
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department
of

2004

Scaling a Dataflow Testing Methodology to the Multiparadigm Scaling a Dataflow Testing Methodology to the Multiparadigm

World of Commercial Spreadsheets World of Commercial Spreadsheets

Marc Randall Fisher II
University of Nebraska-Lincoln, fisherii@google.com

Gregg Rothermel
University of Nebraska-Lincoln, gerother@ncsu.edu

Tyler Creelan
Oregon State University

Margaret Burnett
Oregon State University, burnett@eecs.oregonstate.edu

Follow this and additional works at: https://digitalcommons.unl.edu/csetechreports

 Part of the Computer Sciences Commons

Fisher, Marc Randall II; Rothermel, Gregg; Creelan, Tyler; and Burnett, Margaret, "Scaling a Dataflow
Testing Methodology to the Multiparadigm World of Commercial Spreadsheets" (2004). CSE Technical
reports. 36.
https://digitalcommons.unl.edu/csetechreports/36

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17231219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csetechreports
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csetechreports/36?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages

Scaling a Dataflow Testing Methodology
to the Multiparadigm World of Commercial Spreadsheets

Marc Fisher II, Gregg Rothermel
University of Nebraska-Lincoln

{mfisher,grother}@cse.unl.edu

Tyler Creelan, Margaret Burnett
Oregon State University

{creelan,burnett}@cs.orst.edu

ABSTRACT
Spreadsheet languages are widely used by end users to perform
a broad range of important tasks. Evidence shows, however, that
spreadsheets often contain faults. Thus, in prior work we presented
a dataflow testing methodology for use with spreadsheets, that pro-
vides feedback about the coverage of cells in spreadsheets via vi-
sual devices. Studies have shown that this methodology, which we
call WYSIWYT (What You See Is What You Test), can be used
cost-effectively by end-user programmers. To date, however, the
methodology has been investigated across a limited set of spread-
sheet language features. Commercial spreadsheet environments are
multiparadigm languages, utilizing features often associated with
dataflow, functional, imperative, and database query languages, and
these features are not accommodated by prior approaches. In ad-
dition, most spreadsheets contain large numbers of replicated for-
mulas that differ only in the cells they reference, and these severely
limit the efficiency of dataflow testing approaches. We show how to
handle these two aspects of commercial spreadsheet environments
through a new dataflow adequacy criteria and automated detection
of areas of replicated formulas. We report results of a controlled
experiment investigating several factors important to the feasibility
of our approach.

1. INTRODUCTION
Spreadsheets are used by a wide range of end users to perform

a variety of important tasks, such as managing retirement funds,
performing tax calculations, and forecasting revenues. Evidence
shows, however, that spreadsheets often contain faults, and that
these faults can have severe consequences. For example, an erro-
neous spreadsheet formula inflated the University of Toledo’s pro-
jected annual revenue by 2.4 million dollars, requiring budget cuts
[24]. Another formula error caused the stocks of Shurgard Inc. to
be devalued after employees were overpaid by $700,000 [23], and
a cut-and-paste error in a bidding spreadsheet cost Transalta Cor-
poration 24 million dollars through overbidding [10].

Researchers have been responding to these problems by creat-
ing approaches that address dependability issues for spreadsheets,
including unit inference and checking systems [1, 2, 3], visual-

ization approaches [7, 8, 22], interval analysis techniques [4, 5],
and approaches for automatic generation of spreadsheets from a
model [11]. Commercial spreadsheet systems such as Microsoft
Excel have also incorporated several tools for assisting with spread-
sheet dependability, including dataflow arrows, anomaly detection
heuristics, and data validation facilities.

In our own prior research, we have presented an integrated fam-
ily of approaches meant to help end users improve the depend-
ability of their spreadsheets. At the core of these approaches is
a dataflow test adequacy criterion, and a dataflow testing method-
ology that helps spreadsheet users address potential problems in
interactions between cell formulas – a prevalent source of spread-
sheet errors [15, 16]. This WYSIWYT (What You See Is What
You Test) methodology [19] uses visual devices to provide feed-
back about test coverage of the spreadsheet obtained relative to a
dataflow adequacy criterion. We have augmented this methodol-
ogy with techniques for automated test case generation [12], fault
localization [21], and test reuse and replay mechanisms [13]. Our
studies of the WYSIWYT methodology itself [17, 20] suggest that
it can be effective, and can be applied by end users with no specific
training in the underlying testing theories.

However, commercial spreadsheet environments are multiparadigm
languages with features such as higher-order functions (functional
paradigm), table query constructs (database query languages), user-
defined functions1 (implemented in an imperative sublanguage),
meta-program constructs, and pointers, and these features are not
accommodated by prior approaches. In addition, most spreadsheets
have large areas of replicated formulas which require some form of
aggregation and abstraction to allow our methodologies to scale
reasonably (i.e., operate sufficiently efficiently). The only previous
approach to testing methodologies for spreadsheet regions [6] has
required a form of “declaring” regions, and thus does not provide
unassisteddiscovery of the testing needs of the informal regions
that exist in commercial spreadsheets.

