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SUMMARY

The Cornell-Penn-Miner (CPM) Dairy is an applied mathematical nutrition model that computes
dairy cattle requirements and the supply of energy and nutrients based on characteristics of the
animal, the environment and the physicochemical composition of the feeds under diverse production
scenarios. The CPM Dairy was designed as a steady-state model to use rates of degradation of feed
carbohydrate and protein and the rate of passage to estimate the extent of ruminal fermentation,
microbial growth, and intestinal digestibility of carbohydrate and protein fractions in computing
energy and protein post-rumen absorption, and the supply of metabolizable energy and protein to the
animal. The CPM Dairy version 3.0 (CPM Dairy 3.0) includes an expanded carbohydrate fraction-
ation scheme to facilitate the characterization of individual feeds and a sub-model to predict ruminal
metabolism and intestinal absorption of long chain fatty acids. The CPMDairy includes a non-linear
optimization algorithm that allows for least-cost formulation of diets while meeting animal per-
formance, feed availability and environmental restrictions of modern dairy cattle production. When
the CPM Dairy 3.0 was evaluated with data of 228 individual lactating dairy cows containing ap-
propriate information including observed dry matter intake, the linear regression between observed
and model-predicted milk production values indicated the model was able to account for 79.8% of
the variation. The concordance correlation coefficient (CCC) was high (rc=0.89) without a significant
mean bias (0.52 kg/d; P=0.12). The accuracy estimated by the CCC was 0.997. The root of mean
square error of prediction (MSEP) was 5.14 kg/d (0.16 of the observed mean) and 87.3% of the
MSEP was due to random errors, suggesting little systematic bias in predicting milk production of
high-producing dairy cattle. Based upon these evaluations, it was concluded the CPM Dairy 3.0
model adequately predicts milk production at the farm level when appropriate animal characteriza-
tion, feed composition and feed intake are provided; however, further improvements are needed to
account for individual animal variation.

INTRODUCTION

For some years now, it has been evident that dairy
cow nutrition models are vital to the continued suc-
cess of the dairy industry. In addition, the production
emphasis in several places in the world has shifted

from milk volume and fat to include also milk protein
concentration and yield. Mathematical models of
ruminant nutrition have been employed for over
three decades (Chalupa & Boston 2003) and have
stimulated improvements in feeding cattle. Accumu-
lated research knowledge and complete data sets
available in recent years combined with different
mathematical approaches have led to improved nu-
trition models.
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Several mathematical models of ruminant nutrition
have been developed in the past (Tedeschi et al.
2005) and it is likely that frequency of use will
increase to support decision making not only in
the nutrition of cattle, but also for other aspects in-
cluding farm economics, animal management and
assessment of environmental impact (Tylutki et al.
2004).
The Cornell-Penn-Miner (CPM) Dairy was a

product of the combined effort by researchers at
Cornell University, University of Pennsylvania and
the W.H. Miner Agriculture Research Institute. The
development of version 1 (CPM 1.0) was considered
by Boston et al. (2000) who described the conversion
of the Cornell Net Carbohydrate and Protein System
(CNCPS 4.0; Fox et al. 2004) into this applied model
that is being used by the dairy industry. The CNCPS
and consequently the CPMDairy have been used and
evaluated using data from several places in the world.
Kolver et al. (1998) assessed the reliability of the

CNCPS predictions for grazing dairy cows from four
studies conducted in New Zealand and in the US. The
authors reported the model provided good estimates
of changes in body condition scores (BCS; R2=0.78),
energy balance (R2=0.76), blood urea (R2=0.94),
microbial N flow (R2=0.88), dry matter intake
(DMI; R2=0.80) and ruminal pH (R2=0.47). The
predictions of milk production were sensitive to
changes in pasture lignin content, physical effective
fibre, rate of fibre digestion and amino acid compo-
sition of ruminal microbes. In addition, metaboliz-
able energy (ME) was described to be the first limiting
factor when lactating cows grazed high quality
pastures.
In predicting milk production of individually fed

high-producing dairy cows, Fox et al. (2004) in-
dicated the CNCPS was able to account for 88% of
the variation with a mean bias of 1.8 kg/d, which
corresponds to 0.055 of the model predicted mean.
These authors indicated that, when metabolizable
protein (MP) was first limiting, the model adequacy
was superior to when ME was first limiting.
More recently, using data from two experiments,

