the dorsal striatum would largely free other brain regions
(e.g. frontal cortex) from having to participate in stable
habitual behavioral functions that need not be performed
with conscious awareness. By autonomously executing
well-learned motor programs, the dorsal striatum provides
the capacity for daydreaming about playing golf while
actually driving home from work.

Comparisons between the cortex and striatum on the
neural network level, suggest how the neuroinformatics of
this sequencing role may take place. The frontal cortex and
its sub-divisions, including motor areas, is fundamentally
organized as a sheet of excitatory glutamatergic neurons
(intercalated with local inhibitory GABAergic neurons),

projecting to each other both within and across functional
subdivisions (Sporns et al., 2002). This excitatory and
highly associative architecture of the frontal cortex is
thought to allow for the generation of high-order,
polymodal forms of cognition such as imagination and
daydreaming. In contrast, the CA-PU (and its downstream
target, the globus pallidus) is an almost exclusively
inhibitory network ensemble, whose principal projection
neurons (GABAergic medium spiny neurons) comprise the
vast majority of the neuronal population. Principal
projection neurons of the dorsal striatum are collaterally
interconnected, either directly with other medium spiny
neurons or via acetylcholine-bearing striatal inter-neurons
(Plenz, 2003), and send inhibitory afferents to downstream
striatal stations (e.g. globus pallidus) (Groves et al., 1995).
Moreover, while the net firing rate of any one CA-PU
medium spiny neuron is determined from a combination of
excitatory glutamatergic afferent activity from the cortex
and thalamus, and inhibitory input from other striatal
regions, the summated inhibitory input tone and low basal
firing rates of these neurons create conditions where most
neurons fire at low rates and only a minority fire phasically
at any one moment (Groves et al., 1995). As suggested by
Rolles and Treves, these inhibitory design attributes of the
striatum may have specifically evolved to allow for
competitive emergence of neural representations coding
for differential movements in a behavioral sequence and/or
provide a relatively stable network environment for the
sequential generation of reproducible firing pattern se-
quences (Rolls and Treves, 1998b).
On the neuroinformatic level, neurons in somatotopic

regions of the CA-PU corresponding to specific body parts
in the homunculus of the motor cortex increase their firing
in phase with movements of those body parts (Crutcher
and Alexander, 1990; Kimura, 1990; Flaherty and Gray-
biel, 1994; Carelli et al., 1997). Corresponding to the
specialized motor sequencing role of the striatum, func-
tionally specific neuronal ensembles within the striatum are
proposed to undergo sequential transitions between
distinct firing patterns; e.g., A-B-C-D-y (Pennartz
et al., 1994; O’Donnell et al., 1999; Gilles and Arbuthnott,
2000). Each of these firing patterns (A, B, Cy) would be
defined by the different firing rates across an array of
neurons of an ensemble, corresponding to each sequential
step of the motor sequence. For the appropriate and
autonomous execution of reproducible motor sequences,
previous firing patterns in a striatal ensemble should
influence subsequent firing patterns occurring within the
same ensemble, such that extrinsic projections to the dorsal
striatum can remain relatively uninvolved (Berns and
Sejnowski, 1998). For example, one may have a general
routine in the morning of shutting off the alarm clock,
getting out of bed, brushing teeth, disrobing, showering,
dressing, eating breakfast, going to work (striatal network
firing patterns progress through A-B-C-D-E-F-
G-Hy). However, it is not appropriate to drive to
work immediately after disrobing (firing pattern D goes
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immediately to H), even if one is thinking about going to
work at that moment. While illustrating the adaptive
importance of why habitual behaviors should be out-
sourced to the dorsal striatum semi-independently from
extrinsic processing, this example also depicts a neurocom-
putational capacity for autonomously generating reprodu-
cible representational sequences that may be readily
supported by striatal neuroanatomy (Wickens and Ar-
buthnott, 1993; Berns and Sejnowski, 1998; Rolls and
Treves, 1998a).

Features of striatal networks share similarities with
artificial neural networks characterized by inhibitory
projections and recurrent inhibitory collateral connections
where large numbers of differential firing patterns can be
relatively sparsely represented and reproducibly emergent
(Wickens and Arbuthnott, 1993; Arbib, 1998; Berns and
Sejnowski, 1998). In these systems, the imposition of an
input stimulus produces an initial firing pattern, A, that
temporally and autonomously evolves to B, C, and D,
without the need for further extrinsic input and as
determined by the state of the connectivity structure
contained within the network. Eventually, the network
settles into a final stable firing pattern X, but not before it
transitions between A-B-C-D-y leading to X.
Once reaching the stable firing pattern X, the system
requires a new bout of afferent input stimulation before
cycling through additional sets of intermediate firing-
pattern representations. Notably, different initial firing
patterns other than A may initiate entirely different
cascades of subsequent firing patterns consistent with
alternative behavioral sequencing. Regardless, such auton-
omously generated firing pattern states would be transi-
ently and sequentially transmitted in some form to distal
striatal–thalamo–cortical stations finally encoding concrete
motor output via the pyramidal system.

The results of in vivo, multi-neuronal striatal recordings
from rats learning habitual motor tasks are generally
consistent with this model (Graybiel, 1998; Jog et al.,
1999), in which reproducible temporal sequences of firing
patterns are engrained with behavioral practice (Barnes
et al., 2005). During learning of a specific motor sequence,
neurons within somatotopically specific motor regions of
the CA-PU show motor- or task-event-specific increases in
firing above their usual relatively sparse firing rates. In the
early stages of learning, these increases in firing are
frequently observed at crucial intermediate steps of the
motor sequence, possibly corresponding to greater extra-
dorsal striatal involvement (extrinsic stimulation of dorsal
striatal neurons), in attempting to configure the initiation
or ordering of a particularly desirable representational
sequence. As the desirable motor sequence becomes well-
learned, fewer striatal neurons show intermediate motor-
phase-specific increases in firing. This feature may corre-
spond to the establishment of a more reliable and relatively
sparsely encoded representational sequence that evolves
autonomously without the need for extra-striatal input at
critical junctures. Observed increases in the proportion of

striatal neurons showing increased firing rates in phase at
the start of the well-learned motor task may represent
extra-striatal stimulation required to initiate the particular
habitual striatal representational sequence, optimal for
efficient completion of the whole task.
In sum, various lines of brain research suggest the

striatal component of the dorsal cortical–striatal assembly
generates and manages neural firing representations that
encode for observable behavioral programs and their stable
sequential organization, instantiating behavioral nodes in a
scale-free map. Next we explore how the striatal compo-
nent of the ventral cortical–striatal assembly contributes to
the motivational–behavioral map by generating motiva-
tional links connecting behavioral nodes. In particular, we
find that the ventral cortical–striatal module, in coopera-
tion with midbrain sources of DA, would serve as a key
source of extrinsic input to the dorsal cortical–striatal
module in choosing, configuring, and altering behavioral
representational sequences generated by the dorsal
striatum.