In this paper, we address these two problems. To direct our ef-
forts, we analyzed the features found in commercial spreadsheets
that have not yet been supported by our WYSIWYT methodology.2

From these we determined the features that were most integral to
supporting the methodology in commercial spreadsheets, includ-
ing the particular multiparadigmatic spreadsheet features that need
to be accommodated, and the degree to which replicated formulas

1User-defined functions are a subset of macros. Macros are also
used for automation and adding event-driven behaviors to spread-
sheets. Since these other applications are not related to formula
correctness, we don’t consider them here.
2Our platform for this work has been Excel, the de-facto standard
commercial spreadsheet environment. Our extended methodology
also supports other environments mimicking Excel’s feature set,
such as OpenOffice/StarOffice and Gnumeric.

1

University of Nebraska-Lincoln, Computer Science and Engineering
Technical Report # TR-UNL-CSE-2005-0003

Figure 1: An Excel spreadsheet. The numbered rectangles are used later to facilitate discussion of region inference.

require support. To support the multiparadigmatic features, we de-
vised a generalization of our prior dataflow test adequacy criterion
that considers functions in the formulas to determine their patterns
of execution. For replicated formulas, we implemented a family of
techniques for combining them into regions.

To assess the resulting new methodology we performed an ex-
periment within a prototype Excel-based WYSIWYT system on a
set of non-trivial Excel spreadsheets. This experiment evaluates
the costs of our methodology along several dimensions, and also
compares the different techniques we have devised for finding re-
gions to a baseline (no-regions) approach. Our results suggest that
our algorithms can support the use of WYSIWYT on commercial
spreadsheets; they also reveal important tradeoffs among the region
inference algorithms.

2. BACKGROUND: WYSIWYT
The WYSIWYT methodology [5, 12, 13, 19, 21] provides sev-

eral techniques and mechanisms with which end-user programmers
can increase the dependability of their spreadsheets. Underlying
these approaches is a dataflow test adequacy criterion that helps
end users incrementally check the correctness of their spreadsheet
formulas as they create or modify a spreadsheet. End-user support
for this approach is provided via visual devices that are tightly inte-
grated into the spreadsheet environment, and let users communicate
testing decisions and track the adequacy of their validation efforts.

The basic computational unit of a spreadsheet is a cell’s formula.
As such, our adequacy criterion is developed at the granularity of
cells. Since many of the errors in spreadsheets are reference er-
rors, we focus on the data and control dependencies between cells.
This allows us to catch a wide range of faults, including reference,
operator, and logic faults.

The test adequacy criterion underlying WYSIWYT is based on
a model of a spreadsheet’s formulas called the Cell Relation Graph
(CRG). Figure 1 shows an Excel spreadsheet,Grades, and Figure 2
shows a portion of the CRG corresponding to row 4 of that spread-
sheet. In the CRG, nodes correspond to the cells in the spread-
sheet. Within each CRG node there is a cell formula graph (CFG)
that uses nodes to represent subexpressions in formulas, and edges
to represent the flow of control between subexpressions. The CFG
has two types of nodes, predicate nodes such as node 29 inR4C11,
and computation nodes such as node 30 inR4C11.

The edges between CFGs in the CRG in Figure 2 representdu-
associations, which link definitions of cell values to their uses. A
definitionis an assignment to a cell of some value; each computa-

R4C2

1. E

2. G

3. X

R4C10

27. X

26. RC[−2]/R3C[−2]

25. E

R4C3

4. E

5. 60

6. X

R4C5

10. E

12. X

11. RC[−2]/R3C[−2]

R4C6

13. E

15. X

14. RC[−2]/R3C[−2]

R4C9

24. X

23. RC[−2]/R3C[−2]

22. E

R4C4

7. E

8. 42

9. X

16. E

17. 65

18. X

R4C7

19. E

20. 45

21. X

R4C8

T

29. RC[−9]="G"

R4C11

28. E

30. AVERAGE(RC[−6]:RC[−5],RC[−2]:RC[−1])

32. X

F

31. AVERAGE(RC[−6],RC[−2]:RC[−1])

Figure 2: A CRG for the Gradesspreadsheet

tion node provides a definition of the cell in which it resides. Ause
of a cellC is a reference toC, either in a predicate node (a p-use)
or in a computation node (a c-use) of some other cell. For each use
U of cell C, a du-association connects each definition ofC to U.