Chaves et al. (2006) evaluated the CNCPS for grazing
dairy cows supplemented with silages (0.30–0.40
of DMI). The authors observed no significant mean
bias in predicting DMI, milk yield, or body weight
(BW) changes. However, the precision (R2) of the
model was lower than previously reported by Kolver
et al. (1998) and Fox et al. (2004). It ranged from
51 to 59%, indicating a satisfactory prediction of
milk yield when cows were neither gaining nor losing
BW, but a systematic bias was observed probably
due to the partition of energy between milk yield and
BW changes. Tedeschi et al. (2006) developed a model
to account for changes in BW and/or BCS that
are not accounted for when estimating ME- or MP-
allowable milk production from the intake above

or below animal requirements for maintenance,
pregnancy and growth. The authors recommended
adjustment for BCS changes in a period longer than
7 days for accurate prediction of milk production
of dairy cows.
The objectives of the current paper are: (1) to pro-

vide a description of the changes made to the CPM
Dairy 1.0 in developing the CPM Dairy 3.0 and (2) to
assess the adequacy of the CPM Dairy 3.0 in pre-
dicting milk production of high producing-lactating
dairy cattle.

MATERIAL AND METHODS

Background

The CPM Dairy 1.0 was originally programmed in
Microsoft CTM and was released in October 1998. The
CPMDairy 2.0 and 3.0 are 32-bit Microsoft Windows
applications and were programmed in Microsoft
Visual Basic 6.0TM and Microsoft C++ 6.0TM with a
Microsoft Access 2000TM database capability to store
input and output values. The CPM Dairy 2.0 was an
intermediate release that allowed for software devel-
opment and testing. It was only available for selected
users of the CPM Dairy 1.0 to provide feedback on
software design, focusing on field implementation and
usability. Considerable effort was directed towards
the development of the CPM Dairy 3.0 to meet the
guidelines discussed by Newman et al. (2000) to be
successfully used as a decision support system for
dairy cattle.

Development of the CPM Dairy 3.0

The CNCPS model was developed to define more
accurately rumen bacterial growth and whole animal
requirements, to assess feed utilization and to predict
production responses (Fox et al. 2004). The CNCPS
was developed from basic principles of rumen func-
tion, microbial growth, feed digestion and passage
rates and animal physiology. It also accounts for
farm-specific management, environmental and feed
characteristics. The system can be applied at the farm
level because feeds are characterized according to
fractions that are measured by most feed analysis
laboratories. The CPM Dairy 3.0 is based on the
CNCPS 5.0 level 2 of solution biological core (Fox
et al. 2004). The main modifications towards the
development of the CPMDairy 3.0 were the inclusion
of a new carbohydrate fractionation scheme (Lanzas
et al. 2007) and a new lipid sub-model (Moate et al.
2004). A revised feed dictionary was added to support
these additions.

Carbohydrate fractionation scheme

The comparison of carbohydrate fractionation
schemes in CNCPS 5.0 and CPM Dairy 3.0 are
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listed in Table 1. In the CNCPS 5.0 and CPM Dairy
1.0, the carbohydrate fractionation scheme assumed
two fractions of non-fibre carbohydrate (NFC): the A
fraction that contains organic acids and sugars, and
the B1 fraction that contains soluble fibres and starch
(Sniffen et al. 1992) as listed in Table 1.
During silage fermentation, some of the soluble

non-cell wall components are metabolized primarily
to lactic and acetic acids (McDonald et al. 1991).
These silage acids are useful to the animal as a com-
ponent of ME but are depleted fermentable sources
of ATP for microbial growth under normal rumen
conditions (Van Soest 1994). Thus, ensiling has little
effect on feed energy values but can affect supply of
protein to the host animal substantially by decreasing
bacterial protein production. Therefore, a separation
between sugars and organic or silage acids was
needed. In the CPM Dairy 3.0, The CHO A fraction
has been separated into silage acids (CA1) and sugars
(CA2) as shown in Eqns (1)–(4).

CHOi=1000x(CPi+EEi+Ashi) (1)

NFCi=CHOix NDFix
CPirNDICPi

1000

� �
(2)

CA1i=OAir
NFCi

1000
(3)

CA2i=Sugarir
NFCi

1000
(4)

where CHO is g carbohydrate/kg of DM; CP is g
crude protein/kg of DM, EE is g ether extract/kg
of DM; Ash is g/kg of DM; NFC is g non-fibre
carbohydrate/kg of DM, NDF is g neutral detergent
fibre/kg of DM; NDICP is g neutral detergent
insoluble CP/kg of CP; CA1 is g carbohydrate
fraction A1/kg of DM; OA is g organic acids from

silage/kg of NFC; CA2 is g carbohydrate fraction
A2/kg of DM; Sugar is g simple sugars/kg of NFC;
and i is the ith feed.
In the CNCPS 5.0 and CPM Dairy 1.0, the CB1

