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ABSTRACT / Ecoregion classification systems are increas-
ingly used for policy and management decisions, particu-
larly among conservation and natural resource managers. A
number of ecoregion classification systems are currently
available, with each system defining ecoregions using dif-

ferent classification methods and different types of data. As
a result, each classification system describes a unique set
of ecoregions. To help potential users choose the most
appropriate ecoregion system for their particular applica-
tion, we used three latitudinal transects across North
America to compare the boundaries and environmental
characteristics of three ecoregion classification systems
[K6chler, World Wildlife Fund (WWF), and Bailey]. A variety
of variables were used to evaluate the three systems,
including woody plant species richness, normalized differ-
ence in vegetation index (NDVI), and bioclimatic variables
(e.g., mean temperature of the coldest month) along each
transect. Our results are dominated by geographic patterns
in temperature, which are generally aligned north–south,
and in moisture, which are generally aligned east–west. In
the west, the dramatic changes in physiography, climate,
and vegetation impose stronger controls on ecoregion
boundaries than in the east. The K6chler system has the
greatest number of ecoregions on all three transects, but
does not necessarily have the highest degree of internal
consistency within its ecoregions with regard to the biocli-
matic and species richness data. In general, the WWF
system appears to track climatic and floristic variables the
best of the three systems, but not in all regions on all
transects.

Over the past several decades, government agencies
and conservation groups have increasingly used ecore-
gion classification systems to gain a better understand-
ing of the lands, ecosystems, and species that they seek
to manage and protect. A number of ecoregion con-
cepts and ‘‘systems’’ have been developed to provide
the necessary basis for policy, planning, and imple-
mentation of management and conservation plans. In

North America, different land management agencies
and conservation groups have selected different eco-
region systems for these purposes; for example, the US
Forest Service developed and uses a system under the
primary authorship of R. G. Bailey (Bailey 1983, 1984,
1997, 1998), whereas the US Environmental Protection
Agency developed the system authored by J. M. Omer-
nik (1987, 1995a, 1995b). Both systems have been used
by conservation organizations: The Bailey system has
been modified and used by The Nature Conservancy for
ecoregional planning (Groves and others 2000),
whereas the Omernik system has been modified and
adapted for conservation purposes by the World Wild-
life Fund (WWF) (Ricketts and others 1999a, 1999b).

Many of the ecoregion classification systems devel-
oped for North America are similar in some respects.
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For example, many ecoregion classification systems
have ecoregion configurations that capture the domi-
nant patterns of vegetation in North America,
approximating the patterns found in Küchler’s maps of
potential natural vegetation (Küchler 1964, 1973, 1985,
1993) or in the distribution maps of trees and shrubs of
E. L. Little, Jr. and colleagues (Little 1971, 1976, 1977,
1978, 1981). The major ecoregion classification systems
differ from one another in several significant ways,
however, due to differences in the underlying
assumptions, goals, and individual choices of the vari-
ous investigators employing the ‘‘art’’ of devising eco-
region boundaries. Given these differences, how
should potential users choose which ecoregion system
to employ in their work? This study explores the pos-
sibility of differentiating among the systems based on
an analysis of ecoregion divisions, the nature of the
boundaries between adjacent ecoregions, the internal
consistency of geologic, climatic, vegetation, and flo-
ristic characteristics, and the identification of the
dominant environmental factors determining ecore-
gion extents and boundaries.

In this article, we compare three ecoregion systems
along three continental transects at approximately
35�N, 40�N, and 45�N in subtropical, temperate, and
temperate/subboreal North America (Figure 1). For
each transect, we present data at 25-km intervals on
topography, bioclimate [mean temperature of the
coldest month (MTCO), growing degree-days on a 5�C

base (GDD5), and a moisture index (a)], vegetation
density [as represented by the Normalized Difference
in Vegetation Index (NDVI)], and woody flora species
richness. We also measure the similarity of the woody
flora assemblages between adjacent points on the
transects and within ecoregions using the Jaccard
coefficient of similarity (Jaccard 1908). We use these
data to compare the Küchler vegetation categories (for
simplicity’s sake, referred to in this article as an eco-
region system, although developed prior to the com-
mon application of the term ‘‘ecoregion’’), the Bailey
ecoregion system, and the WWF ecoregion system.
These three systems (the internal boundaries of which
are shown on the transects in Figures 2A, 6A, 10A)
differ in concept in that the Küchler system is based
solely on potential natural vegetation (Küchler 1964),
although it indirectly integrates climate, soils, and
other environmental variables that influence vegeta-
tion distribution. The Bailey system incorporates cli-
mate, topography, and vegetation (Bailey 1983, 1998).
The Omernik system, on which the WWF system is
partly based, integrates soils, land surface form, po-
tential natural vegetation, land use, and other variables
(Omernik 1987).

We compare these three ecoregion classification
systems using two different types of analysis. The first
analysis involves comparing adjacent grid points along
each of the transects. This analysis examines the spatial
trends along the transects as well as the nature of the

Figure 1. The 1951–1980 30-year mean North American distributions of the mean temperature of the coldest month (MTCO;
left panel), growing degree-days on a 5�C base (GDD5; center panel), and a, the moisture index (right panel). These data are
from Thompson and others (1999a). The location of the three transects discussed in this report are shown as black (or white)
stripes at 35�N (the subtropical transect), 40�N (the temperate transect), and 45�N (the temperate/subboreal transect).
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transitions at ecoregion boundaries under each of the
three ecoregion systems. The second analysis assesses
the internal consistency of the environmental and flo-
ristic characteristics for each ecoregion encountered

along the transects. This analysis addresses the ques-
tion of whether any of the ecoregion systems are more
internally consistent with regard to the bioclimatic and
floristic data examined in this study.

Figure 2. The 35�N (subtropical) transect of North America showing the 25-km grid points across the continent. This illus-
tration is designed for point-to-point comparisons of adjacent points and for comparison of the elevation, bioclimatic, and
floristic data with the ecoregion boundaries. For each transect grid point, the panels are as follows (from bottom to top): (A)
The boundaries of the ecoregions encountered on this transect for the Küchler potential natural vegetation categories (bot-
tom), the World Wildlife Fund (WWF) ecoregions (center), and the Bailey ecoregions (top). Vertical lines represent boundaries
between ecoregions, and the greater the vertical offset between adjacent transect points, the greater the perceived ecoregion
classification difference between these points. (See Table 1 for the list of ecoregions and ecoregion numbers.) (B) Elevation
(m). (C) Mean temperature of the coldest month (MTCO). (D) Growing degree-days on a 5�C base (GDD5). (E) Moisture index
(a). (F) Maximum value of the Normalized Difference in Vegetation Index (NDVI). (G) Number of woody species (‘‘species
richness’’; black) and the number of unique species for each grid cell summed with the number of unique taxa in the grid cell
directly to the east (gray). (H) Jaccard similarity coefficient as a measure of the similarity between each grid point and the
adjacent point to the east.
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Datasets

We used a variety of environmental variables to
analyze the ecoregions in this study. Variables were
chosen that were considered to be important in
defining ecoregion characteristics and boundaries.
Each dataset used in this study, including the geo-
graphic information system (GIS) layers of the three
ecoregion classification systems, was applied to a 25-km
equal-area grid of North America.