Based on the CRG model, we defined theoutput influencing
definition-use adequacy criterion (du-adequacy)for spreadsheets.
Under this criterion, du-associations are classified into two cat-
egories, those ending in c-uses, and those ending in p-uses. A
du-association ending in a c-use is considered exercised if, given
the current inputs, both the definition and the use node are exe-
cuted, and the cell containing the c-use or some cell downstream in
dataflow from it is explicitly marked by a user as containing a value
that is valid given the current assignment of values to other cells.
Du-associations ending in a p-use are split into two separate asso-
ciations, one corresponding to the p-use evaluating to true, and one
corresponding to the p-use evaluating to false. A du-association
ending in a p-use, corresponding to valuev (either true or false) is
considered exercised if the definition node is executed, the use node
is executed, the use node evaluates tov, and the cell containing the
p-use or some cell downstream in dataflow from it is marked by a
user as containing a value that is valid, given the current assign-
ment of values to other cells. A test suite is considered adequate if

2

all feasible (executable) du-associations in the CRG are exercised.
Spreadsheets often contain many duplicated formulas. In such

cases it is impractical to require a tester to make separate decisions
about each cell containing one of these duplicated formulas. Thus,
in prior work [6], we extended WYSIWYT to handle regions of
duplicate formulas. In that approach, aregion is a set of cells ex-
plicitly identified by the user as sharing the same formula. (It is
also possible that regions could be identified based on copy/paste
actions). Figure 2 shows the regions identified by this process as
boxes drawn using dotted lines around the cells included in each re-
gion. CellsR4C5, R4C6, R4C9, andR4C10 form a region and
all of the input cells (cells containing constants rather than formu-
las) form another region.

To extend the du-adequacy criterion to spreadsheets containing
such regions we grouped nodes and du-associations. Within a given
region, two CFG nodes arecorrespondingif they are in the same lo-
cation in their respective CFGs. In Figure 2, CFG nodes 11, 14, 23,
and 26 are corresponding nodes. We defined an equivalence class
relationship over du-associations such that two du-associations are
in the same class if and only if their definition nodes are corre-
sponding and their use nodes are corresponding. In Figure 2, du-
associations (11, 30), (14, 30), (23, 30), and (26, 30) are in the
same equivalence class. Our modified adequacy criterion stated
that if any du-association in an equivalence class is tested, then all
of the du-associations in that class are tested.

3. ASSESSING PROBLEMS FOR SCALING
To better understand the problems for scaling our dataflow test-

ing methodology to commercial spreadsheet environments and to
direct our subsequent efforts, we began by assessing the ways in
which such spreadsheet environments are not supported by our cur-
rent methodology. We considered Excel’s documentation and user
interface, and examined a large collection of Excel spreadsheets to
determine what features were commonly found there and needed to
be supported. We classified these features into two categories: the
multiparadigmatic nature of cell formulas and formula replication.
In addition, we identified a third category: spreadsheet features not
directly related to cell formulas.

Where the first category of features,the multiparadigmatic na-
ture of cell formulas, is concerned, there are several things to con-
sider. First, there are combinations of simple functions such as
IF which, though still purely declarative, are not supported by du-
adequacy. These combinations of functions prevent cell formula
graphs (as previously defined) from being constructed. In addi-
tion, Excel includes a large library (over 300) of functions, many
of which represent fundamental extensions to the first-order func-
tional paradigm represented by standard spreadsheet constructs. For
example, functions likeSUMIF provide limited support for con-
structing higher-order functions, whileINDIRECT is similar to
pointer arithmetic operations in other languages. Users can also
implement their own “user-defined” functions (UDFs) in an imper-
ative language (Visual Basic for Applications). These features re-
quire fundamental extensions to our du-adequacy criterion. Section
4 describes our techniques for addressing this category of features.

Where the second category of features related toformula replica-
tion is concerned, spreadsheets are often constructed through repli-
cation of formulas across many cells. A survey of 4432 spread-
sheets from various sources found that of the 1918 that had for-
mulas, 1714 had duplicate formulas [14]. As explained in Section
2, large numbers of replicated cells increase the cost of calculat-
ing the information required for dataflow analysis and the effort
required for validation. One way to reduce cost and effort is to
group similar formulas into regions that can be analyzed and tested

together. In Forms/3 there is a mechanism whereby users explic-
itly create regions by grouping cells together and assigning them a
shared formula. However, most commercial spreadsheets, includ-
ing Excel, do not allow users to explicitly create regions of cells
with shared formulas, and requiring users to create regions for use
by WYSIWYT places too great a burden on them. Additionally,
since we wanted to be able to find regions in existing spreadsheets,
the method suggested in [6] of tracking copy/paste actions is also
not appropriate in the commercial spreadsheet context. Therefore,
to support the use of regions in commercial spreadsheet environ-
ments, we must provide some new method for identifying regions.
We provide a family of such methods in Section 5.

Where the third category offeatures not directly related to cell
formulasis concerned, we determined that because WYSIWYT is
primarily designed to assist users with testing cell formulas and
interactions among them, these features are of only tertiary inter-
est. However, some of these features could be accommodated by
WYSIWYT. Examples of non-formula features in Excel include
charts, macros for automating editing tasks or adding event-driven
behaviors to spreadsheets, the ability to link to external data-sources
such as databases, and the ability to insert external objects such as
form fields into spreadsheets. In Section 7 we sketch some possible
approaches for accommodating some of these features.

4. SUPPORTING THE MULTIPARADIG-
MATIC NATURE OF CELL FORMULAS

4.1 A New Adequacy Criterion
In Section 2, we presented the du-adequacy criterion that has

been used in WYSIWYT research to date based on the CRG model
of spreadsheets, but as outlined in Section 3, there are formula con-
structs in commercial spreadsheet languages that this du-adequacy
criterion does not support. For example, consider cellA3 in Figure
3. With two IF expressions added together it is no longer possi-
ble to directly convert this formula into a cell formula graph using
just predicate and definition nodes. We develop our new adequacy
criterion by first considering how to handle this (still purely declar-
ative) subtlety, and then demonstrate the criterion’s ability to scale
to multiparadigmatic aspects of spreadsheets.