fraction contained starch, pectin and b-glucans.
Grouping these carbohydrates together is not nu-
tritionally correct because they may have different
rates of fermentation in the rumen (Engstrom et al.
1992; Hatfield & Weimer 1995; Hall et al. 1998),
they are not precisely defined or analysed (Van Soest
1994; Pitt et al. 1996; Alderman et al. 2001; Offner
& Sauvant 2004), and it does not account for all
the variability observed in NFC digestibility when
various processing treatments are applied (Offner
& Sauvant 2004). Lanzas et al. (2007) provided
more discussion of fractionation of carbohydrates.
As shown in Table 1, some organic acids and fructans
might be pooled in CB2 depending on the method
used.
In the CPM Dairy 3.0, starch (CB1; Eqn (5)) has

been separated from pectin and b-glucans (CB2;
Eqn (6)). The composition of fraction CC (Eqn (7))
was not changed. The fraction CC consists of lignin
and fibre associated with lignin, representing the
material that is not fermented after 200 h (Van Soest
et al. 2005). Carbohydrate fraction C is calculated
as ligninr2.4 (Van Soest et al. 2005). Remaining
carbohydrate fraction is the insoluble available fibre
(fraction CB3 (Eqn (8)) in the CPM Dairy 3.0), which
was fraction CB2 in the CNCPS 5.0 and CPM Dairy
1.0. Several techniques for determining NDF have
been developed and used (Hintz et al. 1996; Mertens
2002). If sodium sulphite is used in the determination
of NDF, a variable amount of NDICP will be re-
moved from the neutral detergent residue, depending
on the feed. Therefore with this NDF analysis, the
CB3 may be under-estimated when the correction for

Table 1. Composition and digestion of carbohydrate fractions in the CNCPS and CPM Dairy models

Fractions

Composition

Ruminal
degradation
rate (%/h)

Intestinal
digestion
(g/kg) a

CNCPS 5.0 and
CPM 1.0 CPM 3.0

A A1 Silage acids 1–2 1000
A A2 Simple sugars 100–300 1000
B1 B1 Starch 10–40 750
B1 B2 Soluble available fibre b

(pectins, b-glucans, plant organic
acids and fructans)

40–60 750

B2 B3 Insoluble available fibre
(cellulose and hemicellulose)

2–15 200

C C Unavailable fibre
(lignin and associated fibre)

0 0

a Intestinal digestibility of the rumen escape fraction.
b Contains plant organic acids and may contain fructans depending on the method used to measure sugars.
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NDICP is applied. The B fraction carbohydrates are
determined as shown in Eqns (5)–(8) below.

CB1i=Starchir
NFCi

1000
(5)

CB2i=NFCix(CA1i+CA2i+CB1i) (6)

CCi=NDFirLigninir0�024 (7)

CB3i= NDFix
CPirNDICPi

1000

� �
xCCi (8)

where CB1 is g carbohydrate fraction B1/kg of
DM; Starch is g starch complexes/kg of NFC;
NFC is g non-fibre carbohydrate/kg of DM; CB2 is g
carbohydrate fraction B2/kg of DM; CA1 is g carbo-
hydrate fraction A1/kg of DM; CA2 is g carbo-
hydrate fraction A2/kg of DM; CC is g carbohydrate
fraction C/kg of DM; NDF is g neutral detergent
fibre/kg of DM; NDICP is g neutral detergent in-
soluble CP/kg of CP; Lignin is g sulphuric acid
or acid detergent lignin/kg of NDF; and i is the
ith feed.

Lipid sub-model

Fatty acids and glycerol are lipid compounds of
nutritional significance. Crude fat is normally deter-
mined by extraction using ether; however, not all
ether soluble materials are fatty acids (Van Soest
1994). As a consequence, the CPMDairy 3.0 contains
a lipid sub-model developed by Moate et al. (2004)
that describes the ruminal digestion and metabolism
of long-chain fatty acids (LCFA).
The lipid sub-model was developed to account

for (1) intake of fatty acids, (2) ruminal lipolysis of
dietary lipids, (3) ruminal biohydrogenation of fatty
acids, (4) de novo synthesis of fatty acids in the rumen,
(5) effects of fat on rumen digestion and fermentation
and (6) intestinal digestion of fatty acids (Moate
et al. 2004). The following LCFA were included in
this sub-model : n-dodecanoic acid (lauric acid,
C12:0), n-tetradecanoic acid (myristic acid, C14:0),
n-hexadecanoic acid (palmitic acid, C16:0), hexa-
decenoic acid (palmitoleic acid, C16:1), n-octadeca-
noic acid (stearic acid, C18:0), octadecenoic acid
(oleic acid, C18:1c, C18:1t) ; octadecadienoic acid
(linoleic acid, C18:2) and octadecatrienoic acid (lino-
lenic acid, C18:3) (Nelson & Cox 2005).
The lipid sub-model was developed almost entirely

with data from published experiments involving
lactating dairy cows in which daily dietary intakes,
duodenal flows and faecal outputs of individual
LCFA were reported (Moate et al. 2004). The initial
evaluation included seven experiments utilizing non-
lactating cattle (mostly young growing steers) and one
experiment utilizing lactating dairy cows. The lipid
sub-model explained more than 86% of the variation
between predicted and measured absorbed C12:0,