Ecoregions

We acquired GIS datasets of each of the three eco-
region systems analyzed in this study. From the ‘‘Po-
tential Natural Vegetation of the Conterminous United
States’’ dataset (Küchler 1964, 1993), we examined 61
vegetation types (ecoregions) for the conterminous
United States; from the ‘‘Ecoregions of North Amer-
ica’’ dataset (Bailey 1997, 1998), we used the 30 prov-
ince-level ecoregions; and from the ‘‘Terrestrial
Ecoregions of the World’’ dataset (WWF; Olson and
others 2001, adapted from Omernik 1995b), we used
44 ecoregions.

Normalized Difference in Vegetation Index

The Normalized Difference in Vegetation Index
dataset (USGS and others 1997) was derived from 1-km
Advanced Very High Resolution Radiometer (AVHRR)
data spanning April 1992 through March 1993.
Monthly NDVI composites were used to assign values
ranging from 0 to 1 to each grid point on the three
transects, where increasing NDVI values indicate
increasing green vegetation, and zero values indicate
nonvegetated features (such as water, ice, snow, or
clouds).

Elevation, Bioclimate, and Woody Flora

Elevational, bioclimatic, and woody floristic data
were from the Atlas of Relations Between Climatic
Parameters and Distributions of Important Trees and Shrubs
in North America (Thompson and others 1999a, 1999b,
2000). The elevational data were calculated by bilin-
early interpolating elevations from the ETOPO5
dataset (Edwards 1992) to each 25-km grid point in
North America (Thompson and others 1999a). The
bioclimatic data were calculated from a 1951–1980 30-
year mean monthly climate dataset developed by P. J.
Bartlein and B. Lipsitz (University of Oregon) using
data from more than 8000 North American weather
stations (Thompson and others 1999a). Distances
from the nearest weather stations and local eleva-
tional profiles were important determinants of the
estimated climate at each 25-km grid point [see

Thompson and others (1999a) for further discussion].
Three bioclimate variables were calculated from the
1951–1980 30-year mean climate data: the mean
temperature of the coldest month (MTCO) (Prentice
and others 1992), annual growing degree-days on a
5�C base (GDD5) (Newman 1980), and a, an annual
moisture index calculated as actual evaporation di-
vided by potential evaporation (based on Thorn-
thwaite and Mather 1955, 1957; Willmott and others
1981, 1985).

The woody floristic data from Thompson and others
(1999a, 1999b, 2000) consisted of digitized present-day
distributions of more than 600 woody species from the
Atlas of United States Trees (Little 1971, 1976, 1977, 1978,
1981; Critchfield and Little 1966). Additional distri-
bution data were obtained from Bailey (1970), Benson
and Darrow (1981), and Yang (1970).

Methods

We carried out two basic analyses with the data de-
scribed above. First, we did a point-to-point compari-
son analysis along transects formed of the nearest grid
points to the latitudes of 35�N, 40�N, and 45�N. Sec-
ond, we examined the internal consistency of the bio-
climatic variables, species richness, and floristic
content of each ecoregion encountered along each
transect.

Point-to-Point Comparisons

The point-to-point comparison analysis used three
latitudinal transects defined by choosing the nearest
25-km grid points to 35�N, 40�N, and 45�N across
North America (Figure 1). The 35�N transect (Fig-
ures 2–5) represents the subtropical conditions in the
southern United States, where mean winter tempera-
tures remain above freezing. The 40�N transect (Fig-
ures 6–9) passes through temperate zones in the
middle of the United States, where mean winter tem-
peratures can commonly drop below freezing. The
45�N transect (Figures 10–13) passes through temper-
ate and subboreal regions in the northern contiguous
United States and adjacent eastern Canada, where se-
vere winters are more common along most of the
transect. The longitudinal breadth of the three tran-
sects (literally from ocean to ocean) provides a wide
range of moisture and physiographic conditions, with
the 100th meridian being the general dividing line
between the relatively humid moisture conditions and
low topographic variability of the ‘‘East’’ and the gen-
erally semiarid to arid moisture conditions and high
topographic variability of the ‘‘West’’ (Powell 1878).
We did not evaluate transects from farther north or

S128 R. S. Thompson and others



farther south because our climate and floristic data are
not as robust in tropical and boreal regions as they are

in the subtropical to subboreal latitudes of North
America.

Figure 3. Histograms illustrating the degree of internal consistency of the bioclimatic, species richness, and woody flora data
for Küchler ecoregions encountered on the 35�N transect from west to east (top to bottom). The vertical bars of the histograms
illustrate the proportion of the total range of the ecoregion (with regard to a given variable) that occurs within the width of the
bar on the x-axis [see Thompson and others (1999a) for greater detail]. If a given ecoregion occurs more than once on the
transect, it is shown only once (in its westernmost position). The five vertical sets of panels are (from left to right) MTCO, GDD5,
a, species richness, and the mean Jaccard similarity coefficient.
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For the point-to-point analyses, we plotted the fol-
lowing data along each transect (Figures 2, 6, and 10):

A. Boundaries between adjacent ecoregions (Küchler
on the bottom, WWF in the center, Bailey on top)

B. Elevation (m)
C. Mean temperature of the coldest month (MTCO;

�C)
D. Growing degree-days on a 5�C base (GDD5)

(Newman 1980)
E. A moisture index (a) calculated as annual actual

evaporation divided by annual potential evapora-
tion (Thornthwaite and Mather 1955, 1957; Will-
mott and others 1985)

F. The maximum monthly value of NDVI from
monthly NDVI composites for the period April
1992 to March 1993 (‘‘maximum NDVI’’ as a
measure of plant density) (USGS and others 1997)

G. Species richness (i.e., the number of woody species
per grid point) and the number of unique species,
calculated by comparing the species in each grid
cell with those in the grid cell immediately to the
east along the transect and summing the number
of species unique to the western grid cell with the

number of species unique to the eastern grid cell.
H. The Jaccard similarity coefficient for each grid

point and the adjacent grid point to the east

Jaccard similarity coefficient. We selected the Jaccard
similarity coefficient (Jaccard 1908; Schweitzer 1994)
to quantitatively compare the presence–absence data
of woody plant occurrences between and among grid
points. This coefficient ranges from 0 (no species in
common) to 1.0 (the two assemblages being com-
pared have exactly the same species composition).
The coefficient is calculated by dividing the number
of shared species between two assemblages by the sum
of the number of shared species, the number of
species unique to the first assemblage, and the num-
ber of species unique to the second assemblage, such
that

Jaccard similarity coefficient ¼ C

A þ B þ C

where A = number of species unique to the first
assemblage, B = number of species unique to the sec-
ond assemblage, and C = number of shared species
between the two assemblages.