One obvious method for dealing with the formula in cellA3 in
Figure 3 is to convert it into equivalent imperative code such as
in Figure 4. But consider what happens with the formula in cell
B1 that referencesA3: the definitions in lines 2, 3, 5, and 6 do
not form du-associations with the uses inB1. Since it is possible
in WYSIWYT to validate any cell, it is not necessary for a user
to consider how these definitions interact with the use inB1 to
achieve adequacy.

To address this issue, we decompose the problem of handling
these formulas into two steps. The first step involves identifying
sources, a generalized form of definitions that represent part of a
cell’s computation, anddestinations, a generalized form of uses.
The second step involves connecting sources to destinations to de-
fine interactions between cells that need to be tested. To show how
this process works, we walk through the process using Figure 3.

To determine the cell interactions for this example, we need to
determine the sets of sources and destinations for each of the cells.
CellsA1, A2 andB1 are simple cases that can be handled in the
same fashion as in previous versions of WYSIWYT. Any formula
that does not include conditional functions, functions that operate
on or return references, or user-defined functions has only a single
source. Any references in such a formula become destinations.

Cell A3 is more interesting. To facilitate discussion of its han-

3

Figure 3: Spreadsheet fragment with problematic formula

1. if A1 > 0 then
2. t1 := A1

else
3. t1 := 0

end if
4. if A2 > 0 then
5. t2 := A2

else
6. t2 := 0

end if
7. A3 := t1 + t2

Figure 4: Imperative code for cellA3 in Figure 3.

dling we use the AST in Figure 5. To determine sources for com-
plex formulas such as this, we follow two steps. The first step is
to identify thesource componentsthat represent different patterns
of computations that can be performed by functions in the formula.
The second is to combine these source components into the sources
that represent the patterns of computation for the formula.

The formula for CellA3 contains two function calls that need
to be considered; namely each of theIF subexpressions. AllIF ’s
have two possible patterns of evaluation, one that corresponds to
the predicate evaluating to true, and one that corresponds to the
predicate evaluating to false. We would like to capture these dif-
fering patterns of evaluation in the definition of our source com-
ponents. One approach we considered was to convert all Excel
functions into an equivalent UDF, and use the technique described
later in Section 4.3 to determine source components and destina-
tions. However, because this requires at least as much effort as
considering the functions individually (since we do not have access
to source code for the built-in functions, we would have to reverse-
engineer UDF code for each of them), and because of imprecisions
involved in the handling of UDFs, we chose to consider them indi-
vidually. Consider the firstIF (node 2 and its children in the AST);
for this IF , we recognize two source components, (2, true) and (2,
false). (The 2 indicates the AST node, and true or false indicates
which “behavior” we are interested in). Similarly, for node 3 and
its children we create the source components (3, true) and (3, false).

The source components are combined to form sources for cell
A3. We consider two methods for doing this. One method is to
consider sets of feasible combinations of source components. For
cell A3, these combinations are{(2,true), (3, true)}, {(2, true), (3,
false)}, {(2, false), (3, true)} and{(2, false), (3, false)}. For the
current input assignment, the source{(2, true), (3, false)} is exer-
cised. This method captures all of the possible computation pat-
terns for the formula and could be used when particularly rigorous
testing is needed, but generates a number of sources exponential in
the number of function calls in the formula.

The second method is to create a source for each source compo-
nent in the formula. This creates fewer sources (in general), and
on any given execution, allows multiple sources to be exercised. In
our example, for the given inputs, sources (2, true) and (3, false)
would be exercised. For the rest of the discussion, we assume we
are using this simpler method.

Destinations forA3 are defined in the same way as uses were for

4: A1 > 0 9: 08: A2

2: IF 3: IF

1: +

5: A1 7: A2 > 06: 0

Figure 5: AST for formula in A3

du-adequacy. The destinations are (4,A1, true), (4,A1, false), (5,
A1), (7,A2, true), (7,A2, false), and (8,A2).

Next we build a set of interactions that we wish to test. As we did
with du-adequacy, we consider all source-destination pairs. For the
example we have been considering these are{(A1, (4, A1, true)),
(A1, (4, A1, false)), (A1, (6, A1)), (A2, (7, A2, true)), (A2, (7,
A2, false)), (A2, (9,A2), ((2, true),B1), ((2, false),B1), ((3, true),
B1), ((3, false),B1)}.

Since the process of generating source components, sources, and
destinations is syntax-driven, it can be readily automated using
standard parsed representations (such as ASTs) of cell formulas. In
addition, determining which source components and destinations
are exercised requires only execution traces of the formulas, some-
thing that is easy to gather in a spreadsheet engine [19].