C14:0, C16:0, C18:0, C18:1t, C18:1c and C18:2.
The predicted mean bias was 12% or less for C12:0,
C14:0, C16:0, C18:0 and C18:2. For C18:1t and
C18:1c, the correlation was good (r>0.96) but the
mean bias was about 20%. This may be a consequence
of the small number of comparisons as C18:1t and
C18:1c data were only reported for eight diets in two
experiments. The absorption of C16:1, C18:3 and
other LCFA was poorly predicted by the sub-model.
However, only small amounts (2–3 g/d) of C16:1 and
C18:3 were absorbed and other LCFA includes
LCFA were not always reported in all experiments.
In a more recent evaluation, Moate et al. (2006)

examined the ability of the lipid sub-model to predict
the apparent absorption (intake minus faecal) of total
LCFA in lactating dairy cows. There were two types
of experiments : abomasal infusion experiments and
feeding experiments. The amounts of total LCFA
apparently absorbed were regressed against the re-
ported amounts of total LCFA apparently absorbed.
For the diets from the infusion experiments, the
CCC (rc ; Lin 1989) was 0.923 and Pearson correla-
tion coefficient (r) was 0.940. For the diets from the
feeding experiments, these values were rc=0.975 and
r=0.977. These evaluations indicated that because
the lipid sub-model accurately predicted the apparent
absorption of total LCFA infused into the aboma-
sum of dairy cows, appropriate intestinal absorption
coefficients were used in the lipid sub-model.
Furthermore, the model also accurately predicted the
apparent absorption of total LCFA in the feeding
experiments, suggesting the model may be correctly
describing ruminal processes such as lipolysis, bio-
hydrogenation and the de novo synthesis of LCFA
that can influence apparent absorption of total
LCFA.

Feed dictionary

The main goal of a feed dictionary or feed library is to
provide values for feed chemical analyses needed by
the model that are not available for the feeds to be
used for the development of rations. The feed dic-
tionary in the CPM Dairy 3.0 represents an evolution
from the first dictionary published by Fox et al.
(1990) and Sniffen et al. (1992). More than 10 000 feed
analyses were utilized in the development of the feed
library for the CPM Dairy 3.0. Degradation rates
of available NDF (CB3) were estimated from 30 h
in vitro NDF digestion (Van Soest et al. 2000). For
instance, the newly generated degradation rates of
CB3 for corn silage were lower and those for alfalfa
were higher than the feed dictionary values in the
CPM Dairy 1.0.
Despite the effort made to provide correct values in

the feed dictionary, actual chemical compositions of
the feed carbohydrate and protein fractions used in
CPM Dairy 3.0 should be measured in order to de-
termine accurately intake of nutrients and prediction
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of animal performance. The values reported in a feed
dictionary do not represent the mean of the chemical
components of randomly selected feed samples be-
cause it assumes the chemical components are inde-
pendent (Tedeschi et al. 2002). In fact, the chemical
components are highly correlated (Tylutki 2002).
Some feed ingredients (e.g. ground maize) have a

low variance in analysis and may not require frequent
analysis. Others (e.g. forages, distillers’ grains) are
quite variable in composition and require frequent
analysis. For some components (e.g. lignin, soluble
protein, non-protein nitrogen (NPN), amino acids)
there is less variance if expressed as a percentage
of another component (e.g. NDF, CP, soluble pro-
tein, ruminally-undegraded protein (RUP)) than if
expressed as a proportion of dry matter (DM). Ad-
ditionally, some feed components such as lignin, NPN
and amino acids may not be analysed and use of the
feed dictionary values are facilitated when they are
expressed on the basis of a fraction usually analysed
or calculated.