Figure 4. Histograms illustrating the degree of internal consistency of the bioclimatic, species richness, and woody flora data
for WWF ecoregions encountered on the 35�N transect from west to east (top to bottom). See Figure 3 for a description of the
histograms.
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Ecoregion boundaries. To examine the similarities and
differences among the three ecoregion systems, we
determined the ecoregion assignment for each 25-km
grid cell on each transect for each of the three ecore-
gion systems. We marked the boundaries between
adjacent ecoregions with vertical lines to graphically
compare the assigned boundaries between ecoregion
systems (Figures 2A, 6A, and 10A). Table 1 lists the
numerical designation of each ecoregion in its original
published form, along with a new set of numbers that
we assigned for use in this study. Under our new
numerical scheme, changes between ecoregions within
a broad category (such as a change from one forest
type to another) are represented by small differences
in numbers. Shifts from one broad category to another,
such as a change from forest to grassland, are repre-
sented by larger shifts in numbers. For example, for the
Küchler 35�N transect (Figure 2A) the reader can
compare the shifts in ecoregion number and infer the
back-and-forth elevation-controlled changes between
the forests and grassland/desert scrub along the tran-

sect from the Pacific Ocean on the left to approxi-
mately 100�W longitude. The ecoregion boundaries
were also visually compared with the transects of ele-
vation, bioclimatic, and floristic data to determine
whether the ecoregion boundaries captured significant
patterns in these environmental data.

Examination of the Internal Consistency of
Ecoregions

To explore the degree of internal environmental
consistency within ecoregions, we constructed histo-
grams portraying the distributions of the bioclimatic
and floristic data for every ecoregion encountered on
each transect (Figures 3–5, 7–9, and 11–13). For each
ecoregion, we produced histograms of the bioclimatic
data (MTCO, GDD5, a), species richness, and the
mean Jaccard similarity coefficient. The mean Jaccard
similarity coefficient histogram values are the mean of
the individual Jaccard similarity coefficients calculated
for the woody flora at each grid point within an eco-
region as compared with each of the other grid points

Figure 5. Histograms illustrating the degree of internal consistency of the bioclimatic, species richness, and woody flora data
for Bailey ecoregions encountered on the 35�N transect from west to east (top to bottom). See Figure 3 for a description of the
histograms.
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in the ecoregion, whether or not the other ecoregion
points fall on any of the three transects. For all of the
histogram plots, the height of the histogram bars (y-
axis) represents the percentage of the total number of
points within a given ecoregion that have values that
fall within the range represented by the width of each
histogram column (x-axis).

Results

Environmental Trends

We examined the degree to which each ecoregion
system reflects topographic, bioclimatic (MTCO, GDD5,
a), vegetation density (NDVI), and floristic (species
richness, unique species) characteristics of the land-

scape along each of the three transects (Figures 2, 6, and
10). For all of the transects, the elevational data illustrate
the strong contrast between the high relief and generally
high elevation of the western United States compared
with the lower relief and relatively lower elevation of the
eastern states at the transect latitudes.

Strong topographic influences are evident in the
pattern of the bioclimatic variables across North

Figure 6. The 40�N (temperate) transect of North America showing the 25-km grid points across the continent. See Figure 2
for a description of the categories in this figure.

Figure 7. Histograms illustrating the degree of internal
consistency of the bioclimatic, species richness, and woody
flora data for Küchler ecoregions encountered on the 40�N
transect from west to east (top to bottom). See Figure 3 for a
description of the histograms.

c
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America along all of the transects. East of the Rocky
Mountain front (approximately 105�W) on the 35�N
transect, MTCO remains above freezing, whereas the
mountains and valleys between approximately 115�W
and 105�W experience more frequent below-freezing
temperatures (Figure 2C). West of 115�W, MTCO again
remains above freezing. Below-freezing winter temper-
atures occur across the continent at 40�N except in the
Central Valley and coastal portions of California (Fig-
ure 6C). The winters are most severe in the Colorado
Rockies and intermountain region of the western Uni-
ted States (Figure 6C). Along the 45�N transect, MTCO
values are uniformly below freezing, except for a narrow
band along the Pacific Coast (Figure 10C).

GDD5 is also influenced by topography with higher
GDD5 values generally occurring at lower elevations.
GDD5 values on the 35�N transect are relatively high in
the deserts west of 115�W (Figure 2D), lower in the

Rocky Mountains, and then higher east of the Rocky
Mountain front. Along both the 40�N and 45�N tran-
sects, relatively high values of GDD5 across the Great
Plains reflect the hot summers that occur in this region
(Figures 6D and 10D).

The moisture index is uniformly high east of
approximately 100�W along all three of the transects
(Figures 2E, 6E, and 10E). West of this longitude, only
the high mountains and coastal regions have relatively
high moisture indices on the transects. There is a dis-
tinct contrast in the data between the largely west–east
pattern of moisture, and the north–south pattern of
temperature (see Figure 1 for a continental-scale per-
spective).

The NDVI values (Figures 2F, 6F, and 10F) repre-
sent vegetation density along the transects, which
largely reflects continental patterns of moisture avail-
ability: Vegetation density is generally low west of

Figure 8. Histograms illustrating the degree of internal consistency of the bioclimatic, species richness, and woody flora data
for WWF ecoregions encountered on the 40�N transect from west to east (top to bottom). See Figure 3 for a description of the
histograms.
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100�W and uniformly high east of that longitude. The
west–east contrast in maximum NDVI values (Fig-
ure 6F) closely follows the pattern of moisture avail-
ability, with lower values in the West (except where
higher values occur in the relatively moist western
montane and coastal environments) and sustained
high values across the East. The 45�N transect has
higher values of NDVI in the West than do the other
two transects (Figure 10F).

There is also a strong relationship between moisture
availability (Figures 2E, 6E, and 10E) and species
richness (Figures 2G, 6G, and 10G). East of 100�W, the
number of woody species per transect grid point in-
creases from west to east as moisture increases, and it is
uniformly above 40 species east of approximately 95�W
on the 35�N and 40�N transects (Figures 2G and 6G).
Lower species richness values in the East on the 45�N
transect (Figure 10G), as compared with the 40�N and
35�N transects, might be due to temperature limita-
tions on vegetation at this latitude, whereas the some-
what higher species richness values along the western
part of the 45�N transect (compared to the 40�N and
35�N transects) might be the result of increased mois-
ture.

