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Electron paramagnetic resonance (EPR) in medical dosimetry
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Abstract

This paper describes the fundamentals of electron paramagnetic resonance (EPR) and its application to retrospective measurements of
clinically significant doses of ionizing radiation. X-band is the most widely used in EPR dosimetry because it represents a good compromise
between sensitivity, sample size and water content in the sample. Higher frequency bands (e.g., W and Q) provide higher sensitivity, but they
are also greatly influenced by water content. L and S bands can be used for EPR measurements in samples with high water content but they
are less sensitive than X-band. Quality control for therapeutic radiation facilities using X-band EPR spectrometry of alanine is also presented.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Gordy et al. (1955) first reported radiation-induced electron
paramagnetic resonance (EPR) signals in irradiated skull bone
almost 50 years ago. Brady et al. (1968) proposed the applica-
tion of EPR spectroscopy to ionizing radiation dosimetry. Since
that time, EPR dosimetry has been applied to radiation dose
reconstruction, identification of irradiated food, radiation ther-
apy, radiation processing quality assurance and archaeological
dating. Tooth enamel, dentine, bone and alanine are some ex-
amples of materials successfully applied to these applications
(Desrosiers and Schauer, 2001).

Until recently the use of this technology was limited to iso-
lated samples. However, recent EPR developments have made
in vivo measurements possible. This paper describes the tech-
nique and its application to retrospective measurements of clin-
ically significant doses of ionizing radiation from unplanned
exposures. This paper will also discuss the amino acid alanine
and its role in ensuring accurate and precise clinical dosimetry
(ISO/ASTM 51607, 2002).

2. EPR dosimetry fundamentals

A detailed description of EPR fundamentals and dosime-
try essentials can be found in Desrosiers and Schauer (2001).

∗ Corresponding author. Tel.: +1 301 295 9806.
E-mail address: schauer@NCRPonline.org (D.A. Schauer).
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In brief, EPR specifically and sensitively responds to the pres-
ence of unpaired electrons. Ionizing radiation generates large
numbers of unpaired electron species. While most of these re-
act immediately and disappear, in some materials in which dif-
fusion is limited, the unpaired electrons can persist for long
periods.

This phenomenon has been recognized to occur in bone and
teeth (Gordy et al., 1955; Brady et al., 1968; Swartz, 1965;
Swartz et al., 1965). It was shown to be a feasible method for
retrospective (Brady et al., 1968; Pass and Aldrich, 1985) and
radiation accident dosimetry (Schauer et al., 1993).

The concentration of radiation-induced radicals is propor-
tional to the absorbed dose and EPR is one of the most sen-
sitive methods to measure these radicals. This phenomenon
consists of the resonance absorption of electromagnetic en-
ergy at electron-spin transitions. In order to resolve different
electron-spin levels a static magnetic field is applied. In the
simplest and most typical situation unpaired electrons of free
radicals have spin (or magnetic moment) equal to 1

2 . In a mag-
netic field there are two magnetic levels, + 1

2 and − 1
2 with

two different energies. The level with spin equal to − 1
2 has

less energy than the level with spin + 1
2 . The transition be-

tween these levels is possible under the following resonance
condition:

h̄� = g�BB, (1)

http://www.elsevier.com/locate/radmeas
mailto:schauer@NCRPonline.org
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Table 1
Various EPR spectrometer bands

Microwave band Frequency (GHz) Bres (mT)

L 1.1 39.2
S 3.0 107
X 9.75 350
Q 34.0 1200
W 94.0 3400

where � is resonance frequency, h̄ is Plank’s constant, g is the
g-factor, which is a constant approximately equal to 2 for spin
of 1

2 , and �B is the Bohr magnetron. An important element of
this formula is a linear dependence between applied magnetic
field (B) and resonance frequency. Table 1 gives information
on the conventional EPR bands and corresponding resonance
magnetic fields, Bres. In general as the frequency increases the
sensitivity increases and the size of the sample that can be
accommodated decreases. The deleterious effects on sensitivity
of the presence of water also vary with frequency, generally
decreasing, but having some “windows” of lowered effects at
some frequencies.