An additional question involves the interaction of our new du-
adequacy criterion with the region mechanism for handling dupli-
cated formulas described in Section 2. In that description we de-
fined corresponding definitions and uses, and used those to define
corresponding du-associations. For our new du-adequacy criterion
we can use a similar process, defining corresponding source com-
ponents and destinations based on the locations of the constructs in
the cell formulas. Then two sources,S1 andS2, are corresponding
if for each source componentCi in S1 there is at least one corre-
sponding source component inS2, and for each source component
Cj in S2 there is at least one corresponding source component in
S1. Interactions are considered corresponding if their sources and
destinations are corresponding.

4.2 Handling Built-in Excel Functions
The previous section described our new adequacy criterion, but

we still have to demonstrate how it can be applied to the built-in
Excel functions that give rise to the multiparadigmatic nature of
the language. To facilitate consideration of this, we partition the
built-in functions into a small number of classes according to lan-
guage features to which they relate: higher-order functions, meta-
programming constructs, pointers, querying, and matrix operations.

4.2.1 Handling higher-order functions
Although higher-order functions are often considered to be an

advanced programming language feature commonly associated with
functional programming languages, there is support for a form of
higher-order functions in Excel formulas. More precisely, Excel
has a small number of functions that allow the dynamic construc-
tion of predicate expressions used for simple iterative computa-
tions, includingSUMIF, COUNT, COUNTA, COUNTBLANK, and
COUNTIF. To show how our approach handles these, we consider
the two-parameter version ofSUMIF as used in Example 1 in Ta-
ble 1. The first parameter ofSUMIF is a reference to a range of
cells. The second parameter is a predicate to be applied to each
of the cells referred to by the first parameter, which, if it eval-
uates to true, causes that cell’s value to be added to the running
total. We can convert theSUMIF into a corresponding formula us-

4

1 = SUMIF(A1 : A2,“> 0”)
2 = ROW(A1)
3 = OFFSET(A1, B1, C1)
4 = HLOOKUP(A1 : B5, 6)
5 {= MMULT(A1 : B2, A3 : B4)}
6 = SUMGREATERTHAN(A1 : A2, 0)

Table 1: Examples of previously unsupported formulas.

ing addition andIF . For Example 1, this would be= IF(A1 >
0, A1, 0) + IF(A2 > 0, A2, 0). Notice that this transformed ver-
sion is the same as the formula in cellA3 of Figure 3, and the
source components and destinations are the same.

One issue with this method is that it generates sources and des-
tinations for each of theIF functions, without consideration for
the symmetry between theIF expressions. To address this, we can
exploit the symmetry in a fashion similar to that used for regions.
By defining sets of corresponding source components and desti-
nations, and applying the modified du-adequacy criterion, we can
greatly reduce the number of interactions. In the above example, (2,
true) and (3, true) are one set of corresponding source components,
and (4,A1, false) and (7,A2, false) are one set of corresponding
destinations.3

4.2.2 Handling meta-programming constructs
Excel includes a class of functions that allow meta-programming

constructs. Meta-programming constructs allow programming logic
based on attributes of the source code rather than attributes of the
data. These includeISBLANK, CELL, AREAS, COLUMN, COLUMNS,
ROW, andROWS. ISBLANK is a predicate that returns true if and
only if the referenced cell’s formula is blank.CELL allows a user
to query for cell formatting, protection, and address information.
AREAS, COLUMNS, andROWSreturn information about the num-
ber or areas, columns, or rows included in a cell reference.COLUMN
andROWreturn the position (column or row) of the first cell in a
cell reference. For all of these functions, the important thing to
note is that they don’t operate on values, and instead operate on
features of the spreadsheet akin to the source code of most other
languages. Consider Example 2 (Table 1). This formula returns the
value 1, regardless of the value in cellA1. Therefore we do not cre-
ate destinations for the references in parameters to these functions
or propagate testing decisions to the referenced cells.

4.2.3 Handling pointer constructs
Excel has three functions that are similar to pointer arithmetic

as found in some imperative languages such as C:INDIRECT,
OFFSET, andINDEX. Consider Example 3 (Table 1). Assume that
cells B1 andC1 have values 1 and 2 respectively. In this case,
the call toOFFSETin Example 3 returns a reference to cellC2 (1
row down and 2 columns right from cellA1). There are two po-
tential issues with these functions. First, they can use references
in their arguments. ForINDEX andOFFSET, the first argument is
a reference to a cell or range that is used as a starting point, and
the additional arguments provide an offset relative to the original
cell or range. Since the value in the range referred to in the first
argument is not used (A1 in the example), we do not create any
destinations for this reference or propagate testing decisions back

3An analysis similar to that used for finding regions in Section
5 could be applied to the process of finding corresponding sub-
expressions in arbitrary formulas. At this time we have chosen not
to do this, and to use corresponding subexpressions only in special
cases such as with these functions.

to the referencing cells. However, any references used in the other
arguments (B1 andC1) are dereferenced, and the corresponding
values (1 and 2) are used in the calculation, therefore we can create
destinations for these references and propagate testing decisions to
the referenced cells as usual for computational functions.