4.3. The ventral cortical–striatal module: neuroinformatics

of motivational links

Given the anatomical-design motifs shared between the
dorsal and ventral cortical–striatal modules, the ventral
module would be expected to entail some neuroinformatic
capacity for reproducible firing pattern generation and
sequencing. However, structural–anatomical features un-
ique to the ventral module suggest its sequencing function
is not specifically designed for performing stable habitual
motor programming. As previously mentioned, the con-
nectivity of the ventral striatum contrasts from the dorsal
striatum in several major ways. First, the NAc receives
glutamatergic input from the limbic PfC rather than more
dorsal frontal cortical areas. Second, the NAc receives DA
afferent fibers predominantly from the VTA, rather than
from the SN. Third, and most relevant here, the ventral
cortical–striatal module is broadly and directly interactive
with limbic circuits across all of its cortical, striatal and
midbrain levels.
Unlike the motor strip or the CA-PU, both the PfC and

NAc receive significant glutamatergic inputs from the
basolateral nucleus of the amygdala (BLA) and the ventral
hippocampal formation (Kelley and Domesick, 1982;
Groenewegen et al., 1987, 1999; Baxter and Murray,
2002). Unlike the dorsal-striatal associated SN, the VTA
sends DA afferents to the limbic PfC, BLA and ventral
hippocampus. Within the NAc itself, medium spiny
neurons receive VTA-DA afferents in functionally relevant
proximity to reception zones of glutamtergic afferents from
the PfC, BLA and ventral hippocampus (O’Donnell et al.,
1999). Similarly, the PfC receives convergent glutamatergic
projections from the BLA and ventral hippocampus in
proximity to VTA-DA afferents, while the ventral hippo-
campus and BLA are themselves reciprocally intercon-
nected via glutamatergic projections (Mulder et al., 1998;

ARTICLE IN PRESS
R.A. Chambers et al. / Neuroscience and Biobehavioral Reviews 31 (2007) 1017–1045 1027



Gurden et al., 1999; Pitkanen et al., 2000; Ishikawa and
Nakamura, 2003).

4.3.1. The ventral striatum flexibly sequences neural

representations of motivations as links connecting

behavioral nodes

Given substantial data defining the emotional and
cognitive functions of the amygdala, hippocampus and
PfC, their inputs to the NAc implicate the NAc as a key
brain substrate where emotional and cognitive information
processing directs behavioral output (Mogenson et al.,
1980). Targeted brain stimulation and neuronal recording
studies have examined how glutamatergic input from
distributed prefrontal cortical–temporal limbic regions
and VTA-DA input functionally integrate to control
NAc firing patterns (Yang and Mogenson, 1984; Yang
and Mogensen, 1985; O’Donnell and Grace, 1994; Jay
et al., 1995; O’Donnell and Grace, 1995; Finch, 1996;
Mulder et al., 1997). Together, these studies indicate that
an individual medium spiny neuron of the NAc will fire at
low or high frequency as determined by an integrative
function of: (a) local inhibitory GABAergic input from
neighboring NAc neurons; (b) afferent glutamatergic
excitatory control from the PfC, amygdala and ventral
hippocampus; and (c) DA influence from the VTA. Firing
patterns across ensembles of NAc neurons, as generated by
the integration of signal patterns from PfC executive,
amygdalar affective, and hippocampal contextual memory
centers, may thus represent the computational building
blocks of motivational states (Pennartz et al., 1994;
O’Donnell et al., 1999).

While entailing capacity for firing pattern sequence
generation, the integration of distributed limbic inputs
within the NAc provides a computational platform for the
more flexible capacity of decision-making guiding motiva-
tional control (McFarland and Sibly, 1975; Christakou
et al., 2004; Spinella, 2004). In the NAc, sequential
ensemble firing patterns 1-2-3-, etc. would encode
motivational information leading to behavioral destina-
tions corresponding to reward acquisition, on a scale-free
map of motivated behavior (Fig. 4). Consistent with this
framework, instrumental learning produced by differential
types of motivational rewards (i.e. food vs. drug) corre-
sponds to the emergence of differential and potentially
mutually exclusive firing pattern arrays across medium
spiny neurons of the NAc (Deadwyler et al., 2004). After
extensive self-administration of an addictive drug, in which
drug-seeking is installed as a major motivation, NAc firing
patterns associated with drug intake become more robustly
expressed (Hollander and Carelli, 2005). In this way,
motivational firing pattern representations emerging se-
quentially in the ventral cortical–striatal module provide
alternative pathways of progression (links) between con-
crete behavioral programs (nodes), which are in turn
composed of habitual motor sequences as encoded by the
dorsal cortical–striatal module. In many cases (Fig. 4)
discrete behavioral steps, directly encoded by the dorsal

striatal–cortical module can be shared between larger
behavioral programs (generated by larger strings of neural
representational sequences within the dorsal module) via
the choreographing-like function of the ventral cortical–
striatal module in configureing sequence changes in the
dorsal module. Interestingly, this understanding of the
ventral dorsal-striatal module casts a new perspective on
the nature of motivation: rather than directly being about
receiving gratification from reward-goals, motivation
serves to orient and sequence behavior programs that
allow the greatest probability of achieving reward-goals. In
this way, behavioral sequences themselves become the most
direct ‘goals’ of the representational sequences of the
ventral cortical–striatal module, and appropriately config-
ured strings of behavioral sequences best secure behavioral
rewards.

4.4. Interfacing ventral and dorsal cortical–striatal modules:

links configure nodes as decision-making leads to habit

Traversing a scale-free motivational–behavior map as
explored here requires that neural representations in the
ventral cortical–striatal module co-configure with those in
the dorsal module. That is to say, emerging sequences of
firing patterns in the ventral module would play a major
role in activating, initiating or guiding the flow of firing
pattern sequences in the dorsal module. To illustrate the
concept of co-configuration, Fig. 4 shows a local neighbor-
hood of a motivational–behavioral repertoire where
discrete behavioral nodes (denoted alphabetically:
A,B,yI) are interconnected via motivational links (de-
noted numerically: 1,2y, 14). For different non-habitual
behavioral sequences ((i) vs. (ii)) that might include some
action steps in common (behavioral node C), the ventral
and dorsal cortical–striatal modules are functionally
engaged such that a given sequential firing pattern code
in the ventral system assists with initiating or guiding the
more stable firing pattern sequences in the dorsal system.
In pathway (i), the individual performs observable
behaviors (yA-C-E-Fy), which are correlated with
a sequential series of firing patterns within the dorsal
cortical–striatal module. In configuring this sequence, the
ventral module produces a sequential series of neural
ensemble firing patterns (y-2-6-12-y). In per-
forming an alternative behavioral sequence (ii) (y-D-
C-G-y), the ventral module produces a different
neural representational sequence (y-3-8-y). The
non-habitual nature of these behavioral sequences is shown
by the presence of multiple decision points (e.g. different
motivational link options) associated with each behavioral
node. At any one behavioral node, only a small subset of
the entire repertoire of motivational links (ventral striatal
firing patterns) become potentially available for full
representation, upon which computational processes with-
in the ventral cortical–striatal module (i.e. the decision-
making process) select a specific ventral striatal firing
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pattern that will lead to or configure a specific behavioral
activity (dorsal striatal firing pattern).

In the formation of habitual behaviors (Fig. 5), as a
sequence of behaviors (-A-C-F-) is repetitively
performed, dorsal cortical–striatal modular representa-
tional sequences are generated in an increasing invariant
manner such that behavior A will lead to F via C with

increasing probability (Barnes et al., 2005). In this case,
motivational sequences represented in the ventral system
(-2-7-) become increasingly dominant while the other
codes for motivational links associated with behavioral
node C (3, 5, 6, 8, 9, 10) are formed more rarely to the point
of extinction. Upon full acquisition of the habit, behavioral
nodes A, C, F have collapsed into one behavioral node (as
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in the fusion process of motivational–behavioral repertoire
development described in Section 3.2), and the participa-
tion of the ventral cortical–striatal module representations
(2, 7) in configuring the A, C, F sequence of the dorsal
module is no longer required.