For all three transects, there is a strong contrast
between the proportion of unique species between the
West and the East. In the West, nearly every transect
point has a large proportion of unique species (com-
pared with its neighbors); whereas in the East, the
proportion of unique species is low relative to species
richness, with the exception of the changes in flora on
the sediments of the Mississippi River floodplain
(approximately 90�W on the 35�N transect), which are
probably edaphically controlled.

The pattern of similarity measured by the Jaccard
similarity coefficient (Figures 2H, 6H, and 10H) shows
a strong west–east contrast. West of 100�W, there are
apparently major changes in woody flora over short
distances, as the transect crosses mountains, valleys,
and plains. In contrast, east of that longitude, adjacent
transect grid points have very similar woody floras. The
point-to-point Jaccard similarity coefficient analyses are
uniformly high from the Rocky Mountains eastward to
the Atlantic Coast, suggesting gradual shifts in floristic
composition across this span. The generally low Jaccard
similarity coefficients in the western United States
indicate much greater floristic change over short dis-
tances along the transects, which is expected in areas of

Figure 9. Histograms illustrating the degree of internal consistency of the bioclimatic, species richness, and woody flora data
for Bailey ecoregions encountered on the 40�N transect from west to east (top to bottom). See Figure 3 for a description of the
histograms.
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high relief. However, the low number of species at
these western grid points also is affecting the Jaccard
similarity coefficient values.

Ecoregion Boundaries Compared with
Environmental and Floristic Changes

As illustrated in Figure 2A, the Küchler system has
many more divisions than either of the other two
ecoregion classification systems, especially in the wes-
tern United States. The Küchler system reflects rela-
tively small-scale differences in topography and climate
along each transect. For example, the spatial resolution

of the Küchler system is such that it registers the
complex back-and-forth oscillation of the prairie-forest
border near 95�W (Figure 2A). Conversely, the Küch-
ler system treats the complexity of the Appalachian
region’s topography, climate, and vegetation with a
broad-brush approach. In the western United States

Figure 10. The 45�N (temperate/subboreal) transect of North America showing the 25-km grid points across the continent.
See Figure 2 for a description of the categories in this figure. The white gaps in the data between 90�W and 80�W indicate where
the transect crosses the Great Lakes. The Küchler ecoregions (panel A) have additional gaps where the transect crosses into
Canada, which was not included in the Küchler classification system.

Figure 11. Histograms illustrating the degree of internal
consistency of the bioclimatic, species richness, and woody
flora data for Küchler ecoregions encountered on the 45�N
transect from west to east (top to bottom). See Figure 3 for a
description of the histograms.

c
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along the 40�N transect (Figures 6A), the Küchler
boundaries align well with environmental and floristic
changes in the transect data. Particularly prominent is
the sharp break in environmental conditions and Jac-
card similarity coefficients at the Rocky Mountain front
in Colorado(approximately 105�W). Küchler, WWF,
and Bailey ecoregion systems all reflect large changes
at this location.

The WWF ecoregion system has many fewer divi-
sions than the Küchler system on all three transects,
particularly in the western United States, where major
areas of desert–grassland–steppe are treated as single
units on the 35�N transect (Figure 2A). Many of the
Basin-and-Range changes in the West registered in the
Küchler system are also grouped into a single division
under the WWF system on the 40�N transect (Fig-

ure 6A). The WWF system treats the forest–prairie
transition region at 95�W as a single unit on the 40�N
and 45�N transects and also provides a relatively simple
portrayal of the Appalachian region, albeit with
boundaries offset from those of Küchler (Figures 6A
and 10A). Major changes in bioclimatic variables align
with WWF boundaries, especially in the western United
States. Changes in the number of unique species and
species richness also register well in the WWF ecore-
gion boundaries along the 35�N transect (Figure 2G).
Along the 40�N and 45�N transects, some of these
ecoregion divisions correspond with low Jaccard simi-
larity coefficient values (Figures 6H and 10H), al-
though many others do not.

The Bailey ecoregion system has fewer divisions
than the other two systems in the western United States

WWF Ecoregions for 45°N transect (top = West, bottom = East)
CONIFER OR TEMPERATE BROADLEAF FORESTS - 
Coniferous Forests - Central Pacific Coastal Forest

CONIFER OR TEMPERATE BROADLEAF FORESTS - 
Broadleaf and Mixed Forests - Willamette Valley Forest

CONIFER OR TEMPERATE BROADLEAF FORESTS - 
Coniferous Forests - Central and Southern Cascades Forest

CONIFER OR TEMPERATE BROADLEAF FORESTS - 
Coniferous Forests - Eastern Cascades Forest

GRASSLANDS, SAVANNAS, SHRUBLANDS - 
Grasslands/Savanna/Shrub - Palouse Grassland

CONIFER OR TEMPERATE BROADLEAF FORESTS - 
Coniferous Forests - Blue Mountains Forest

CONIFER OR TEMPERATE BROADLEAF FORESTS - 
Coniferous Forests - South Central Rockies Forest

MEDITERRANEAN and XERIC FORMATIONS - 
Xeric Shrublands/Deserts - Snake/Columbia Shrub Steppe

GRASSLANDS, SAVANNAS, SHRUBLANDS - Grasslands/
Savanna/Shrub - Montana Valley and Foothill Grassland

MEDITERRANEAN and XERIC FORMATIONS - Xeric 
Shrublands/Deserts - Wyoming Basin Shrub Steppe

GRASSLANDS, SAVANNAS, SHRUBLANDS - Grasslands/
Savanna/Shrub - Northwestern Mixed Grassland

GRASSLANDS, SAVANNAS, SHRUBLANDS - Grasslands/
Savanna/Shrub - Northern Mixed Grassland

GRASSLANDS, SAVANNAS, SHRUBLANDS - Grasslands/
Savanna/Shrub - Central Tall Grassland

CONIFER OR TEMPERATE BROADLEAF FORESTS - Broadleaf and 
Mixed Forests - Upper Midwest Forest/Savanna Transition Zone

CONIFER OR TEMPERATE BROADLEAF FORESTS - Broadleaf and 
Mixed Forests - Western Great Lakes Forest

CONIFER OR TEMPERATE BROADLEAF FORESTS - Broadleaf and 
Mixed Forests - Eastern Great Lakes Lowland Forest

CONIFER OR TEMPERATE BROADLEAF FORESTS - Broadleaf and 
Mixed Forests - Eastern Forest/Boreal Transition

CONIFER OR TEMPERATE BROADLEAF FORESTS - Broadleaf and 
Mixed Forests - New England/Acadian Forest

CONIFER OR TEMPERATE BROADLEAF FORESTS - Broadleaf and 
Mixed Forests - Northeastern Coastal Forest