Optimization and ration formulation

Ration formulation involves the selection of feed in-
gredients within a specified DMI so that nutrient
supplies meet nutrient requirements at the lowest
cost. Nutritional constraints are based upon appli-
cation of the factorial approach to describe the re-
quirements of cows to perform specific or multiple
functions (maintenance, growth, lactation and preg-
nancy). Linear programming is commonly used for
auto-balancing in most nutrition models (Tedeschi
et al. 2000). In fact, ration formulation was one of
the first applications of linear programming. Not only
could solutions be found in seconds, but building
on contributions of Dantzig (1951) to operational
research, an array of other very helpful economic
properties (shadow prices) relating to the optimal
solution could be derived. Nonetheless, the suitability
of linear programming for optimization depends
on the linearity of the problem. The CPM Dairy 3.0
utilizes a non-linear optimization called the ‘Feasible
Sequential Quadratic Programming ’ approach (Zhou
et al. 1997). Feed cost is a logical objective for ration
formulation; however, other objectives may be desir-
able for diet formulation in the near future. These
include minimization of nutrient excretion by animals
and production of specific components of milk that
are nutritionally valuable.

Evaluation of the CPM Dairy 3.0

The proper evaluation of a mathematical model
employs a combination of statistical and empirical
analyses and proper scrutiny regarding the purposes
of the model that was initially conceptualized
(Tedeschi 2006). Therefore, the adequacy of the CPM
Dairy 3.0 was assessed based on its ability to predict

milk production of high-producing dairy cows when
animal and feed inputs required by the model are
available. The concepts of precision and accuracy as
described by Haefner (1996) and Tedeschi (2006) were
utilized to determine model adequacy: precision
measures how closely individual model-predicted
points are within each other whereas accuracy
measures how closely model-predicted points are
from the true value (Haefner 1996; Tedeschi 2006).
The precision and accuracy of the predictions were
assessed using several statistical and modelling tech-
niques as described by Tedeschi (2006) to guarantee a
thorough evaluation of CPM Dairy 3.0 for practical
applications. The main techniques used to evaluate
the predictions of the model were linear regression
analysis between observed and model-predicted
values, CCC (Lin 1989; Liao 2003) andMSEP (Bibby
& Toutenburg 1977).

Database description

A database containing 228 individually-fed high-
producing lactating dairy cows from five studies was
utilized to assess the adequacy of the CPM Dairy 3.0
to predict first-limiting ME- or MP-allowable milk
production. The database contained adequate in-
formation on feed composition and intake, animal
description and performance, and environment infor-
mation necessary to predict milk production with
CPM Dairy. Study 1 had 36 primiparous and 40
multiparous Holstein cows fed wet corn gluten feed
over 2 years (Kononoff et al. 2006) at the University
of Nebraska-Lincoln Dairy Research Unit. Only the
post-peak milk production data were utilized in the
evaluation. Study 2 consisted of 23 multiparous and
16 primiparous Holstein cows averaging 263 days in
milk and 614 kg BW. These cows received three levels
of CP (low, medium and high) in a total mixed ration
(TMR) for 4 weeks (Ruiz et al. 2002). Study 3 was
comprised of 60 multiparous and 21 primiparous
Holstein cows (Stone 1996). Cows from Study 3 were
fed three treatments to evaluate soy hulls as forage
or concentrate replacement over a 14 week period.
Study 4 consisted of 15 multiparous Holstein cows
averaging 126 days in milk and 560 kg BW that were
fed fresh-cut orchardgrass (Dactylus glomerata L.)
and a concentrate mix with or without RumensinTM

for 3 weeks (Ruiz et al. 2001). Studies 2, 3 and 4 were
conducted at the Cornell University Teaching and
Research Centre. Study 5 was conducted at the experi-
mental station of the Brazilian Agricultural Research
Corporation (EMBRAPA) at Coronel Pacheco, MG
(Brazil) with 14 lactating Holstein cows in a free-stall
confinement (Fernando C. F. Lopes, unpublished).
Maize silage was offered ad libitum while the concen-
trate mixture was fed based on the milk production
level (4.08–8.16 kg of DM/d). Maize silage and
concentrate mixture DMI was measured daily for 5
consecutive days using individual, electronic feeders
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(Calan gate system). Cows were mechanically milked
twice per day (06.00 and 14.00 h) and milk produc-
tion and milk composition (fat, protein and solids)
were determined daily. Dietary ingredients were in-
dividually analysed for nutrients necessary to estimate
ME and MP using CPM Dairy 3.0. The observed
DMI was used to predict ME and MP allowable milk
because the use of predicted DMI would cause two
uncertainties in predicting milk production: predic-
tion of intake and subsequent milk production.
The LCFA and degradation rates of the feeds used

to perform these simulations were set to match com-
parable feeds listed in the CPM Dairy 3.0 feed dic-
tionary; all other feed compositions were measured as
indicated.

Statistical methods

A random coefficients model (Littell et al. 2006) was
used to combine model predictions of the five studies
using PROC MIXED of SAS (Littell et al. 2006).
Observed milk production was regressed on model-
predicted milk production, assuming study as ran-
dom effects and unstructured variance–(co)variance
matrix, as shown in Eqn (9). Adjusted observed milk
production was computed as the sum of fixed effects
and uncontrolled-random error. Similar analysis was
performed for observed and model-predicted DMI
for all five studies included in the evaluation data set.