Mounting neurobiolgical data on the function and
anatomy of the cortical–striatal assembly are consistent
with this relationship between the ventral and dorsal
modules (Letchworth et al., 2001; Gerdeman et al., 2003;
Everitt and Robbins, 2005; Yin and Knowlton, 2006).
While the acquisition or performance of flexible instru-
mental goal-directed actions (non-habitual behavior) and
decision-making is most closely associated with function-
ality of the NAc, associated PfC and temporal limbic
regions (Balleine and Killcross, 1994; Balleine and Dick-
inson, 1998; Corbit et al., 2001), the control of more
invariant stimulus–response behaviors (habitual behavior)
is most closely associated with the CA-PU and associated
cortex (Fernandez-Ruiz et al., 2001; Yin et al., 2004; Yin
and Knowlton, 2006). Meanwhile, the re-configuration,
interruption, inhibition, or shifting of well-learned habitual
motor program representations in the dorsal cortico–stria-
tal module may require the re-intervention of the ventral
cortical–striatal module (Graybiel, 1998; Matsubara et al.,
2004). Consistent with this idea, recent work has examined
simultaneous neuronal recording in dorsal striatum and
hippocampus in rats learning alternative spatial-behavioral
tasks (Johnson and Redish, 2005; Johnson et al., 2005).
While the evolution of striatal neuronal firing patterns
appears to be more closely linked with longer-term
configuration and/or stabilization of specific firing pattern
sequences during learning (corresponding to habit forma-
tion), hippocampal neurons appear to be more variably
active allowing greater behavioral flexibility during early

stages of learning, in which decision-making processes
predominate. This study provides additional evidence
contrasting the neuroinformatic roles of the ventral vs.
dorsal cortical–striatal modules since the hippocampus
directly and robustly projects only to the ventral module,
both at the levels of the mPfC and NAc, while receiving
DA afferents only from the VTA. As will be discussed in
Section 4.5.2, habit formation likely involves DA mediated
neuroplastic processes that alter the representational
repertoires of both the ventral and dorsal cortical–striatal
modules, and the ways in which they are functionally co-
configured (Everitt and Robbins, 2005).
Anatomical pathways allowing co-configuration likely

involves multiple connectivity routes in the brain. Given
the contiguous structure of the frontal cortex and striatum
as a whole, it is possible that information contained within
one functional corticostriatal loop influences adjacent
loops at the level of the cortex, striatum or other
subcortical stations (Groves et al., 1995; Joel, 2001; Yin
and Knowlton, 2006). For example, striatal transition
zones anatomically positioned between the ventral and
dorsal territories receive converging cortical projections
from both prefrontal cortical areas and more caudal-dorsal
motor areas (Haber et al., 2006). Also, thalamic afferents
back to the cortex are integrated into cortical layers in
ways indicative not only of the thalamus’ role in serving as
the final relay of cortical–striatal–thalamo–cortical loops,
but also suggestive of its regulation of intra-cortical
information flow, possibly between pre-frontal and dorsal
motor regions (McFarland and Haber, 2002). Evidence
supporting the maintenance of functional and anatomical
segregation of coherent information streams across corti-
cal–striatal loops is not totally consistent with this
possibility as a dominant mechanism, nor would it account
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interactions.
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for the directionality or hierarchical control of motivatio-
nal–behavioral information processing along a ventral to
dorsal gradient (Haber, 2003). On the other hand, the
existence of bi-directional communication between parallel
cortical–striatal loop stations in some regions, and only
unidirectional projections in others, suggests a neural
circuit basis for the hierarchical configuring influence of
the ventral cortical–striatal module over the dorsal (Haber
et al., 2000; Haber, 2003). Using injections of retrograde
and anterograde axonal tract tracers into the striatum and
midbrain, information processing streams through corti-
costriatal loops appear to advance in a ventral to dorsal
gradient when the connectivity patterns between the NAc
and CA-PU and the DA cell populations of the VTA and
SN are all taken into consideration (Haber et al., 2000).
Although the SN is the major source of DA for the dorsal
striatum, striatal inputs to the SN arise predominantly
from the ventral striatum. Given the central role of DA in
mediating behavioral flow and long-term motivational
changes (see the next section), evidence for ‘spiraling’
cortical–striatal–mesolimbic pathways are suggestive of the
capacity of the ventral cortical–striatal module to exert
configuring influence over motor representations in the
dorsal module. These findings suggest a neurobiological
basis for motivational links connecting behavioral nodes as
a structural concept of motivational–behavioral reper-
toires.

4.5. Dopamine dynamics facilitate navigation and alteration

of the scale-free map of the motivational-repertoire

The execution of motivated behavior is highly sensitive
to environmental change, particularly with respect to
survival-oriented behavior. Such flexibility is intrinsic even
to developmentally static scale-free systems (Bar-Yam and
Epstein, 2004), and may confer significant evolutionary
advantage (Willeboordse, 2006). When vast numbers of
possible motivational links and behavioral nodes are
interconnected, complex adaptive behavior is not reflexive
but involves many decision points that dictate different
behavioral strategies or motivational pathways, depending
on environmental conditions. However, environmental
changes could be so drastic that the current motivatio-
nal–behavioral repertoire lacks the necessary composition
of behavioral nodes or motivational connections to
adaptively cope. Under such circumstances, it is advanta-
geous for the structure of motivational–behavioral reper-
toires to remain plastic throughout adult life, much as it
has undergone developmental change phylogenically and
ontologically. We posit that not just any random structural
revision will result from this plasticity. Because of the
optimal structural and functional properties of the scale-
free design for conveying survival fitness, these plastic
events will render a new structure that is altered from the
last, but nonetheless remains scale-free.

In this section, we discuss how neurobiological and
computational investigations support a role for DA in

creating and maintaining a scale-free structure of motiva-
tional–behavioral repertoires. We consider DA first as a
transmitter system with immediate consequences, and
second, as facilitating long-term (neuroplastic) changes in
the cortical–striatal assembly. Both categories of DA
function, one facilitating action and the other facilitating
action-memory, are rooted in the modulatory effects of DA
on information processing in glutamatergic/GABAergic
cortical–striatal pathways. While both the acute and long-
term aspects of DA function are important in cortical–
striatal functioning, the long-term, neuroplastic effects of
DA are hypothesized to be particularly important in
organizing scale-free structures of motivational–behavioral
repertoires in health and in addiction.

4.5.1. Acute role of dopamine: facilitating trajectories

across the motivational–behavioral repertoire

The immediate role of DA in subcortical brain regions is
suggested by Parkinson disease and the action of dopamine
blocking drugs. Insufficient DA signaling in the dorsal
striatum produces characteristic loss of the flow of motor
output associated with bradykinesia, rigidity and tremor.
These states suggest an immediate role of DA release in
‘gating’ motor program representations within the striatum
(Wan and Swerdlow, 1996; Kotter and Wickens, 1998;
Murer et al., 2002; O’Donnell, 2003). Although no
consistent definition for such gating has been uniformly
adopted, it implies that DA outflow is important in: (a)
allowing striatal firing patterns to be coherently and
unambiguously represented so that they may be ‘read’ by
downstream motor structures for concrete behavioral
implementation; and/or (b) facilitating the sequential
progression of coherent firing pattern representations in
the striatum, corresponding to the performance of a
complete motor activity.
Evidence in support of these possibilities arises from

anatomical and physiological studies of the striatum in
animal models. As described in Section 4.2, a major
contribution to the net firing rate of a striatal medium
spiny neuron is determined by the combination of
excitatory glutamatergic afferent activity from the cortex
and thalamus and local inhibitory input from other striatal
regions. However, superimposed on these conditions,
phasic DA release to a striatal neuron can be either
inhibitory or excitatory, depending on the combination of
concurrent excitatory/inhibitory tone to that particular
neuron (West et al., 2003; David et al., 2005). For striatal
neurons receiving a certain intensity of summated excita-
tory input, DA promotes entry of that neuron into a
physiological ‘up’ state (depolarized), during which phasic
firing of that striatal neuron may occur (Nicola et al.,
2000). For striatal neurons more weakly excited by cortical
afferents, the same DA efflux would maintain that neuron
in the more hyperpolarized ‘down’ state in which striatal
neuron action potential generation cannot occur (O’Don-
nell, 2003). These data suggest that by modulating the
firing rates of many individual neurons in an ensemble to
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extremes (of not firing vs. firing rapidly), DA sharpens the
signal to noise ratio of a given representation across the
striatal ensemble (O’Donnell, 2003). Creation of such high-
contrast, yet sparsely represented firing patterns in the
striatum may be critical for computational processing of
motor representations in downstream basal ganglia struc-
tures. For instance, in animal models of Parkinson disease
involving chemical destruction of DA projections to the
striatum, medium spiny neurons show abnormal firing
responses to glutamatergic input (Calabrisi et al., 1993) and
their downstream pallidal/subthalamic targets show ab-
normally high firing frequencies or oscillatory bursting
activity (Murer et al., 1997; Tseng et al., 2001).