The second issue with these functions is the handling of the re-
turned reference (C2 in the example). For purposes ofpropagating
testing decisions, it makes sense to treat the returned reference as
we would a regular reference. The issue ofgeneratingdestinations
for the returned reference is more complicated. In general, these
functions allow a reference to any cell in any spreadsheet ever cre-
ated, although in practice their use will be much more limited (for
INDEX we know the returned reference will be in the range pro-
vided in the first parameter, and forOFFSETwe know the returned
reference will be in the worksheet referenced in the first parame-
ter). Since in many cases it may be intractable to calculate all of
the references that can be returned by these functions, we require
an approximation to determine which destinations to create.

There are several approaches that can be used for this. We could
create no destinations for the returned reference; this minimizes the
effort required of both the system and the user testing the spread-
sheet, but may cause some interactions to be untested. We could
generate the set of destinations based on the history of the spread-
sheet by keeping track of the returned references of these func-
tions and creating a new destination any time a cell that had not
been used before is referenced. This method forces the user to
make testing decisions that are influenced by each of the interac-
tions seen by the system, but could still miss possible interactions.
It also has the undesirable effect of having input cell changes po-
tentially change the testedness of the spreadsheet (by creating new,
necessarily untested, interactions and thereby decreasing the test-
edness percentage). A third possibility is to create destinations for
any cells that could be referenced by the function (in the case of
INDIRECT, we would limit this to cells in the workbook contain-
ing the function call). This would prevent the methodology from
missing any interactions, but could create a large number of infea-
sible interactions. Further experimentation is needed to determine
which of these possibilities is best, but for now our prototype does
not create any destinations for the returned references.

4.2.4 Handling query constructs
Excel has four functions,LOOKUP, HLOOKUP, VLOOKUP, and

MATCH, that search for values in a range or array and return either
a corresponding value or position. These are similar to standard
query operations found in database query languages. Consider Ex-
ample 4 (Table 1): the function searches through the cells in the
top row of the rangeA1 : B5, in order from left to right, until it
finds a cell with a value greater than or equal to 6, and returns the
value in the corresponding cell from the bottom row of the range.
Since sequencing seems to be an inherent property of these func-
tions, we use the method suggested earlier of creating an equivalent
UDF definition for these functions and using the testing approach
described in Section 4.3.

4.2.5 Handling matrix constructs
Excel has several matrix processing functions (Excel uses the

term arrays) such asMMULTas used in Example 5. Formulas using
these functions are typically assigned to a range of cells. Although
there is some similarity between these ranges and the regions with
shared formulas as used in Forms/3, it is primarily superficial. A
matrix formula in Excel computes a single value (that happens to
be a matrix), and “distributes” the value over a range of cells. In
our new methodology, cells that participate in a matrix formula are

5

function SUMGREATERTHAN(R, V)
input R : a range

V : a number
1. total = 0
2. for eachcell C in R
3. if C > V then
4. total = total + C
5. end if
6. end for
7. return total

Figure 6: Implementation of UDF, SUMGREATERTHAN

treated as an aggregate cell with a single decision box to validate
the value of that cell. When validated, the testing decision prop-
agates backwards through all referenced cells. References to cells
involved in a matrix formula are treated as normal destinations with
a single source, but unless the reference is a range reference that
includes all cells involved in the formula, testing decisions are not
propagated backwards through the formula. In all other respects,
matrix functions are treated as simple computational functions.

4.3 Handling Imperative Code in Spreadsheets
Excel allows imperative code to be added to spreadsheets for a

variety of tasks. One of the most common uses is for creating user-
defined functions (UDFs). To integrate UDFs into this scheme, we
need to be able to statically determine the source components and
destinations relevant to those UDFs, and dynamically determine
which source components and destinations are exercised when tests
are applied. We use program analysis techniques on the UDFs to
determine the source components and destinations.4

To determine the destinations in the UDF, we consider references
in the parameters of the UDF. For each reference, we create a des-
tination. To determine which destinations are executed, we use
dynamic slicing on the return value of the UDF. In the case of a
range being passed in as a parameter to the UDF (first parame-
ter of Example 6 andR of the corresponding UDF definition in
Figure 6), we create a destination for each cell in the range, and
classify these destinations as corresponding destinations (similar
to the corresponding destinations created forSUMIF). Therefore,
for SUMGREATERTHANas used in Example 6, the destinations are
{A1, A2}, and they are corresponding destinations. If the formula
in Example 6 was replaced with the functionally equivalent formula
in A3 in Figure 3, both destinations would be considered exercised
(and would in fact be considered exercised regardless of the inputs).
This difference is one of the reasons we have chosen to handle the
built-in functions on a case-by-case basis rather than by converting
them into equivalent UDFs.

Determining the source components of the UDF is more compli-
cated. Since source components represent subcomputations of for-
mulas, one approach is to consider the subcomputations, or state-
ments (which can be generalized to flow graph nodes), of the func-
tion. Then we have a source component for each statement. For
SUMGREATERTHAN, the source components are{1, 2, 3, 4, 7},
and if the formula in Example 6 was substituted for the formula in
cell A3 in Figure 3, all of these source components would be con-
sidered exercised (ifA1 was changed to a value less than 0, then
4 would not be exercised); again this is weaker than the generated
source components for the equivalentIF or SUMIF expressions.