X-band is the most widely used in EPR biodosimetry because
it represents a good compromise between sensitivity, sample
size and water content in the sample. Higher frequency bands
(W and Q) provide higher sensitivity, but they are also greatly
influenced by water content. L and S bands can be used for
the EPR measurements in samples with high water content but
they are less sensitive than X-band.

The device for EPR registration is called an EPR spectrom-
eter. There are four main components of an EPR spectrometer
to consider:

• Electromagnet with regulated power supply to provide scan-
ning of the resonance conditions.

• Microwave module, which consists of microwave generator,
microwave cavity and detector(s).

• Signal channel, which provides amplification, processing
and recording of the microwave absorption in the sample
while the magnetic field scans the resonance condition.

• Magnetic field modulation, which superimposes a rapidly
varying small magnet field. This usually increases sensitiv-
ity through suppression of noise by using phase sensitive
detection of the modulation signal. This usually results in
the output being in the form of the first derivative of the
absorption curve (Fig. 1).

Every species of electronic spins has its own EPR spec-
trum, which is distinguished by the linewidth, shape and reso-
nance field. The latter value is proportional to the g-factor (see
Eq. (1)), which is about the same (equal to 2) for all 1

2 spins. The
peak-to-peak amplitude is usually proportional to the amount
of spins, and in the case of EPR dosimetry to the radiation-
induced radicals or absorbed dose.

Teeth are especially useful because the signal intensity is
stronger, due to the high stability of the unpaired electrons in the
hydroxyapatite matrix of the enamel. Most dosimetry studies

340 342 344 346 348

-1500

-1000

-500

0

500

1000

1500

A

Hr

Base line

ΔH

1
s
t  
d
e
ri
v
a
ti
o
n
 o

f 
m

w
 a

b
s
o
rp

ti
o
n
, 
a
rb

. 
u
n
.

Magnetic field, mT

Fig. 1. EPR spectrum with definitions of some of its parameters; peak-to-peak
linewidth, �H ; resonance field, Hr ; peak-to-peak amplitude, A.

based on teeth have been carried out in isolated samples at con-
ventional EPR frequencies (e.g. 9 GHz). This frequency, which
is referred to as X-band, has high sensitivity. Isolated teeth can
be processed to enhance sensitivity, concentrating the compo-
nents that have the EPR signal and removing aqueous compo-
nents that lead to non-specific absorption of the microwaves.
Using this approach, it has been possible to measure doses in
the range of 30 mGy in isolated teeth. This approach has been
used extensively in analysis of exposures in the former So-
viet Union (Chumak et al., 1998; Ishii et al., 1990; Ivannikov
et al., 1997, 2002; Romanyukha et al., 1994, 1999, 2000) and
for some retrospective measurements in Japan (Hoshi et al.,
1985; Nakamura et al., 1998).

With the recent development of lower frequency EPR (e.g.
1 GHz) for making measurements in vivo with good sensitivity,
it becomes possible to assess the amount of irradiated dose
without tooth extraction. This is feasible because the lower
frequency has greater tolerance for the presence of water and
also has a relatively large sample volume. The feasibility of this
approach has been shown in animals and its potential for use in
human subjects was demonstrated by making measurements in
isolated human teeth and comparing these measurements with
isolated rat teeth and with rat teeth measured in vivo (Miyake
et al., 2000).

3. EPR medical dosimetry applications

There are plausible circumstances in which populations
potentially have been exposed to doses of ionizing radiation
that could cause direct clinical effects within days or weeks,
but there is no clear knowledge as to the magnitude of the
exposure to individuals. It is likely that many of the indi-
viduals will not have received clinically significant doses of
radiation, while others may have been exposed to performance-
degrading or potentially life-threatening doses. A method
that could differentiate among doses sufficiently to classify
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Table 2
Triage table for radiation effects (dose, initial symptoms and timing)

Dose range (cGy) Initial symptoms Time of initial symptoms (begin/end)

0–75 None to slight incidence of transient 6 h/12 h
headache and nausea. Vomiting in
up to 5% of personnel in upper part
of dose range.