CONIFER OR TEMPERATE BROADLEAF FORESTS - Broadleaf and 
Mixed Forests - Gulf of St. Lawrence Lowland Forest
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Figure 12. Histograms illustrating the degree of internal consistency of the bioclimatic, species richness, and woody flora data
for WWF ecoregions encountered on the 45�N transect from west to east (top to bottom). See Figure 3 for a description of the
histograms.
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along the 35�N transect, but it has more divisions than
the WWF system in the eastern United States (Fig-
ure 2A). The Bailey system has nearly the same num-
ber of ecoregions as the WWF system on the 40�N
transect (Figure 6A). However, the Bailey system has
more divisions in the western United States than the
WWF system, and fewer in the eastern United States.
The Bailey system boundaries generally occur near
breaks in climate, topography, NDVI, or species rich-
ness along the 35�N transect (Figure 2). The bound-
aries in the Appalachian region appear particularly well
placed in comparison with our data. The boundaries
between Bailey ecoregions in the West along the 40�N
transect align well with changes in topography, NDVI,
and Jaccard coefficients (Figure 6). The boundaries
between Bailey ecoregions in the East on the 40�N
transect are less well aligned with environmental or
floristic changes in our datasets. Along the 45�N tran-
sect, the Bailey system has the fewest ecoregion divi-
sions of the three systems, with individual ecoregions
covering broad areas of the Pacific Northwest and
eastern United States (Figure 10).

Internal Consistency of Ecoregions

Figures 3–5, 7–9, and 11–13 illustrate the bioclimatic,
species richness, and mean Jaccard similarity coefficients
for each ecoregion encountered along each of the three
transects. For the bioclimatic and species richness vari-

ables, if an ecoregion is strongly internally consistent in
regard to a specific variable, then the histograms should
have a unimodal distribution with a relatively narrow
range of variability around the mode. Strong internal
consistency for the Jaccard similarity coefficient should
be represented by the mean within-ecoregion Jaccard
coefficients approaching the value of 1.0.

For the Küchler 35�N transect, the seven eastern-
most ecoregions (the bottom seven on Figure 3) meet
most of the criteria for a high degree of internal con-
sistency. The bioclimatic variables, particularly a, tend
to have unimodal distributions. The Jaccard coeffi-
cients approach 0.8 for two of these seven ecoregions
and are above 0.5 for nearly all of the seven. Westward,
the picture is different: In the arid and semiarid eco-
regions, the spread of bioclimatic variables is generally
greater, there are more bimodal or multimodal distri-
butions, species richness is generally low, and the
within-ecoregion Jaccard coefficients are significantly
lower.

On the 40�N transect, the MTCO and GDD5 bio-
climatic variables for the Küchler ecoregions generally
have fairly narrow ranges (Figure 7), but some variable
distributions exhibit bimodal or multimodal charac-
teristics, which might suggest a mixture of different
environmental conditions within these ecoregions. The
moisture index for Küchler ecoregions on the 40�N
transect is consistently high in the eastern United

Figure 13. Histograms illustrating the degree of internal consistency of the bioclimatic, species richness, and woody flora data
for Bailey ecoregions encountered on the 45�N transect from west to east (top to bottom). See Figure 3 for a description of the
histograms.
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Table 1. Ecoregions used in this study from the K6chler, WWF, and Bailey ecoregion classification systems, the
new numbers assigned to the ecoregions, and the corresponding ecoregion numbers from the original publi-
cations

Code
used in this
publication

Original
code

Bailey Ecoregions (Bailey 1997)
Humid Temperate Domain

Mediterranean Mountains — Mediterranean woodland
or shrub—mixed or coniferous forest – steppe or
meadow

646 M262

Mediterranean Mountains — Mixed forest – coniferous
forest – alpine meadow

645 M261

Mediterranean Division — Redwood forests 644 263
Mediterranean Division — Mediterranean hardleaved

evergreen forests, open woodlands and shrub
643 262

Mediterranean Division — Dry steppe 642 261
Prairie Division — Prairies and savannas 640 252
Prairie Division — Forest–steppes and prairies 639 251
Marine Mountains — Deciduous or mixed

forest – coniferous forest – meadow
637 M241

Marine Division — Mixed forests 636 241
Subtropical Mountains — Mixed forest – meadow 634 M231
Subtropical Division — Riverine forest 633 R
Subtropical Division — Coniferous–broadleaved

semievergreen forests
632 232

Subtropical Division — Broadleaved–coniferous
evergreen forests

631 231

Hot Continental Mountains — Deciduous or mixed
forest – coniferous forest – meadow

629 M221

Hot Continental Division — Broadleaved forests,
continental

628 221B

Hot Continental Division — Broadleaved forests,
oceanic

627 221A

Warm Continental Mountains — Mixed
forest – coniferous forest – tundra, high

626 M211B

Warm Continental Division — Mixed
deciduous–coniferous forests

625 211

Dry Domain
Temperate Desert Mountains — Semidesert – open

woodland – coniferous forest – alpine meadow
615 M341

Temperate Desert Division — Semideserts and deserts 614 342
Temperate Desert Division — Semideserts 613 341
Temperate Steppe Mountains — Steppe – open

woodland – coniferous forest – alpine meadow
611 M334

Temperate Steppe Mountains — Steppe – coniferous
forest – tundra

610 M332

Temperate Steppe Division — Dry steppes 609 332
Temperate Steppe Division — Steppes 608 331
Tropical/Subtropical Desert Division — Deserts

on sand
606 323

Tropical/Subtropical Steppe Mountains — Steppe or
semidesert – mixed forest – alpine meadow or steppe

604 M311

Tropical/Subtropical Steppe Division — Shortgrass
steppes

603 314

Tropical/Subtropical Steppe Division — Steppes and
shrubs

602 313

Tropical/Subtropical Steppe Division — Coniferous
open woodland and semideserts

601 311

(Continued)
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Table 1. Continued.

Code
used in this
publication

Original
code

World Wildlife Fund Ecoregions (Ricketts and others 1999a)
Conifer or Temperate Broadleaf Forests

Coniferous Forests — Middle Atlantic Coastal Forest 472 50
Coniferous Forests — Atlantic Coastal Pine Barrens 471 49
Coniferous Forests — Arizona Mountains Forest 470 46
Coniferous Forests — Colorado Rockies Forest 469 45
Coniferous Forests — Wasatch and Uinta Montane Forest 468 44
Coniferous Forests — South Central Rockies Forest 467 43
Coniferous Forests — Sierra–evada Forest 466 41
Coniferous Forests — Northern California Coastal Forest 465 40
Coniferous Forests — Klamath–Siskiyou Forest 464 39
Coniferous Forests — Blue Mountains Forest 463 38
Coniferous Forests — Eastern Cascades Forest 462 37
Coniferous Forests — Central and Southern Cascades Forest 461 36
Coniferous Forests — Central Pacific Coastal Forest 460 34
Broadleaf and Mixed Forests — Southeastern Mixed Forest 459 22
Broadleaf and Mixed Forests — Mississippi Lowland Forest 458 20
Broadleaf and Mixed Forests — Ozark Mountain Forest 457 19
Broadleaf and Mixed Forests — Central U.S. Hardwood Forest 456 18
Broadleaf and Mixed Forests — Appalachian Mixed