The presence of high-contrast firing patterns in the
striatum, as facilitated by DA input to medium spiny
neurons, may also be required to maintain the autonomous
progression of coherent firing patterns (e.g. A-B-C-
D-) corresponding to sequential components of a motor
program (see Section 4.2). For instance, without the DA-
mediated effect of enhancing the impact of excitatory input
to some striatal neurons but not others, ambiguous and
perhaps noisy firing patterns may emerge across the striatal
ensemble (e.g. Acorrupted). Such corrupted representations
may not easily evolve autonomously into the next desired
coherent firing pattern (e.g. B) or any other patterns
interpretable by the brain. Notably, for extremely well-
learned motor programs, the autonomous evolution of the
corresponding representational sequences may show rela-
tively high tolerance to such degradation and/or blocking,
especially since the performance of these ‘habitual’
sequences presumably requires less ongoing cortical/
ventral cortical–striatal modular input requiring DA-
mediated transformation. Thus, with disease progression,
Parkinson disease patients are known to have increasing
difficulty in initiating or shifting between motor routines,
particularly when they are substantially different or non-
habitual (Fama and Sullivan, 2002). Moreover, increased
cortical involvement in configuring and facilitating striatal
representational sequences required for motor program-
ming may serve as a short-term compensatory mechanism
for the progressive loss of DA influx (Sabatini et al., 2000;
Bezard et al., 2003).

Analogous to the situation in the dorsal striatum where
SN-DA release gates concrete motor behavior, the
immediate role of VTA-DA release in the ventral striatum
is viewed as gating of motivation (O’Donnell et al., 1999;
Salamone et al., 2003; West et al., 2003). Generally, VTA-
DA neuronal firing, and/or increases in NAc DA levels,
occur in association with four categories of immediate
stimuli: (1) natural rewards (including food, sex, power, or
survival-related resources) (Spanagel and Weiss, 1999;
Kelley, 2004); (2) novelty or unexpected events (Ljungberg
et al., 1992; Bardo et al., 1996; Panksepp, 1998c; Volkow
and Li, 2004; Lisman and Grace, 2005); (3) stressful or
aversive stimuli (Piazza and Le Moal, 1996; Finlay and
Zigmond, 1997); and (4) intake of addictive drugs
(including nicotine, alcohol, cocaine, amphetamine, opi-

ates, cannabinoids, etc) (Wise, 1990; Koob, 1992; Self and
Nestler, 1998; Wise, 1998; Gerdeman et al., 2003; Rodd
et al., 2004; Volkow and Li, 2004). These observations
most clearly associate ventral striatal DA release in the
stimulus-induced gating of motivation, rather than speci-
fically with pleasurable affective states, as was once widely
believed (Robinson and Berridge, 1993; Di Chiara, 2002;
Berridge, 2004; Volkow and Li, 2004; Wise, 2004). For
instance, natural rewards stimulate motivational program-
ming necessary for sustaining life and reproduction. In the
case of novelty: curiosity, or the motivation to explore the
unknown or learn new skills, should represent motivational
programming of high importance. Novelty-related beha-
viors can lead to the identification of new opportunities for
natural rewards or new methods for acquiring them. DA
signaling in response to unexpected, stressful or aversive
stimuli, although often occurring during un-pleasurable
affective states, may gate motivational programs and
behavioral action required to evade threats to survival.
The action of addictive drugs in increasing DA efflux in

the ventral striatum is distinct from that of natural
motivational stimuli in two major respects. First, the DA
stimulating properties of abused drugs use are generally
not associable with survival-oriented behavior, in keeping
with views of drug addiction as a pathological ursurpation
of natural, adaptive motivational mechanisms (Orford,
2001; Newlin, 2002; Robinson and Berridge, 2003).
Second, the abilities of drugs to stimulate DA release are
often substantially greater than those of natural stimuli,
although initial drug use is generally not as motivationally
powerful as many natural motivational stimuli (Volkow
and Li, 2004). Acquisition of drug addiction in humans, or
the progression of behavioral changes in animal models of
addiction, typically requires multiple drug doses over time.
Thus, the dopaminergic properties of addictive drugs
illustrate a functional feature of DA release in the ventral
striatum not readily apparent from studies that examine its
immediate role. DA release not only serves an immediate
functional role in gating pre-motor programs (or motor
programs in the dorsal striatum), but it also sculpts the
future motivational agenda of the individual as a long-term
neuroplastic agent.

4.5.2. Long-term role of dopamine: sculpting the

motivational–behavioral repertoire according to a scale-free

plan

The role of DA in neuroplasticity, learning and memory
has been extensively described (Kelley, 1999; Berke and
Hyman, 2000; Hyman and Malenka, 2001; Nestler, 2001;
Waelti et al., 2001; Jay, 2003; Robinson and Berridge,
2003). As reviewed in these works and discussed briefly
here, an emerging picture suggests that brain plasticity
allowing for alterations in motivation and behavior are not
necessarily limited to the DA system per se, but actually
occur as far more distributed changes across the whole
cortical–striatal assembly, as facilitated by ongoing DA
transmission.
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Briefly, long-term potentiation (LTP), long-term depres-
sion (LTD), or their variants are have been extensively
studied as key cellular processes allowing for changes in
synaptic strength and thus changes in network learning and
memory (Wang et al., 1997; Munakata and Pfaffy, 2004).
While most of the available evidence focuses on LTP/LTD
occurring at glutamatergic synapses, it is thought that on a
neural network level, if not on the level of individual
synapses, alterations in GABAergic transmission assume
an equally vital role as those in excitatory transmission in
the overall changes in plasticity observed in real neural
networks (Gaiarsa et al., 2002).

Cortico–striato–thalamo–cortical loops are composed
predominantly of excitatory/inhibitory transmission
streams (Section 4.1) and accumulating data depicts DA
as a key neuroplastic agent within this anatomy. It is within
the cortical–striatal assembly, and at the level of the
striatum in particular, where glutamatergic and GABAer-
gic systems interface most richly in combination with DA
afferents from the midbrain. DA influences LTP, LTD, or
their variants involving excitatory synapses in the frontal
cortex, striatum, and midbrain (Mulder et al., 1997;
Gurden et al., 1999; Thomas et al., 2000). These events
may occur intracellularly via a number of interactions
between protein cascades responsive to DA receptor
occupancy and those that mediate LTP and other synaptic
neuroadaptations in response to glutamatergic activity
(Horger et al., 1999; Berke and Hyman, 2000; Centonze
et al., 2001; Hyman and Malenka, 2001). They may also
involve DA-mediated regulation of presynaptic glutama-
tergic release or post-synaptic sensitivity to glutamate
(Snyder et al., 1998; Chase and Oh, 2000; Bamford et al.,
2004). Investigations on the capacity of repeated doses of
addictive (or other DA-releasing drugs) to exert chronic
changes in neural systems in the striatum and/or the VTA
have identified alterations in neurotransmitter efflux,
neuronal protein/receptor expression, intracellular signal-
ing, neural firing properties and neuronal dendritic
morphology (Self and Nestler, 1995; Nicola et al., 1996;
Nestler et al., 2001; Robinson et al., 2001; Gerdeman et al.,
2003; Kalivas et al., 2003). At the level of the NAc,
differential temporal patterns of DA influx not only impact
the relative contributions of prefrontal cortical vs. limbic
(hippocampal) input to the NAc (Goto and Grace, 2005a),
but they also modulate opposing forms of neuroplastic
change at prefrontal cortical vs. hippocampal glutamater-
gic synapses onto NAc neurons (Goto and Grace, 2005b).
Together, these findings corroborate growing evidence that
long-term behavioral changes associated with chronic
drug-induced DA discharge requires the participation of,
and neuroadaptative changes at glutamatergic synapses
within the cortical–striatal assembly (Vanderschuren and
Kalivas, 2000; Everitt and Wolf, 2002).