75–125 Transient mild nausea and vomiting 3–5 h/1 day
in 5–30% of personnel

125–300 Transient mild to moderate nausea 2–3 h/2 days
and vomiting in 20–70% of
personnel. Mild to moderate
fatigability and weakness in 25–60%
of personnel

300–530 Transient moderate nausea and 2 h/3–4 days
vomiting in 50–90% of personnel.
Mild to moderate fatigability in 60–
90% of personnel

530–830 Moderate to several nausea, Within the first
vomiting in 80–100% of personnel. hour/days to weeks
Moderate to extreme fatigability in
90–100% of personnel.

Data excerpted from STANAG No. 2083, Commander’s Guide on Nuclear Radiation Exposure of Groups.

individuals into categories for treatment with sufficient accu-
racy to facilitate decisions on medical treatment could have
great benefit. Table 2 provides five dose ranges, initial symp-
toms and timing published by the North Atlantic Treaty Or-
ganization (STANAG 2083). Individuals with significant risk
could have appropriate procedures initiated immediately, while
those without a significant probability of acute effects could
be reassured and removed from the need for further medical
treatment. Such a division into appropriate treatment classes
could be extremely valuable under circumstances such as a
terrorist incident or accidental release of radiation where many
people feel that they may have been exposed. The immediate
measurements at the individual level would minimize panic
and allow limited resources to be used more effectively.

The desirable characteristics of a method that provides an
adequate solution to the problem include:

1. applicable to individuals;
2. non-invasive;
3. provide unambiguous data that are sufficient to make the

differentiation into the designated dose subclasses;
4. provide the data rapidly and clearly;
5. can operate in a variety of environments;
6. can be operated by minimally trained individuals.

3.1. EPR dosimetry results of teeth using low-frequency EPR

While the ability of conventional EPR frequencies has been
demonstrated (see Fig. 2) the ability of low-frequency EPR
to make sensitive measurements in human teeth needed to be
demonstrated. Miyake et al. (2000) were the first to demonstrate
this capability. Fig. 3 demonstrates the type of resolution of
doses that are feasible in human teeth using low-frequency

EPR with current state of the art hardware and software. Some
dose–response relationships obtained with this technique are
shown in Fig. 4.

3.1.1. Low-frequency EPR spectrometer suitable for use in
the human mouth

Some of the present authors have developed an in vivo EPR
system designed specifically for measuring the radiation dose
in teeth in vivo. The general approach of this technique and
some of the technical developmental challenges are described.
It uses a lower frequency EPR spectrometer (1.2 GHz); a spe-
cially designed resonator that will probe teeth in vivo; a mag-
net system that can comfortably and effectively encompass the
human head; data processing to maximize sensitivity and pro-
vide an output useable by minimally trained personnel; and
instrumentation that is suitable for use at the site of potential
exposures.

The usual size and weight of a conventional magnet makes
it difficult to meet the logistical requirements for rapid mea-
surements and transportability, features that would be desir-
able for measurements of unplanned radiation exposures. This
potential limitation has been overcome by using a flat mag-
net (McDougall and Bird; McDougall; Wagshul) with a region
of sufficient homogeneity that is located appropriately in the
mouth when the subject’s head rests against the surface of the
magnet (see Fig. 5). The weight of the magnet and its power
supply is about 80 kg, which is within the range of reasonable
transportability on a cart, enabling the instrument to be brought
to the site of the population that needs to be screened. Batteries
can meet the modest power requirements for the magnet and
the spectrometer.

The resonator is another technical challenge, because of ge-
ometric constraints for obtaining data from the mouth and the
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Fig. 2. X-band EPR spectra for tooth enamel irradiated to (a) 0, (b) 0.3 and (c) 5 Gy.