4We assume that UDFs are implemented in an imperative sub-
language, access spreadsheet state through parameters, and do not
update global state. Examining the spreadsheets we surveyed (Sec-
tion 3) revealed that all the UDFs defined there met these criteria.

5. SCALING IN THE PRESENCE OF REPLI-
CATED FORMULAS

The notion of aggregating cells into regions of similar cells in
spreadsheets is not new. For example, Sajaniemi defines a number
of method for doing so [22], and others have further extended his
definitions [7, 8]. However, their work has focused on using these
regions for visualization and auditing tasks. To use regions for our
testing methodology we require that it be possible to define corre-
sponding source components and destinations between the cells in
the region, and that it be possible to efficiently update regions as
formulas change, neither of these requirements is met by the ap-
proaches of [7, 8, 22].

We divide the task of inferring regions into two sub-tasks. The
first subtask involves determining whether cells are similar, and the
second involves grouping similar cells into regions.

5.1 Determining Whether Cells are Similar
The first step in developing a region inference algorithm is to

define a criterion for determining whether two cells belong in the
same region. Work by Sajaniemi [22] defines a number of equiva-
lence relationships over cells in spreadsheets. For our purposes, we
will consider hisformula equivalenceandsimilarity relationships,
and define a variation on these that we will callformula similarity.

Two cells are formula equivalent if and only if one cell’s for-
mula could have directly resulted from a copy action from the other
cell’s formula. Sajaniemi also goes on to show that, under a cer-
tain referencing scheme, formula equivalence can be determined
by textual comparison of the formulas. Most commercial spread-
sheets, including Excel, include support for the necessary referenc-
ing scheme. In Excel it is called R1C1-style.

Sajaniemi defines two cells as being similar if and only if they are
formula equivalent andformat equivalentor neither contains any
references to other cells and they are format equivalent. For our
purposes, we choose to ignore format equivalence. Therefore we
define two cells as formula similar if and only if they are formula
equivalent or neither contains any references to other cells.

5.2 Finding Regions
The second issue we considered when defining our region infer-

ence techniques is the spatial relationships between the cells. Prior
work has focused on rectangular areas. However, it is not neces-
sary that regions be rectangular, and by allowing non-rectangular
regions we allow larger regions to be found, thereby decreasing
testing and computational effort (as well as avoiding problems with
updating rectangular regions). Therefore, we consider three differ-
ent candidate spatial relationships for inferring regions: discontigu-
ous, contiguous, and rectangular. For each relationship, we present
our algorithm for finding regions in an existing spreadsheet, and we
then discuss mechanisms for incrementally updating regions as the
spreadsheet is updated.

5.2.1 Discontiguous regions
Using formula similarity and no additional constraints yields the

most general concept of what constitutes a region: all cells in a
worksheet that are formula similar are in the same region. Under
this concept, regions can be discontiguous, containing cells that are
not neighbors.

Discontiguous regions can be identified by iterating through the
cells in a spreadsheet and looking up region identifiers in a hashtable
indexed by cell formula. This process is linear in the number of
cells in the spreadsheet.

Figure 7 presents an efficient algorithm,D-Regions , for find-
ing the discontiguous regions in a worksheet. The algorithm relies

6

algorithm D-Regions (WS)
input WS: a Worksheet
1. for eachcell C in WS.Cells
2. R= WS.Regions.Find (C.Formula)
3. R.Cells.Add(C)
4. C.RegionID= R.RegionID
5. end for

Figure 7: Calculating discontiguous regions.

Information kept per cell
Cell.RegionID An integer specifying the region a

cell belongs to
.Formula The R1C1-style formula for this

cell
Information kept per region

Region.RegionID An integer unique to each region
.Cells A list of cells belonging to the re-

gion
.Formula The R1C1-style formula for this re-

gion
Information kept per worksheet

Sheet.Regions A hash table of the regions in the
worksheet indexed by R1C1-style
formulas

.Cells An array of cells in the worksheet
indexed by row and column

Table 2: Data structures used by D-Regions.

on the data structures shown in Table 2.D-Regions considers
each cellC in worksheetWS, and finds the corresponding region
R in WS.Regions(creating R if necessary) usingC.Formula. It
then updatesR andC to reflect thatC is part of regionR. Since
D-Regions considers each cell in the spreadsheet only once, and
all of the operations within the loop can be completed in constant
time, the algorithm runs in time O(sizeof (WS.Cells)).

This technique finds two regions in theGradesspreadsheet in
Figure 1, one with the cells in the areas labeled 1, 2 and 3, and one
with the cells in the area labeled 4.

To incrementally update regions there are several operations to
consider. A cell’s formula could be changed (through user entry
or a copy/paste operation), a cell could be inserted into the spread-
sheet, or a cell could be deleted from the spreadsheet. First suppose
cell C’s formula is changed. In this case,C is removed from the re-
gion it is in, and ifC is the only cell in its region, that region is
deleted. Next the technique finds the region to whichC should be
added; this is done by looking up the new region in the hashtable
used to find the regions initially. This is a constant time operation.