Because DA serves as an agent of neural network
connection change primarily involving excitatory/inhibi-
tory synapses within cortical–striatal modules, it would be
expected to influence, but not itself instantiate alterations

in behavioral nodes or motivational links in a scale-free
system of motivated behavior. Instead, DA appears to
operate as a supervisory guidance signal for the self-
organizing aspects of distributed neuroplastic processes
and behavioral programming. Such centralized control of
distributed plasticity may confer protection against failure
under certain unexpected environmental conditions, while
allowing cooperative changes to take place across entire
neuronal ensembles or networks (Seeley, 2002). Thus, while
acute DA efflux may facilitate the temporal evolution, or
motoric implementation of firing patterns generated by a
striatal ensemble (e.g. A-B-X-C-Y-D-) during
the immediate performance of a motor program, patterns
of variable DA efflux in combination with changes in
glutamatergic input to the striatum over repeated execu-
tions of the motor program would cause the entire
sequence to evolve over trials (e.g. A-B-X-C-Y-
D- at trial 10 becomes A-B-C-J-D- at trial 100)
(Barnes et al., 2005). In this manner, DA acts as a sculptor
of motivational and behavioral repertoires associated with
reward-related learning, habit formation (Section 4.4), or
the addictive process (Everitt and Robbins, 2005; Goto and
Grace, 2005b).
Research combining computational and neurobehavior-

al approaches provides a framework for understanding
how DA-related neuroplasticity within the cortical–striatal
assembly may guide the organization of motivated
behavior so that it entails the evolutionary fitness of
scale-free systems. A branch of computational neu-
roscience developing over the last two decades examines
the implementation of reinforcement learning in adaptive
artificial neural networks. Although initially designed for
solving control and decision problems in robotics, these
computational models have been shown to accurately
simulate animal behavior in reward-conditioned learning
including classical conditioning, water-maze learning, and
foraging behavior (Dayan and Abbott, 2001). Within this
family of artificial reinforcement learning systems, neural
network connection plasticity is governed by a Hebbian-
like incremental synaptic weight change rule that is
modulated by a supervisory learning signal d (Barto,
1998; Dayan and Abbott, 2001). Computationally, d
reflects the difference between an internal representation
of the reward topography (that evolves with learning over
repeated reward exposure trials) and that of the actual
external environment (Montague and Berns, 2002). Be-
cause d is embedded into local self-organizing synaptic
learning mechanisms as an internally generated surrogate
of the reward topography of the outside world (Montague
et al., 2004; Schultz, 2004), it serves a computational and
neuroplastic role analogous to the effects of DA on
glutamatergic synaptic plasticity as suggested by neurobe-
havioral research.
This neuroinformatic interpretation of DA has been

most clearly and elegantly demonstrated in studies of
natural-reward conditioned learning in monkeys (Waelti
et al., 2001). As monkeys learn to associate a neutral
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stimulus to the onset of a natural reward, their maximal
rates of DA cell firing shifts from the time of reward onset
to the timing of the neutral stimulus onset. Using the
temporal-difference form of reinforcement learning, which
encodes a temporal (rather than spatial) version of the d-
signal as an internally generated representation of the
expectation of reward delivery (Montague et al., 1996;
Schultz et al., 1997), the temporal evolution of the peak
amplitude of the d-signal in the artificial network tracks
precisely with that of dopamine cell firing of monkeys.

In other applications of reinforcement learning, the d-
signal reflects an internal mapping of the external reward
topography in spatial rather than temporal terms. Such
simulations have been shown to accurately reproduce core
aspects of foraging behavior, including the Matching Law.
Observational research in several animal species (insects,
rodents, primates, humans) has shown that given an array
of possible action choices leading to rewards, animals learn
to allocate a fraction of their total choices to each action in
proportion to the relative magnitude of reward most likely
available from each action choice (Herrnstein, 1961;
Rachlin and Laibson, 1997; Sugrue et al., 2004). This
Matching Law is expressed as

CiP
Cj

¼
hRiiP
hRji

,

where Ci is the number of choices of action i giving a mean
reward oRi4 from an array of j possible choices that
contains a total reward of SoRj4. This mathematical
statement formalizes the empirical observation that ani-
mals appear to have an evolutionarily conserved capacity
to learn the stochastic reward topography of their
environment, and to act on such learning by allocating
effort toward goals according to their relative reward
values.

Given the direct correspondence of the d-signal in
temporal difference learning with DA system function as
described above, DA system dynamics may also guide
cortical–striatal-based reinforcement learning consistent
with empirical accounts of the Matching Law (Preuschoff
et al., 2006). Notably, the Matching Law also identifies
with the generic version of the preferential attachment rule
initially described by Barabasi as a fundamental law of
scale-free system formation (Barabasi and Albert, 1999).
Repeating this rule as first presented in Section 2, a scale-
free system as opposed to a random one will be formed if,
when a new node is added, that node connects to an
existing node i with probability

PðkiÞ ¼
kjP

kj

,

where ki is the number of already existing connections
associated with node i and S kj is the total number of
connections already present in the network (Barabasi and
Albert, 1999).

Although the similarities between the right side of
Barabasi’s equation and the Matching Law equality appear

simple, they suggest a relationship bearing important
implications for understanding the role of DA in the self-
organizing structure of motivational–behavioral reper-
toires. Just as animals learn to allocate motivational effort
according to the relative reward provided by each goal, so
might new behavioral nodes in an evolving motivational–
behavioral repertoire develop preferential attachment via
motivational pathways with other more highly connected
behavioral hubs that most efficiently mediate survival-
oriented behavior. Interestingly, studies of foraging beha-
vior in several species demonstrate that animals utilize a
scale-free-like topographic search strategy to most effi-
ciently acquire the greatest resources (Viswanathan et al.,
1999; Reynolds, 2005). For instance, when searching sparse
and randomly placed rewards, flight segments of birds (as a
measure of effort) are distributed according to a scale-free
power law k�g, where g is most optimal near a value of 2
(Viswanathan et al., 1996, 1999).
Although speculative, these lines of evidence suggest that

analogous to DA dynamics in sculpting learning processes
underlying the Matching Law, DA signaling may drive and
maintain the most efficient mapping of behavioral organi-
zation onto the frequently changing temporal–spatial
topology of survival-dependent resources in the external
world. In terms of the proposed model, DA dynamics may
represent a central neural substrate-mechanism for guiding
the structural organization of motivational links and
behavioral nodes toward a scale-free topology.