EPR Spectra of Human Teeth at L-band

Empty resonator

Non-irradiated tooth

Irradiated tooth 50cGy

Irradiated tooth 100cGy

Irradiated tooth 500cGy

Irradiated tooth 1000cGy

Irradiated tooth 3000cGy

Microwave power 80mW
Modulation amplitude 4.0Gs
Time constant 30ms
Scan range 12Gs
Scan time 5sec. 400scans
Receive gain Max
Frequency 1.18GHz

Fig. 3. EPR spectra of an empty resonator, nonirradiated and irradiated human teeth measured in L-band.

irregular shape of the teeth. Ikeya and colleagues have de-
scribed the general conceptual approach, anticipating that the
measurements would be made at high frequencies (Ikeya, 1993;
Ikeya and Miki, 1980; Yamanaka et al., 1993). The practical
steps for implementing this approach at low frequency with
the requisite sensitivity have been made. The EPR signal is lo-
cated principally in the enamel of the teeth, so the optimiza-
tion of the sensitive volume of the resonator includes probing
the maximum amount of enamel. There are several productive
approaches that provide good sampling of the enamel from one

to several teeth. While in principle the sensitivity and accu-
racy of measurements made with the apparatus using isolated
teeth should be similar to those made within the mouth, there
are several considerations that require that this assumption be
tested rigorously. In particular, the presence of the oral struc-
tures could degrade the quality of the measurement because
of effects on the microwaves that are used in the measure-
ments. The initial tests in which the same resonator was used
to measure the same tooth gave a similar response within the
mouth as on the lab bench. The signal to noise ratio of this
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MAGNET FIXTURES

MAGNET COILS

MAGNETIC FLUX LINES

PATIENT

SPHERE OF HOMOGENEITY

Fig. 5. Schematic of flat magnet concept and patient orientation as realized by Resonance Research, Inc.

measurement was less within the mouth, but in view of the fact
that this was the first such measurement and that there are a
number of factors that can be further optimized, this result indi-
cates that measurements within the mouth will be comparable
to those already achieved outside of the mouth.

A third area of technical challenge is the need to optimize
a weak signal, which includes an overlapping background sig-
nal. With isolated teeth, the dose–response for the tooth can
be determined with the use of added calibrated doses, with
extrapolation back to the original dose. This option, of course,
cannot be used with teeth in vivo. Instead, we have measured
the responses of a large number of teeth to provide a library
that can be used to estimate the dose directly. To differentiate
between the background signal and the radiation-induced sig-
nal, measurements are performed at two different microwave
powers for which the two signals have the greatest difference
in power saturation. The output will be in the form of a spe-
cific dose with a specific estimate of the uncertainty. Making
simultaneous measurements at three sites within the mouth will
enhance the accuracy.

In its current state, the in vivo EPR dosimetry system can
provide estimates of absorbed dose of ±0.25 Gy in the range
of 0.5–1000 cGy. This is expected to improve, with improve-
ments in the resonator, the algorithm for calculating dose, and
the uniformity of the magnetic field. In its current state of
development, it probably is sufficient for most applications
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related to terrorism or nuclear warfare, for decision-making for
action for individuals in regard to acute effects from exposure
to ionizing radiation.

4. Quality control for therapeutic radiation facilities using
EPR spectrometry of alanine

The Italian National Institute of Health (ISS), in the frame-
work of continuous quality improvement programmes in radio-
therapy is coordinating various postal dosimetry intercompar-
isons among radiotherapy centers to evaluate any differences
between stated and measured doses for various radiotherapy
modalities. Doses are measured by ISS, acting as the reference
center.

Dosimetry intercomparison requires a proper measurement
system operated by a well-recognized reference body. TLDs
are used world-wide (IAEA, ESTRO, USA, UK) as transfer
standards because of reliability, low uncertainty and easy dis-
tribution through the mail.

However, the ISS has pioneered the use of alanine as part
of their radiation therapy quality assurance program. The
choice of alanine was made on the basis of the positive alanine
characteristics, which include low uncertainty, tissue equiva-
lence, dose rate and energy independence, high stability of the
response, small dimensions, non-destructive readout proce-
dure, and mailability. These characteristics give alanine a high
potential for medical applications.