ObservedMilkij=ai+birPredictedMilkij+eij

where:

ai

bi

� �
� iid N

b0

b1

� �
,Y

� �

Y=
s2
a sab

sab s2
b

 !

eij � iid N 0, s2
e

� �
(9)

The variance component analysis of fixed effects
(model predictions, R2

FixedEffects) and study effects
(R2

RandomEffects) in explaining the observed milk pro-
duction was assessed based on coefficients of partial
determination (Eqn (10)). The coefficients of partial
determination were estimated by regressing observed
milk production on fixed effects, study effects and
uncontrolled-random error (Neter et al. 1996) using
PROC REG of SAS (SAS Inst., Cary, NC) with op-
tions PCORR1 (for sequential sum of squares) and
PCORR2 (for partial sum of squares).

R2
FixedEffects=

SSR(FixedEffects=RandomEffects)

SSE(RandomEffects)

R2
RandomEffects=

SSR(RandomEffects=FixedEffects)

SSE(FixedEffects)

(10)

where SSR(FixedEffects/RandomEffects) is partial
sum of squares of regression of fixed effects when ran-
dom effects was in the model, SSE(RandomEffects)
is sum of squares of error when random effects
was the only independent variable in the statistical
model, SSR(RandomEffects/FixedEffects) is partial
sum of squares of regression of random effects when
fixed effects was in the model and SSE(FixedEffects)
is sum of squares of error when fixed effects
was the only independent variable in the statistical
model.

RESULTS AND DISCUSSION

Assessing the adequacy of model prediction of intake

The analysis of the random coefficients model between
observed and model-predicted DMI indicated no
significant variance for the intercept (P=0.138) and
for the slope (P=0.202), suggesting no interaction be-
tween intercept or slope with study. When the ran-
dom study effects were removed from the observed
DMI and regressed against model-predicted DMI
(St-Pierre 2001), an R2 of 0.63, root of mean square
error (MSE) of 2.62 kg/d, mean bias of 2.14 kg/d
(P<0.001), root of MSEP of 3.4 kg/d (0.15 of the
observed mean) and model accuracy (as measured by
the Cb statistic) of 0.82 were observed.
Even though the regression of observed on model-

predicted DMI were parallel (no interaction in
the sloperstudy, P=0.202), individual regressions
by study indicated that CPM Dairy predictions of
DMI were not uniform. The coefficient of determin-
ation varied from 0.34 (study 1) to 0.81 (study 5)
and the root of MSE ranged from 1.06 to 3.47 kg/d.
Intake is controlled by a complex and multifactorial
system (Forbes 2003) that is not fully understood.
There are short- (Allen 2000) and long-term (Bauman
2000) effects that control the intake of dairy cows.
The prediction of DMI by the CPM Dairy 3.0 is
based on the equations developed by Roseler et al.
(1997) and Fox et al. (2004). These equations are
empirical and static by nature with adjustments for
BW, week of lactation, days pregnant and
milk protein yield (kg/d), as described by Fox et al.
(2004).
It is almost impossible to construct equations that

will accurately predict DMI under all management,
feeding and environmental conditions. The DMI
predictions by the CPM Dairy model are intended
as guidelines. Rations should be formulated on the
basis of actual DMI. However, even when there are
accurate records of feed delivered and unconsumed
feed, actual DMI will often be over-estimated under
field conditions. This is likely to occur because of
the inability to account for feed wastes such as feed
thrown out of bunks, losses across feed alleys and
feed wasted into the animal area.
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The evaluation indicated an unacceptable variation
in predicting intake of lactating dairy cows under field
conditions. It is possible that mechanistic and
dynamic models might include short- and long-term
factors (Illius & Jessop 1996; Allen et al. 2005) af-
fecting DMI in ruminants and may improve its DMI
predictability.

Assessing the adequacy of model prediction
of milk production

Across all studies, an overall regression between ob-
served and model-predicted milk yield indicated the
CPM Dairy 3.0 was able to account for 79.8% of
the variation in observed milk yield with a mean bias
of 0.52 kg/d of milk (P>0.124) when observed DMI
was inputted in the model. The mean bias was ap-
proximately 1.6% of model-predicted milk yield;
CCC of 0.89 (Cb of 0.997), and root of mean square
error of prediction (RMSEP) 5.14 kg/d (15.9% of the
observed mean) in which 0.87 of the MSEP was due
to random errors, 0.12 was due to systematic bias and
only 0.01 was due to mean bias (Table 2). This
analysis suggests that further improvements in the
model may be possible by accounting for more of
the variation and the level of milk production may
slightly affect the model prediction. The mean and
standard error of observed and model-predicted milk
production were 32.3¡0.71 and 31.8¡0.75 kg/d. The
intercept (5.47) and slope (0.84) of the regression
were simultaneously different from zero and unity
(P<0.001), respectively. These results were similar to
those reported by Fox et al. (2004) when evaluating
the CNCPS model.