5. Addiction as a disease of altered scale-free structures of

motivated-behavior

Having explored the application of scale-free systems as a
brain and behavioral theory of motivated behavior, we now
apply this concept as a translational model of addiction. At
the core of this application, we interpret the DA activity
shared among nearly all classes of addictive drugs as
producing a process whereby drug-seeking and drug-taking
become installed as increasingly well-connected behavioral
nodes in the global systems of motivational–behavioral
repertoires. Similarly, in temporal difference learning where
the d-signal is ‘exogenously’ augmented in modeling the
DA-effects of addictive drugs, action choices leading to
drug intake eventually dominate over motivations leading
to natural reward goal acquisition (Redish, 2004).
The formal psychiatric diagnostic language of DSM-IV

considers two main types of chronic substance use
disorders: substance abuse and substance dependence
(DSM-IV-TR, 2000). The term ‘addiction’ is not explicitly
used in the DSM-IV-TR, although the term is widely used
to describe substance use disorders of a chronic and
interfering nature (Maddux and Desmond, 2000). Core
elements of addiction have been described as including
craving, impaired control, compulsive engagement, and
continued performance despite adverse consequences
(Shaffer, 1999; Holden, 2001). Temporally, the process of
addiction typically follows three stages of progression from
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(i) substance use and experimentation to (ii) substance
abuse, to (iii) substance dependence, with this last state
generally considered the equivalent of addiction. The
central feature progressing through these clinical stages is
the increase in instances and persistence of drug use and
drug seeking at the expense of other normal, healthy or
adaptive behaviors. In the criteria for substance abuse, this
feature is expressed in a relatively mild form in which
substance use results in sporadic compromise of work
obligations, family relationships, societal obligations, risk
of bodily harm, and/or legal trouble. In substance
dependence, this feature has progressed substantially. Signs
of somatic adaptation (tolerance and withdrawal) and
medical compromise resulting from chronic drug use may
occur in parallel with a markedly diminished ability to stop
or consistently reduce substance use. Drug-seeking and
drug-taking become major preoccupations and behaviors
that compromise or eliminating adaptive social, occupa-
tional or recreational activities.

Representing the progression of addictive disease in
behavioral economic terms, the large but finite repertoire of
the individual’s behaviors may be visualized graphically,
where the amount of time or motivational effort allocated
to drug seeking/taking consumes an increasingly large
portion (Fig. 6). Since motivational–behavioral repertoires
of individuals are large but finite, the increasing proportion
of behavior devoted to drug-seeking/taking will necessarily
result in the reduction or elimination of other adaptive
behaviors previously present in the system.

Addiction progression can be further schematized as a
changing scale-free map of the motivational–behavioral
repertoire (Fig. 7). In this framework, drug-taking in
substance use/experimentation is introduced as a behavior-
al node of the system. With progression of the addiction
process, the drug-taking behavioral node becomes increas-
ingly connected with other behavioral nodes in a scale-free-
like developmental manner. However, addiction differs
from the natural or typical development of a scale-free
system where newly added nodes preferentially grow
connections with already present hubs. In addiction, the
other existing behavioral nodes, or those that might be
introduced after the drug-taking node, may become
preferentially attached to the drug-taking node, even
though the drug-taking node is not itself yet highly

connected at early stages. This drug-induced aberration
in the organizational evolution of the scale-free system is
expected by the abilities of abused drugs to release DA
within the cortical–striatal assembly (Volkow and Li,
2004). In this model, addictive drugs usurp the role of the
DA system to sculpt motivational–behavioral repertoires
by forming and maintaining motivational links according
to a scale-free organization.
In the fully progressed state of addiction, the drug-taking

node has become a highly connected hub in the network,
rivaling and surpassing degrees of connectivity associated
with other adaptive or vital behavioral nodes in the
network. In this state, the multiple connection pathways
to the drug-taking node represent increased proportions of
the total motivational repertoire devoted to drug taking,
which may be observed objectively as drug seeking or
communicated by the individual as craving. As the
motivational repertoire may also be thought of as
significant probabilities of sequential progression from
one behavioral node to the next, an increasing connectivity
to the drug-taking hub will result in a net increase in the
overall probability of drug seeking or performing the drug-
taking behavior. Corresponding to this progression of
connectivity, the perceptions, thoughts or feelings usually
associated with the performance of one behavior and its
sequential progression to drug taking can become ‘relapse-
triggers’ or ‘drug-craving cues’ as they presage the drug-
seeking connectivity path to the drug-taking node.

6. Clinical and research implications

As a translational theory, this model explains several key
clinical-epidemiological aspects of addiction including its
chronicity, resistance to treatment (robustness of estab-
lished disorder), and its onset in vulnerable populations
including adolescents/young adults and in the mentally ill
(Chambers et al., 2001; Chambers et al., 2003; Bickel and
Potenza, 2006).

6.1. Chronicity and treatment resistance of addiction

The scale-free model of addiction holds that once the
drug-taking node becomes a highly connected hub in the
scale-free motivational–behavioral repertoire, the system
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(Substance Abuse) 

Advanced Addiction 
(Substance Dependence) 

Repertoire of Adaptive behaviors: eating, sleeping, social, occupational, sexual behavior, etc 

Drug Seeking/Drug taking 

Fig. 6. Allocation of the behavioral repertoire in the addiction process. Drug seeking and drug taking increasingly dominate the behavioral economy.
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remains robust to perturbation associated with random
changes in specific behavioral nodes or their associated
connections. Thus, the effects of time and current treat-
ments for drug addiction may not efficiently influence the
established scale-free structure surrounding the drug-
taking node in highly addicted individuals. That is, the
resiliency of the scale-free network of addiction would be
expected to be robust to interventions (Bickel and Potenza,
2006). This view may address how psychotherapeutic
modalities for addiction work while explaining the lack
of efficacy of many medication treatments. For instance,
motivational enhancement therapy or group therapy may
work by strengthening natural-adaptive motivational path-
ways in the motivational–behavioral structure while the
drug-seeking pathways degrade with time. However,
successful pharmacological manipulations of cortical–stria-
tal circuits would need to specifically target and ablate the
motivational representational sequences surrounding the
highly connected drug-taking hub but without adversely
influencing the motivational pathways interconnecting the
adaptive-behavioral nodes, or the endogenous capacity of
the cortical–striatal/DA system to organize new adaptive
connections or behavioral nodes. While most candidate
drug treatments for addiction do target components of
cortical–striatal circuits, how they influence the neuroinfor-
matics of these circuits for specifically combating addic-
tion-related motivation remains unclear. A challenge is that
both the natural-adaptive and addictive-drug-related mo-
tivational links of the proposed scale-free system are
biophysically instantiated by alternate sets of firing pattern
representations mounted by the same neurobiolgical
substrates. Nonetheless, new progress in the treatment
pharmacology of addiction is underway as investigations
test anti-craving drugs active at GABAergic and glutama-
tergic receptor systems of the cortico–striatal assembly
(Kalivas and Volkow, 2005; O’Brien, 2005), components
that appear to be most directly involved in generating the
neural representations and plasticity of the motivational–
behavior repertoire.

6.2. Adolescence as a critical period of addiction

vulnerability

Adolescence is a period of rapid acquisition of new skills
and behaviors necessary for adult roles corresponding to
developmental changes in the ventral cortical–striatal
module (Chambers et al., 2003). During this active growth
phase of the motivational–behavioral repertoire, the DA
system may have a particularly potent influence on the
relatively highly plastic prefrontal cortex and ventral
striatum in organizing the addition of many new behavior-
al nodes and motivational links according to a scale-free
topology. This situation may entail a more rapid install-
ment of drug-taking behavior as a highly connected
behavioral hub, as reinforced by a heightened sensitivity
to the DA-active properties of addictive drugs in adoles-
cence. Perhaps more ominously, studies of the development
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Fig. 7. Progressive alterations in the scale-free structure of motivatio-
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node, upper left) in association with pharmacological stimulation of the

DA system. DA is implicated in the building and maintenance of

motivational–behavioral repertoires according to a scale-free structure,

achieving the most efficient mapping of behavioral organization onto the

survival-dependent reward topography of the external world. In substance

abuse, repeated bouts of drug-induced DA stimulation produce a growing

number of motivational links to the drug-taking node. In substance

dependence, the drug-taking node becomes a highly connected behavioral

hub in the scale-free system at the expense of many other adaptive natural

motivations and behaviors formerly present in the system.
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of natural and artificial scale-free systems indicate that
once a highly connected node becomes established in the
network, it tends to collect additional links associated with
the subsequent introduction of other nodes; the longer a
hub is present, the more highly connected it becomes
(Barabasi and Bonabeau, 2003). In this manner, the
introduction of a drug-taking behavioral node earlier in
development (i.e., during adolescence) will accumulate
greater motivational salience (connection links) with
subsequently introduced behavioral nodes leading to an
increased dominance of the drug-taking hub in adulthood.
This model corresponds to clinical data indicating that
earlier onset substance use in adolescence predicts greater
addiction severity and involvement of greater number of
substances (Taioli and Wynder, 1991, p. 546; Kandel et al.,
1992; Anthony and Petronis, 1995).