The radiation dosimeter is prepared using �-alanine,
CH3–CH(NH2)–COOH, in the form of polycrystalline pow-
der. The most commonly used form is L-alanine, however,
both stereosiomers are useful for absorbed dose measure-
ments (ISO/ASTM, 2002). Fig. 6 is a typical EPR spectrum or
irradiated alanine. The radiation-induced signal intensity, S, is
proportional to the absorbed dose.

The EPR spectrometer used to analyze the alanine should be
capable of the following settings:

• Microwave frequency 9 to 10 GHz with automatic field fre-
quency locking.

• Corresponding magnetic field to set a g-factor of 2.0 (at
9.8 GHz, this equals 350 mT) with a field scan range of 20 mT
about the center field.

• Radiofrequency modulation amplitude 0.1–1 mT.
• Microwave power 0.1–10 mW (leveled).
• Variable sweep time, time constant, and receiver gain depen-

dent on absorbed dose.
• Sensitivity of the spectrometer should be at least 2 ×

1011 spins/mT.
• Cavity should have a sample access diameter of at least 1 mm

greater than the diameter of the dosimeter being analyzed.

The combination of the growth of sites where radiation ther-
apy is being carried out and the increasing sophistication of
the methods by which therapeutic radiation is delivered high-
lights the importance of independent quality control. Clinical
audits are generally considered of primary importance in im-
proving quality in the radiotherapy process. They are accepted

Fig. 6. EPR spectrum of irradiated alanine.

as a potential tool in the complex sequence involved in patient
treatment and to find systematic errors in dose delivery.

Other clinical applications of EPR spectrometry of alanine
include brachytherapy (De Angelis et al., 1999), proton therapy
(Nichiporov et al., 1995; Onori et al., 1997), electron arc therapy
treatment planning verification (De Angelis et al., 2000) and
total body irradiation (Indovina et al., 1989).

5. Other applications and future developments

Desrosiers et al. (1993) reported on the results of measure-
ments of radiopharmaceutical absorbed doses. Therapeutic and
palliative uses of bone-seeking radiopharmaceuticals have un-
dergone clinical trials for human subjects. Radiation dosimetry
for these applications is based on the Medical Internal Radia-
tion Dosimetry (MIRD) schema. An experimental method for
dosimetry of bone tissue based on EPR spectrometry has been
validated. Results for beagle bone exposed to radiopharmaceu-
ticals under clinical conditions indicated that these measure-
ments give approximately the calculated dose, but suggest that
the dose distribution may be non-uniform.

There are many aspects to the types of quality control mea-
sures that are needed, and no single method will cover all of
them. In vivo EPR dosimetry does appear to have the potential
for covering one important aspect: after-the-fact monitoring of
the accuracy of calculated dose distribution.

The approach would be selective to monitor patients who
have received radiation treatments that include significant doses
to the teeth. The accuracy of the combination of the delivery of
the dose and the calculation of its distribution in the oral cav-
ity could readily be checked retrospectively by measurements
of the EPR signals in the teeth. Several different teeth could
be measured, providing data on the distribution of dose within
the oral cavity. By selecting patients that have had relatively
large doses to the teeth, the accuracy of the measurements by
EPR should be at least ±5%. While this clearly would pro-
vide measurements only on a limited number of patients with
a limited range of conditions, the measurements should be a
valid indicator of the overall level of performance of the facil-
ity. This approach would have the very significant advantage
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of having the measurement being completely objective and in-
dependent of any measurements by the facility for the quality
control aspect. No dosimeters would need to be put in place
and there should be no possibility of errors in the placement
of the dosimeters. Once the treatment is completed, the signals
in the teeth persist indefinitely, so there would be no time con-
straints as to when the measurements were made. If potential
problems would be identified in the measurements, the moni-
toring could be extended to additional patients whose radiation
treatment had the appropriate characteristics.

Other promising research is being conducted with Q-band
(35 GHz) EPR measurements on small (∼ 10 mg) tooth sam-
ples. The potential advantages of this approach are the mini-
mally invasive nature of the sample extraction and enhanced
spectral resolution.
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