Mesophytic Forest
455 17

Broadleaf and Mixed Forests — Appalachian/Blue
Ridge Forest

454 16

Broadleaf and Mixed Forests — Northeastern
Coastal Forest

453 14

Broadleaf and Mixed Forests — Gulf of St. Lawrence
Lowland Forest

452 13

Broadleaf and Mixed Forests — New England/Acadian Forest 451 12
Broadleaf and Mixed Forests — Eastern

Great Lakes Lowland Forest
450 11

Broadleaf and Mixed Forests — Southern
Great Lakes Forest

449 10

Broadleaf and Mixed Forests — Upper
Midwest Forest/Savanna Transition Zone

448 9

Broadleaf and Mixed Forests — Eastern
Forest/Boreal Transition

447 8

Broadleaf and Mixed Forests — Western
Great Lakes Forest

446 7

Broadleaf and Mixed Forests — Willamette
Valley Forest

445 6

Grasslands, Savannas, Shrublands
Grasslands/Savanna/Shrub — Central Forest/Grassland

Transition Zone
425 65

Grasslands/Savanna/Shrub — Central
and Southern Mixed Grassland

424 64

Grasslands/Savanna/Shrub — Western
Short Grassland

423 63

Grasslands/Savanna/Shrub — Central Tall Grassland 422 60
Grasslands/Savanna/Shrub — Northwestern

Mixed Grassland
421 58

Grasslands/Savanna/Shrub — Montana Valley and
Foothill Grassland

420 57

Grasslands/Savanna/Shrub — Northern Mixed Grassland 419 56
Grasslands/Savanna/Shrub — California Central Valley Grassland 418 54
Grasslands/Savanna/Shrub — Palouse Grassland 417 53

Mediterranean and Xeric Formations
Xeric Shrublands/Deserts — Mojave Desert 407 79

(Continued)
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Table 1. Continued.

Code
used in this
publication

Original
code

Xeric Shrublands/Deserts — Colorado Plateau Shrubland 406 78
Xeric Shrublands/Deserts — Wyoming Basin Shrub Steppe 405 77
Xeric Shrublands/Deserts — Great Basin Shrub Steppe 404 76
Xeric Shrublands/Deserts — Snake/Columbia Shrub Steppe 403 75
Mediterranean Scrub and Savanna — California Montane

Chaparral and Woodland
402 71

Mediterranean Scrub and Savanna — California Interior
Chaparral and Woodland

401 70

Küchler Ecoregions (Küchler 1966)
Western Forests

Broadleaf and Needleleaf Forests — Transition between
oak–juniper woodland and mountain mahogany–oak scrub

247 32

Broadleaf and Needleleaf Forests — California oakwoods 246 30
Broadleaf and Needleleaf Forests — California mixed

evergreen forest
245 29

Broadleaf and Needleleaf Forests — Mosaic of cedar–
hemlock–Douglas fir forest and Oregon oakwoods

244 28

Needleleaf Forests — Juniper steppe woodland 243 24
Needleleaf Forests — Juniper–pinyon woodland 242 23
Needleleaf Forests — Arizona pine forest 241 19
Needleleaf Forests — Pine–Douglas fir forest 240 18
Needleleaf Forests — Eastern ponderosa forest 239 16
Needleleaf Forests — Western spruce–fir forest 238 15
Needleleaf Forests — Grand fir–Douglas fir forest 237 14
Needleleaf Forests — Douglas fir forest 236 12
Needleleaf Forests — Western ponderosa forest 235 11
Needleleaf Forests — Ponderosa shrub forest 234 10
Needleleaf Forests — Mixed conifer forest 233 5
Needleleaf Forests —Fir–hemlock forest 232 4
Needleleaf Forests — Silver fir–Douglas fir forest 231 3
Needleleaf Forests — Cedar–hemlock–Douglas fir forest 230 2
Needleleaf Forests — Spruce–cedar–hemlock forest 229 1
Shrub and Grassland Combinations — Grama–tobosa

shrubsteppe
111 58

Shrub and Grassland Combinations — Sagebrush steppe 110 55
Grassland — Grama–galleta steppe 109 53
Grassland — Alpine meadows and barren 108 52
Grassland — Wheat grass–blue grass 107 51
Grassland — California steppe 106 48
Shrub — Chaparral 248 33
Shrub — Desert: vegetation largely absent 105 46
Shrub — Creosote bush 104 41
Shrub — Saltbush–greasewood 103 40
Shrub — Great Basin sagebrush 102 38
Shrub — Mountain mahogany–oak scrub 101 37

Central and Eastern Grasslands
Grassland and Forest Combinations — Mesquite–

buffalo grass
154 85

Grassland and Forest Combinations — Cross timbers 153 84
Grassland and Forest Combinations — Mosaic of

Bluestem prairie and oak-hickory forest
152 82

Grassland and Forest Combinations — Oak savanna 151 81
Grassland — Bluestem prairie 150 74
Grassland — Northern cordgrass prairie 149 73
Grassland — Shinnery 148 71
Grassland — Sandsage–bluestem prairie 147 70
Grassland — Bluestem–grama prairie 146 69

(Continued)
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States, drops on the Great Plains, rises in the Colorado
Rocky Mountains, drops in the intermountain region,
and then rises again near the Pacific Ocean. The
widths of the histograms for this variable are greater in
dry climates than in humid climates, and multimodal
distributions occur under the dry climates. Species
richness and mean Jaccard coefficients are higher in
the areas of moist climates along this transect, al-
though both variables decline toward the East Coast.

The Küchler ecoregions along the 45�N transect
tend to produce the most narrow histograms of the
three systems, particularly with regard to MTCO and
GDD5 (Figure 11), indicating a fairly high degree of
internal consistency within the ecoregions for these
variables. The moisture index, a, tends to be well
constrained for ecoregions in wetter portions of the
45�N transect (the East and Pacific Northwest) and
less well constrained along drier portions of the
transect. The pattern of species richness values, in
general, follows the pattern of the moisture index,
with higher species richness in areas with a high
moisture index and low species richness in areas with
a low moisture index. Jaccard values for Küchler

ecoregions also tend to vary with moisture, although
temperature might play an increasingly important role
at this latitude.