6.3. Addiction vulnerability in the mentally ill

Abnormalities of scale-free motivational–behavioral
repertoires inherent to varieties of mental illness before
drug exposure, may invite an accelerated process of
addiction upon drug exposure. Nearly all forms of major
mental illness including schizophrenia, bipolar disorder,
major depression, post-traumatic stress disorder, antisocial
and borderline personality disorder entail increased vulner-
ability to acquiring substance use disorders involving all of
the major illicit and legal addictive drug groups (O’Brien
et al., 2004). Post-mortem and in-vivo imaging analyses
spanning these disorders indicate that one or more
cortico–limbic substrates that are intrinsic to (or provide
glutamatergic inputs to) the ventral cortical–striatal
assembly, including the prefrontal cortex, hippocampal
formation, and amygdala, are morphologically or func-
tionally disordered in these conditions (Weinberger et al.,
1994; Callicott and Weinberger, 1999; Charney et al., 1999;
Bremner et al., 2000; Driessen et al., 2000; Raine et al.,
2000; Benes and Beretta, 2001; Chambers et al., 2001;
Blumberg et al., 2003; Volkow, 2004). Moreover, animal
models involving disruptions of these brain areas induce
both psychiatric syndromes and signs of addiction vulner-
ability (Wolf et al., 1995; Schmelzeis and Mittleman, 1996;
Weissenborn et al., 1997; Chambers and Self, 2002; Holmes
et al., 2002; Chambers et al., 2004, 2005; Chambers and
Taylor, 2004). In particular, direct damage to the NAc
itself produces a robustly impulsive phenotype (Cardinal
et al., 2001). Because these brain centers are responsible for
the formation of specific firing patterns in the ventral
cortico–striatal module, their dysfunction may: (a) cause
aberrant jumping between firing patterns comprising the
motivational repertoire consistent with clinical constructs
of impulsivity/poor decision-making; and/or (b) they may
limit the set of firing patterns comprising the motivational
repertoire that can be generated in the ventral module,
consistent with clinical constructs of compulsivity. In either
case, the DA effects of addictive drugs may provide an
abnormally robust impetus to restructuring motivational–

behavioral repertoires in a scale-free manner surrounding a
drug-taking node relative to the capacity for endogenous
DA to reliably direct scale-free motivational structuring
around natural adaptive reward-related behavioral nodes.
Consistent with these notions, recent computational work
modeling DA with the d-signal in temporal-difference
learning suggests that extinction from drug-seeking re-
quires the ability of neural networks to partition memory
of contextual state space into two domains (i.e. create two
closely related but different memory traces), one in which
drug learning has occurred, and another in which extinc-
tion learning can occur (Redish, 2005). In this way,
memory of drug use is not erased in abstinence from drug
use—rather, it is out-competed by new memories under-
lying extinction learning. Such partitioning may require the
integrity of hippocampal communication to the ventral
cortical–striatal module allowing the generation of new
motivational firing patterns or sequences. Disruption of
this connectivity in mental illness may impair generation
of, switching into, or maintenance of drug extinction
behavior, leading to higher probability of relapse in mental
illness.

6.4. Scale-free model concept in light of behavioral

sensitization and current theoretical models of addiction

Behavioral sensitization, in the form of progressive
increases in locomotor activity after repeated non-increas-
ing drug dosing, has long been utilized in addiction
research; while addictive drugs of divergent psychoactive
profiles can produce the effect, non-addictive drugs do not
(Babbini and Davis, 1972; Pierce and Kalivas, 1997; Miller
et al., 2001; Fish et al., 2002). However, theoretical
uncertainty remains about how sensitization relates to the
core instrumental processes of addiction, while self-admin-
istration has gained ‘gold-standard’ status as a method-
model for addiction (Piazza et al., 1989; De Vries et al.,
2002). Shedding some light on the possible relationship
between behavioral sensitization and addiction, the in-
centive-sensitization model of addiction proposed by
Robinson and Berridge proposes that addiction is essen-
tially an incremental increase in the motivational-enhan-
cing properties of addictive drug-taking (Robinson and
Berridge, 1993). The scale-free model is consistent with this
view and elaborates on it, while providing a more direct a
priori explanation for why addictive drugs might produce
behavioral as well as motivational sensitization. According
to a scale-free interpretation, animals placed into a
locomotor testing environment will display a complex
mapping of behaviors. Certain behaviors (e.g. exploratory
locomotion) occur more frequently because they are most
adaptive in that setting. These behaviors may be considered
as hubs in a scale-free like structure of behavior emerging
in the experimental context. Because the addictive drug is
administered extrinsically in a non-instrumental fashion, its
DA agonist effects will occur fairly non-specifically during
the execution of many behavioral nodes and their
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sequences. Acutely, the activational effects of DA will
cause more rapid progression across the map of behavioral
nodes, causing those behaviors that naturally occur most
frequently to occur even more within a finite time (e.g. as
with acute locomotor activation of psychostimulants).
Chronically, repeated DA exposure will induce neuroplas-
tic changes that exacerbate the already naturally present
scale-free system, favoring more permanent increases in the
execution frequency of behavioral hubs like exploratory
locomotion.

The scale-free model is also consistent with other aspects
of Robinson’s and Berridge’s model, including the distinc-
tion between drug liking and drug wanting. Consistent with
incentive-sensitization, the scale-free model emphasizes the
predominant role of motivational–behavioral computa-
tions over affective ones in the chronic addiction process.
Thus, motivational computations are not functionally
obligated to, and often do not associate subjective
experiences of pleasure with motivated behavior. More
directly, the immediate responsibility of motivation is to
configure behaviors, as goals unto themselves, for increas-
ing the probability of reward acquisition. In this way, the
scale-free model may be viewed as differing from the
Hedonic-set point theory proposed by Koob, which more
directly links addiction with drug-induced homeostatic
responses in affective representations (e.g. pleasure) that
influence motivational processes (Koob and Le Moal,
1997). However, the proposed manner in which addictive
drugs take advantage of the natural role of DA in
maintaining a scale-free organization of motivated-beha-
vior is reminiscent of Koob’s concept for homeostatic
dysregulation in addiction. But rather than hedonic
affective states becoming increasingly dependent on drug
use at the expense of natural pleasures, the scale-free model
proposes that drug use builds in motivational linkages
around the drug taking node at the expense of natural
motivations, given the finite economy of the motivatio-
nal–behavioral repertoire.