The milk production data used in the present
evaluation were derived from lactating cows raised
under diverse production and management situations,
but it represents the post-peak milk production, not
the entire lactation period. Macciotta et al. (2004)
have indicated an independency (weak correlation)
between the increasing rate of milk yield in the
first part of the lactation and the declining rate
of milk yield after the lactation peak, suggesting
that a change in milk yield could be the result of
changing either rate. Therefore, a high milk yield
prior to the peak of milk production may not
guarantee a high milk yield during the post-peak
period. Because the post-peak milk production re-
presents the majority of the milk produced during
the lactation of a cow and the variation due to meta-
bolic and physiological changes associated with
transition phase (Hayirli et al. 2003; Overton &
Waldron 2004) and the independency between the
first and second phases of the lactation curve, only
post-peak milk production was used in the current
evaluation.
Despite the relatively high precision (R2) of the

overall regression, amongst studies, the precision
varied from 0.33 to 0.79 (Table 2) even though the
mean bias was relatively low and accuracy was high.
The discrepancy in low precision and high RMSEP
suggest models based on the CNCPS framework have
a good ability to accurately predict the mean when
large sample sizes are used, but individual animal
predictions may not be satisfactory. The decompo-
sition of the MSEP indicated the source of error
was not consistent amongst studies (Table 2). Chaves
et al. (2006) reported a low precision with no mean

Table 2. Summary of model adequacy statistics between observed and model-predicted milk production values

Statistics a

Study b N R2 MB (kg/d) Cb CCC RMSEP (kg/d) UM US UR

1 79 0.33 0.64 0.993 0.57 6.80 0.9 28.0 71.1
2 39 0.59 x0.74 0.986 0.76 4.40 4.7 17.7 77.6
3 81 0.74 0.48 0.979 0.84 4.12 1.4 31.6 67.0
4 15 0.69 x0.34 0.937 0.78 3.11 1.2 4.9 93.9
5 14 0.79 4.6 0.689 0.61 5.08 80.8 3.5 15.7

All c

Unadj 228 0.80 0.52 0.997 0.89 5.14 1.0 11.7 87.3
Adj 228 0.79 0.04 0.981 0.87 5.22 0.0 33.5 66.5

a MB=mean bias (kg/d); Cb=Lin’s (1989) accuracy; CCC=Lin’s (1989) concordance correlation coefficient;
RMSEP=root of mean square error of prediction (kg/d); and UM, US and UR are percent decompositions of MSEP due
to mean bias, systematic bias and random errors (Tedeschi 2006).
b 1=Kononoff et al. (2006), 2=Ruiz et al. (2002), 3=Stone (1996), 4=Ruiz et al. (2001) and 5=EMBRAPA (FernandoC. F.
Lopes, unpublished).
c Observed milk production values are unadjusted (Unadj) or adjusted (Adj) for random effects of studies.
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bias of CNCPS-based models in predicting milk pro-
duction.
The CPM Dairy 3.0 predicted that 0.76 (n=173

cows) of the milk production was limited by protein
(MP allowable milk) and 0.24 (n=55 cows) was
limited by energy (ME allowable milk). Changes
in BCS might have affected the prediction of the
first-limiting ME or MP allowable milk as shown
by Tedeschi et al. (2006). The extent of this BCS
change depends upon energy reserves at calving.
This is because under-conditioned cows consume
more feed and mobilize less body reserves than over-
conditioned cows (Overton & Waldron 2004), which
will consume less feed. The magnitude of the energy/
protein loss or gain may be indicated and monitored
in terms of predicted BCS changes. When cows do
not lose, or even gain, BCS during the early stages
of the lactation cycle, this may reflect inadequate MP,
especially if milk production does not achieve a high
peak but is relatively a lower peak following partur-
ition (Garnsworthy & Topps 1982; Garnsworthy &
Jones 1987).
Figure 1 depicts the frequency and distributions of

observed and model-predicted milk production. The
data had slightly different distributions as assessed by
the x2 (Figs 1 A and 1 B). Based on the Kolmogorov–
Smirnov ranking analysis (Kolmogoroff 1933), the
observed milk production had a Weibull distribution
whereas the model-predicted had a normal distri-
bution. This is an evaluation of the goodness-of-fit
of the model in which we tested whether observed
and model-predicted milk productions had the same
population distribution. The distributions were
similar but more points might be needed to obtain
a normal distribution for the observed dataset and
secure an adequate level for the Type II error – the
error of accepting model adequacy when, in fact,
models differ (Tedeschi 2006).
The null model likelihood ratio test indicated a