The internal consistency results for the WWF 35�N
transect are similar to those for the Küchler 35�N
transect—eastern forested ecoregions are more inter-
nally consistent in regard to bioclimatic and species
richness variables and have higher Jaccard coefficients
(Figure 4). Also similar to the Küchler system, the
WWF ecoregions on the 40�N and 45�N transects
(Figures 8 and 12) generally have well constrained,
unimodal distributions for MTCO and GDD5. The a
histograms are also well constrained along the eastern,
wetter portions of the transect, but less well con-
strained along the drier portions. Species richness
under the WWF system, as with the Küchler system,
shows a strong relation with moisture conditions. The
Jaccard similarity coefficient analyses show relatively
coherent ecoregions in the moist climates of the east-
ern United States and far western United States. Con-
versely, these analyses suggest less coherent ecoregions
under arid climates (based on the few woody plant taxa
that occur in these ecoregions).

Table 1. Continued.

Code
used in this
publication

Original
code

Grassland — Wheatgrass–bluestem–needlegrass 145 67
Grassland — Wheatgrass–needlegrass 144 66
Grassland — Grama–buffalo grass 143 65
Grassland — Grama–needlegrass–wheatgrass 142 64
Grassland —Foothills prairie 141 63

Eastern Forests
Broadleaf and Needleleaf Forests — Pocosin 199 114
Broadleaf and Needleleaf Forests — Southern

flood plain forest
198 113

Broadleaf and Needleleaf Forests — Southern mixed forest 197 112
Broadleaf and Needleleaf Forests — Oak–hickory–

pine forest
196 111

Broadleaf and Needleleaf Forests — Northeastern
oak–pine forest

195 110

Broadleaf and Needleleaf Forests — Northern hardwoods–
spruce forest

194 108

Broadleaf and Needleleaf Forests — Northern
hardwoods

193 106

Broadleaf Forests — Appalachian oak forest 192 104
Broadleaf Forests — Mixed mesophytic forest 191 103
Broadleaf Forests — Beech–maple forest 190 102
Broadleaf Forests — Oak–hickory forest 189 100
Broadleaf Forests — Maple–basswood forest 188 99
Broadleaf Forests — Northern floodplain forest 187 98
Needleleaf Forests — Northeastern spruce–fir forest 186 96
Needleleaf Forests — Great Lakes pine forest 185 95
Needleleaf Forests — Conifer bog 184 94
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The Bailey 35�N ecoregion histograms are depicted
in Figure 5, and again the overall pattern is similar to
that of the Küchler and WWF results. However, the
Bailey system has generally lower Jaccard coefficients
for the ecoregions of the eastern forests than do the
WWF ecoregions along this transect, suggesting a
somewhat lower degree of internal consistency (per-
haps reflecting greater lumping of diverse physio-
graphic and climatic environments into single
ecoregions in this complex environment). The Bailey
ecoregion system on the 40�N transect has the fewest
ecoregions of the three systems under consideration
(Figure 9). The MTCO and GDD5 distributions for
this transect are relatively tightly grouped but include
some bimodal and multimodal groups. The patterns
for the moisture index and species richness are similar
to those for the other two ecoregion systems. The
mean Jaccard similarity coefficient analyses indicate
relatively coherent ecoregions (floristically) near the
east coast, with lower mean coefficients (and pre-
sumably less internally consistent ecoregions) occur-
ring in the dry climate of the western United States.
Unlike with the other two ecoregion classification
systems along this transect, the Jaccard similarity
coefficient analyses do not show internally consistent
(floristically) Bailey ecoregions under the moist cli-
mates near the West Coast. This suggests that the
Bailey system of fewer and broader ecoregions merges
several relatively distinct floristic associations that ap-
pear in the other two systems. The Bailey ecoregion
histograms of the bioclimatic variables on the 45�N
transect (Figure 13) differ from the Küchler and WWF
histograms in that they tend to be bimodal or multi-
modal, with each ecoregion covering a broad range of
values. The species richness histograms are also much
broader, and the Jaccard values tend to be low, with
the exception of one ecoregion division near the West
Coast.

Discussion

The three latitudinal transects analyzed in this study
describe the general environmental variations across
the continent. MTCO and GDD5 are generally higher
at lower latitudes. Moisture availability (a) varies more
with longitude than latitude, but points along the 45�N
transect have consistently higher moisture index levels
than points at similar longitudes on the two transects
further to the south. Species richness is highest on the
southernmost transect and lowest on the northernmost
transect and appears to be strongly tied to moisture
availability on the 35�N and 40�N transects, although
this relationship is somewhat mediated by temperature

for the 45�N transect. Transect grid points in arid
environments consistently have relatively low species
richness and low point-to-point and within-ecoregion
mean Jaccard coefficients. Collectively, these western
dry environments also have a greater overall range of
moisture conditions than do transect grid points in the
humid East, probably a result of the large number of
microenvironments created by the topographic com-
plexity of the West.

When we compare the boundaries of the ecoregions
from the three different classification systems consid-
ered in this study, they rarely align with one another
along the transects. The Küchler ecoregion system al-
ways has the largest number of categories on each of
the transects and repeats ecoregions along the tran-
sects to a greater degree. The WWF and Bailey systems
frequently have similar numbers of ecoregions along
each transect (although Bailey generally has fewer),
but the ecoregions are frequently clustered differently,
with one system having more ecoregions in the West
and fewer in the East, or vice versa. In general, how-
ever, it is easier to detect relations between ecoregion
boundaries and topography in the western United
States than in the East for all three ecoregion systems.
Unfortunately, the relatively low number of woody
plant species in much of the West inhibits tracking
ecoregion boundaries in this region using the species
richness data. The gradual shifts in flora in the eastern
United States also make it difficult to align floristic
changes with ecoregion boundaries in that region. The
subtle topographic, climatic, and floristic changes in
the East also result in fewer correspondences between
ecoregion boundaries among the three systems.

Many of these environmental patterns are picked up
by one or more of the ecoregion classification systems
we examined. The extent to which there is corre-
spondence among the elevation, bioclimatic, and flo-
ristic data and the individual ecoregion classification
systems might depend in large part, however, on the
goals and methodologies with which each of the eco-
region systems was developed, and some of these dif-
ferences are discussed below.

K6chler Ecoregions

Küchler’s potential natural vegetation ‘‘ecore-
gions’’ are based on the distribution of natural plant
communities. They are less bound than the Bailey
and WWF classification systems to the concept of
ecoregions representing broad contiguous areas of
similar environments. In addition, environmental
variables, such as climate, were not explicitly con-
sidered in developing the potential natural vegeta-
tion categories. Thus, we would expect the Küchler
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ecoregions to match the bioclimatic and elevation
transect data only to the extent that each Küchler
vegetation community reflects variations in climate
and topography. From our analysis, it appears that
Küchler’s ecoregions display a relatively good corre-
spondence with bioclimatic variables, particularly the
moisture index (a). This tight correspondence may
also be a result of the larger number of potential
natural vegetation types in Küchler’s classification
scheme, allowing more specific environmental rela-
tionships to be defined by the many, relatively small
ecoregions.