6.5. Testable predictions and future directions

Although the proposed model is supported by existing
data, empirical gaps warrant examination through hypoth-
esis-driven experimentation. On the behavioral level, the
theory predicts the existence of scale-free like organiza-
tional maps heretofore unexplored in both human and
laboratory animal behavior. While current evidence
suggests that motivated behavior at a group level conforms
to a scale-free organization (e.g. mammalian social,
communication networks (Albert et al., 1999; Albert and
Barabasi, 2000; Liljeros et al., 2001; Lusseau, 2003;
Schneeberger et al., 2004)), confirmation of scale-free-like
development and organization of motivational–behavioral
repertoires within individuals is needed. In current
behavioral research in general, and in animal modeling of
addiction in particular, dependent measures of behavior
typically examine only increases or decreases in one or two

discrete behaviors (e.g. lever pressing) in highly constrained
environments. Emerging technologies for behavioral re-
search such as position or activity-dependent remote
telemetry allows for automated assessment of the fre-
quency and sequential organization of many behaviors
emitted by one or small groups of subjects (Chen et al.,
2005; Clever Systems, 2005). Application of these methods
in realistic and complex behavioral settings should facil-
itate data gathering surpassing the quality and quantitative
resolution of Grant’s work (Section 3.2) for describing
organizations of motivated behavior. These advanced
methods will also allow testing of the developmental
aspects of the proposed theory. Examining the normal
evolution of behavioral repertoires from prenatal to adult
ages can assess scale-free like growth of motivated
behavior.
In higher order animals, including humans, defining

scale-free-like behavioral structures is expected to be
considerably more challenging, owing to the extreme
complexity of behavioral repertoires observed in these
species. Moreover, the manner in which regularity of
behavior occurs as a result of biological, circadian, or
cultural/environmental rhythms (e.g. the work week vs. the
weekend) would be expected to obscure or complicate
assessment of systems of behavior, or create some regions
of the motivational–behavioral repertoire that are less
scale-free than others. At this level, and in contrast to
lower-order laboratory animals, experimental conditions,
or windows of data gathering, will likely need to be
artificially constrained or more carefully selected, rather
than expanded. However, consistent with approaches used
with laboratory animals, testing of the scale-free model of
motivation and addiction in humans will require greater
emphasis on objective measures of behavior, non-verbal
performance, or drug intake, as opposed to the use of self-
reporting and historical rating scales.
Testing the neurobiological dimensions of the model can

involve probing of components of cortical–striatal or DA-
related circuits, to see how interventions effect the
development, enactment, or environmentally induced
modifications of motivational–behavioral repertoires, cor-
responding to or diverging from a scale-free plan. For
instance, does functional manipulation or impairment of
DA-bearing VTA neurons during a limited phase of pre-
adult development alter or curtail the structure of adult
motivated behavior? How might manipulations to limbic
centers that project into the ventral cortical–striatal module
(i.e. hippocampus and amygdala), or changes to compo-
nents of ventral vs. dorsal cortical striatal module itself,
alter or ablate discrete behaviors or whole interconnected
neighborhoods of the behavioral map? Might regionally
specific frontal cortical, ventral striatal or thalamic
interventions temporarily or chronically impair the co-
configuring relationship between motivational links and
behavioral nodes? Which behavioral nodes or motivational
links are more susceptible to such interventions, those
acquired more recently, those that are more sparsely
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connected, or both? Which of these interventions, and what
of those involving neurotransmitter systems other than
DA, glutamate and GABA, may cause motivational–be-
havioral repertoires to become more random-like in its
connectivity structure?

The neuroinformatic aspects of the scale-free model are
arguably the most speculative, but perhaps most deserving
of further exploration. It is inherently difficult to use
neurobiolgical methods alone to understand neuroinfor-
matic phenomena. Moreover, the proposed theory does not
require that the underlying neural substrates themselves are
literally physically organized according to a scale-free
principal. Instead they are proposed to process, co-
configure, and sculpt neural firing pattern representations
of motivated-behavior so that they may conform to a scale-
free organization. Thus, searches for scale-free physical–
structural attributes of cortical–striatal neurons, or neural
connectivity might be tangential to the proposed theory.
However, frequently emerging neurobiolgical–behavioral
correlation findings, not well explained by existing theory,
may be better understood from the neuroinformatic
perspectives of the proposed model. For example, while
psychostimulant treatment in rats increases both c-Fos
immediate early gene expression in the striatum and
locomotor activity, the expected positive relationship
between drug induced c-Fos expression and locomotor
activity breaks down under various conditions such as
with DA-antagonist treatment (Mura et al., 2004), whether
the animals have developmental–hippocampal lesions
(Lillrank et al., 1996), or depending on which striatal
sub-region is examined (Hedou et al., 2002). Rather than
viewing psychostimulant-induced c-Fos expression as
merely a pharmacological result of receptor activation on
the cellular level, the proposed theory would interpret
c-Fos expression densities as measures of the way the drug
or drug history changes overall cortical–striatal informa-
tion processing leading to differential behavioral results—
c-Fos expression patterns as cumulative-time measures
proportional to the extent of variability and/or frequency
of recurring representational firing patterns emerging
across specific striatal network ensembles. From this
perspective, less c-Fos density in particular cortical–striatal
compartments, and more in others, might correspond to
greater frequency or duration of one particular behavioral
program (e.g. locomotion vs. sustained catatonia).

Clearly, for more definitive penetration of the neurobio-
logical–neuroinformatic frontier suggested by the proposed
model, investigations that wed computational neural net-
work simulations with methodologies of neurobehavioral
research will be particularly important. For instance,
network simulations and behavioral investigations may
be used to test whether DA dynamics, operating in terms of
a temporal-difference-like d-signal, promotes scale-free
structuring of learned complex behavior. Network simula-
tions in conjunction with in-vivo polyneuronal and multi-
site recording techniques (e.g. sampling ventral and dorsal
striatum simultaneously) in behaving animals may also be

applied. These techniques could explore whether neural
representations sequentially represented in the ventral and
dorsal cortical–striatal modules emerge and co-configure
in an inter-dependent manner according to a scale-free
organizational motif corresponding to the predicted
organization of motivated behavior. Already, various
studies examining physiological (Stam and de Bruin, 2004
1170; Freeman, 2005 1167; Grinstein and Linkster, 2005
1166) or neuroimaging measures of brain activation states
(Eguiluz et al., 2005; Achard et al., 2006) suggest scale-free
organizational motifs may describe the functional relation-
ships between distributed cortical brain regions. To the
extent that striatal firing patterns are generated by or
influence temporally changing neocortical activation states,
these data may point to a scale-free organization of
temporally emerging striatal firing patterns. Based on these
approaches, neuroimaging or physiological studies of
motivational neurocircuitry in addicted and non-addicted
states could be considered in relationship to the proposed
scale-free model (Bjork et al., 2004; Hommer, 2004;
Hommer et al., 2004; Knutson et al., 2004; McClure
et al., 2004; Reuter et al., 2005).
In summary, the proposed scale-free model has con-

siderable potential as a comprehensive translational theory
of motivation and addiction. While conceptually consistent
with the incentive-motivational theory of addiction as
proposed by Robinson and Berridge, the neuroinformatic
aspects of the proposed model, by incorporating neural
network-based perspectives on information processing and
plasticity, provides a new way to bridge incentive-motiva-
tional theory to micro-level research defining the concerted
effects of genes (Egan et al., 2001; Hariri et al., 2002) and
environment (Caspi et al., 2003) in increasing addiction
vulnerability. This follows as neural network simulations
can readily model the extent to which network and
informatic plasticity is the integrative product of envir-
onmentally derived information flowing through neural
networks and the molecular–genetic properties of the
network’s constituent neurons. The scale-free model also
frames incentive-motivational theory within a macro-level
conceptual structure that accounts for major clinical level
phenomena such as adolescent development and psychia-
tric illness as addiction vulnerability states. Ultimately,
empirical gaps and testable predictions of the model will be
most useful if they guide integrative investigations wedding
computational, animal behavioral and human studies on
cortical–striatal systems functioning and plasticity toward
preventing and treating addictions.
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