significant improvement over the model consisting of
no random effects and a homogeneous residual error
(P<0.001). In fact, the random coefficients model
analysis indicated that study 1 had an intercept
(P=0.029) and slope (P=0.041) different from all
other studies. Even though intercepts and slopes of the
random effects were negatively correlated (x0.62),
they were not different from zero (P=0.403). Simi-
larly, the variances of intercepts (29.48) and slopes
(0.016) of the random effects were not different from
zero (P=0.150 and 0.214, respectively). Nonetheless,
this indicates that adjustment for study effects was
needed.
The decomposition of the total sum of squares

(SS=26 032.4) into fixed effects (SSFxd), random
effects of studies (SSRnd), and uncontrolled-
random errors (SSE), reduced the SSE from 5264.2
(SSFxd+SSE) to 4135.8 (SSFxd+SSRnd+SSE),
indicating that SSRnd was responsible for 0.21 of

the SSE. Indeed, the partial coefficient of determi-
nation (Neter et al. 1996) confirmed that random
effects of studies was 0.21 and fixed effects was 0.72.
Therefore, the majority of the SS of the regression
between observed and model-predicted milk pro-
duction was accounted for by the CPM Dairy 3.0
model.
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Fig. 1. Histogram and normal distribution of (A) observed
and (B) CPM Dairy-predicted milk production using the
data of five independent studies. The 90% confidence inter-
val is shown by the vertical lines and the curve shows the bell
shape of a normal distribution. Analyses were done with
@Risk 4.5.7 (Palisade, Newfield, NY).
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These analyses suggested that when fixed effects
(CPM Dairy predictions) and random effects of
studies were combined into the same statistical
model, 0.84 [(26 032.4–4135.8)/26 032.4] of the vari-
ation was explained. Therefore, based on these
analyses, an adjusted observed milk production was
calculated removing the random effects of studies
(St-Pierre 2001). The adjusted observed milk pro-
duction was comprised of the fixed effects (CPM
Dairy predictions) plus the uncontrolled-random
error (residue) of the random coefficients model.

Table 2 lists the statistics of the model accuracy
using the adjusted observed milk production. As
expected, the coefficient of determination (R2 of 0.79),
accuracy (Cb of 0.98), CCC (0.87) and RMSEP
(5.22 kg/d) remained relatively unaltered; but mean
bias was significantly reduced from 0.52 to 0.04 kg/d.
This analysis indicated that removing the random
effects of studies further demonstrated the ability
of the CPM Dairy model to predict the average milk
production of lactating Holstein cows without chang-
ing precision and accuracy. The decomposition of the
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Fig. 2. Relationship of (A) unadjusted and (B) adjusted observed milk production for study effects to model-predicted milk
production with data from five independent studies (:=Kononoff et al. (2006); �=Ruiz et al. (2002); #=Stone (1996);
%=Ruiz et al. (2001); and +=EMBRAPA (Fernando C. F. Lopes, unpublished) using the CPM Dairy v. 3.0 model. The
solid line is the regression between Y and X and the dashed line is the Y=X line).
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MSEP indicated an increase in the proportion of sys-
tematic bias compared to the unadjusted data, likely
due to the broad aspect of our database that con-
tained climate effects (tropical v. temperate regions),
production level (high- v. low-producing cows), first
limiting component (energy- v. protein-deficient
rations) and different ration ingredients and genetics.
Figure 2 depicts the relationship of unadjusted

and adjusted observed milk production v. model-
predicted milk production of the 228 lactating
dairy cows. The simultaneous F-test indicated the
intercept and slope of both the observed milk pro-
duction (5.47 and 0.84, respectively) and for observed
milk production adjusted for study effects (8.56 and
0.73, respectively) were different from zero and one
(P<0.001), respectively. This analysis supports those
statistics listed in Table 2.

IMPLICATIONS

Based on the model evaluations performed in
the current study, it was concluded that the CPM
Dairy model accurately predicts nutrient require-
ments and diet ME and MP supply in lactating dairy
cattle at the farm level when feed intake and content
of carbohydrate and protein fractions can be ad-
equately measured or estimated. These predictions
allow for accurate formulation of diets to meet energy
and protein requirements of lactating dairy cows,
which minimizes cost and nitrogen excretion per
amount of milk produced. Further improvements in
the CNCPS-based models should include accounting
for more of individual variability of animals and im-
provements in the prediction of feed intake for use
when it is not known.
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