Although the Küchler ecoregions define natural
vegetation categories, our data suggest that this system
does not always provide the highest degree of internal
floristic consistency among the three ecoregion sys-
tems, as indicated by relatively low Jaccard similarity
coefficient values. This lack of floristic consistency
might, in part, reflect differences between the classifi-
cation of the potential natural vegetation in the
Küchler system, which is defined by plant life form and
one or more dominant plant genera (Küchler 1964),
and the observed woody plant species distributions,
which are the basis for our species richness and Jaccard
similarity coefficient analysis. The focus on dominant
genera in the Küchler classification system might mask
underlying variability in total woody species composi-
tion across the Küchler ecoregion types, which would
result in lower mean Jaccard similarity coefficient val-
ues for individual ecoregions.

WWF Ecoregions

Of the three ecoregion systems examined here, the
WWF system is the most conceptually heterogeneous.
The WWF used a number of ecoregion classification
systems as the basis for its global ecoregion scheme
(Olson and others 2001). The three transects used in
this study primarily cross the continental United States
for which WWF adapted Omernik’s (1995b) ecore-
gions. (A few points on the 45�N transect fall in Canada
for which WWF adapted Wiken and others’ (1989)
ecoregions of Canada, but we will limit our discussion
here to Omernik’s classification system). Omernik
used a variety of variables in defining ecoregions,
including Küchler’s potential natural vegetation, cli-
mate, physiography, geology, land use, and soils (O-
mernik 1987). Notably, Omernik recognized that ‘‘the
importance of each factor in determining the charac-
ter of ecosystems varies from place to place’’ (Omernik
1987, p. 119) so that one ecoregion can be defined
using land use as a primary criteria while another
considers climate more strongly. These complexly de-
fined ecoregions have then been further modified by

WWF to reflect assemblages of species and ecological
communities of conservation interest.

Given the complex way in which WWF ecoregions
have been defined, it is hard to predict how they might
correspond to the elevation, bioclimatic, and floristic
data examined here. In general, the WWF ecoregions
exhibit relatively narrow, unimodal distributions of
MTCO and GDD5, suggesting a greater degree of
internal consistency for these bioclimatic variables. The
moisture index for WWF ecoregions tends to be well
constrained in relatively moist regions of the eastern
United States and less well constrained in the drier
West. The WWF ecoregions also display a relatively
high degree of floristic consistency along all three
transects. The relatively high internal consistency may
also be the result of WWF’s efforts to modify the O-
mernik ecoregions to better capture plant species
richness patterns of conservation interest.

Bailey Ecoregions

The Bailey ecoregions are based on a classification
system that is more explicitly hierarchical than the
Küchler or WWF ecoregion classification systems.
Bailey based his coarsest-scale ecoregions, called do-
mains, on broad-scale, continental patterns of climate,
defining only three climate domains to cover the en-
tire continental United States. These macroclimate
domains were divided into finer-scale ecoregions,
called divisions, based on moisture (e.g., seasonality of
precipitation or degree of dryness) and temperature
(e.g., degree of cold) (Bailey 1998). The next finer
spatial scale of ecoregions (provinces) were defined
according to plant life form and are the ecoregions we
examined in this work. In general, the Bailey prov-
ince-level ecoregions have fairly tightly constrained
moisture index values in the humid East, although
broader distributions of the moisture index in the
West along each of the three transects (Figures 5, 9,
and 13). Bailey ecoregions have less tightly con-
strained, generally bimodal distributions of MTCO
and GDD5 (especially in arid and semiarid regions).
These less coherent bioclimate distributions might be
a result of the relatively large size of the Bailey eco-
regions (relative to the Küchler and WWF ecoregions)
such that they encompass larger ranges of MTCO and
GDD5.

The Bailey ecoregions, in general, tend to have
slightly lower within-ecoregion mean Jaccard similarity
coefficients than the Küchler ecoregions along all
three transects. The explanation for this difference
might be in the way that vegetation is classified within
the Bailey system. Bailey defines his provinces based on
community structure (e.g., open woodland) and plant
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life form (e.g., broadleaved trees), which does not
correspond well to the species-level richness data. Bai-
ley’s ecoregions might also show less internal floristic
consistency because they tend to be larger and thus
might cover a larger number of species than the
Küchler ecoregions.

Choosing Among Ecoregion Classification Systems

Deciding which ecoregion classification system to
use for any particular purpose depends not only on the
ultimate goal of the individual user but also on an
understanding of the original goals and methodolo-
gies used in developing each classification system.
Consider how each of the three ecoregion classifica-
tion schemes used in this study incorporates vegeta-
tion. The Küchler ecoregions are based on potential
natural vegetation patterns. A user interested in mod-
ern habitat distributions, however, might want to use a
system that included modern vegetation distributions
and land-use patterns. At the province level, Bailey
used plant life form, not individual species or com-
munities, in defining ecoregions and also a much
more systematic and hierarchical approach to classify-
ing ecoregions than either Küchler or WWF. The Bai-
ley ecoregion system might be best suited for studies or
management situations that require that all ecoregions
are defined according to the same set of criteria. In
contrast, the WWF ecoregions for the continental
United States are based on Omernik’s ecoregions but
have been modified by WWF as needed to capture
patterns of biodiversity and habitat deemed important
for conservation goals. WWF defines ecoregions as
‘‘relatively large units of land containing a distinct
assemblage of natural communities and species, with
boundaries that approximate the original extent of
natural communities prior to major land-use change’’
(Olson and others 2001, p. 933). In certain cases where
species assemblages are relatively the same over large
areas, it is difficult to define distinct ecoregions based
on differences in species assemblages. In these areas,
the WWF system might not use species or community
assemblages data at all, instead relying on processes
such as disturbance regimes or patterns of vertebrate
migrations to define ecoregions (Olson and others
2001). The WWF ecoregion classification might be of
most use to individuals and organizations that have
conservation goals at the same taxonomic resolution as
those of the WWF. The Nature Conservancy, for
example, uses a modified version of the Bailey classi-
fication system for the continental United States, but
uses WWF ecoregions for its conservation planning
activities in other regions of the globe (Groves and
others 2000).

Although some of the environmental variables
examined in this study did a relatively good job of
characterizing ecoregions along certain parts of the
three transects (e.g., the moisture index and ecore-
gions in eastern North America), other ecoregions
were not well described by the elevational, bioclimatic,
and floristic variables. Future research might improve
on this study’s results in two ways. First, different
environmental variables might better characterize the
ecoregions of one or more of the ecoregion classifica-
tion systems examined in this study (e.g., using actual
evaporation instead of a moisture index). Multivariate
analyses might be particularly useful in defining the
environmental characteristics of ecoregions. Second,
the spatial resolution of both the ecoregions and
environmental data must be commensurate. Smaller
ecoregions than the ones examined in this study are
being defined for both the Omernik and Bailey eco-
region classification systems, which might allow for a
better correspondence between these finer-resolution
ecoregions and certain environmental variables.
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