When a cell (or cells) is (are) added to a spreadsheet, all of the
cells below (or to the right of, at the user’s discretion) the inserted
cell are shifted down (or to the right). This also causes references to
the shifted cells to update to reflect the cells’ new locations. Each
cell that references a cell that is shifted must have its region infor-
mation updated. References change in a similar manner when cells
are deleted from the spreadsheet, and are treated similarly.

5.2.2 Contiguous regions
The discontiguous algorithm is simple and efficient; however, it

is important to consider what kinds of regions end users will be
able to make use of. Allowing discontiguous regions requires the
creation of some device to indicate the relationship between the
disconnected areas that comprise regions, which could be difficult
to do in a fashion that users can understand and use. Therefore, it
may be useful to require regions to be contiguous.

To find contiguous regions, our technique iterates through the
cells in a spreadsheet, comparing their formulas to their neighbor-

algorithm C-Regions (WS)
input WS: a Worksheet
1. for row = 1 to WS.LastRow
2. for col = 1 to WS.LastCol
3. cell1= WS.Cells(row, col)
4. cell2= WS.Cells(row +1, col)
5. cell3= WS.Cells(row, col +1)
6. if cell1.Formula= cell2.Formulathen
7. C-Merge (WS, cell1, cell2)
8. end if
9. if cell1.Formula= cell3.Formulathen

10. C-Merge (WS, cell1, cell3)
11. end if
12. end for
13. end for
14. C-RegionsPP (WS)

Figure 8: Calculating contiguous regions.

ing cells, and merging formula similar cells into regions. With an
efficiently implemented merge operation, this cost is linear in the
number of cells in the spreadsheet.

Figure 8 presents algorithmC-Regions for finding contiguous
regions. C-Regions iterates through each cell in a worksheet,
and checks the cells to the right of and below it to see whether they
belong in the same region. If they do, then the regions including the
cells are merged. The cost of this algorithm is O(number of cells×
cost of merge).5

To represent contiguous regions, we use the same data struc-
tures as forD-Regions with the additional slots shown in Table
3. These data structures allow us to implement the constant time
C-Merge algorithm shown in Figure 9. For each region, an ad-
ditional slotEqRegionindicates a lower numbered region that this
region is part of.C-Merge works by updating this slot. A post-
processing step,C-RegionsPP (Figure 10), completes the merge
when the main portion ofC-Regions concludes.C-RegionsPP
adds an additional O(number of cells) time to the cost ofC-Regions ,
bringing the cost ofC-Regions to O(number of cells).

This technique finds three regions inGrades(Figure 1): (1) the
cells in the areas labeled 1 and 2, (2) the cells in the area labeled 3,
and (3) the cells in the area labeled 4.

Information kept per region
Region.EqRegion An integer specifying an region that

this region belongs to
Information kept per worksheet

Sheet.LastRow The last non-empty row in the
worksheet

.LastCol The last non-empty column in the
worksheet

Table 3: Additional data for C-Regions.

With contiguous regions, to update regions when a formula in
cell C in region R is changed, there are two factors to consider.
First,C is removed fromR, but then it must be determined whether
C is required to keep two or more areas ofR connected. This can
occur only if two or more of the cells adjacent toC were inR. To
determine whetherR should be split, a search is performed on the
cells in R starting with one of the cells adjacent toC. If all cells
in R that were adjacent toC can be reached, it is not necessary to
split the region. If any adjacent cells are not reached in the search,

5An alternative approach would be a depth or breadth first search
starting from cell in the worksheet and growing the regions. The
cost of this approach is O(number of cells), but it may have larger
constants. The cost of the merge operation depends on the data
structures being used.

7

algorithm C-Merge (WS, cell1, cell2)
input WS: a worksheet
input cell1, cell2 : cells
1. id1 = cell1.RegionID
2. id2 = cell2.RegionID
3. if id1 = 0 and id2 = 0 then
4. WS.Regions.AddRegion (cell1,cell2)
5. else if id1= 0 then
6. WS.Regions(id2).AddCell (cell1)
7. else if id2= 0 then
8. WS.Regions(id1).AddCell (cell2)
9. else ifWS.Regions(id1).EqRegion<

WS.Regions(id2).EqRegionthen
10. WS.Regions(id2).EqRegion=

WS.Regions(id1).EqRegion
11. else
12. WS.Regions(id1).EqRegion=

WS.Regions(id2).EqRegion
13. end if

Figure 9: Region merge.

algorithm C-RegionsPP (WS)
input WS: a worksheet

1. for i = 1 to WS.Regions.size
2. WS.Regions(i).EqRegion=

WS.Regions(WS.Regions(i).EqRegion).EqRegion
3. end for
4. for eachcell in WS.cells
5. cell.RegionID=

WS.regions(cell.RegionID).EqRegion
6. end for

Figure 10: Region post-processing.

then the cells traversed in the search must be split off from the rest
of the region. If two or more adjacent cells are not reached, the
search process is repreated with another adjacent cell. In addition,
it is also possible that changing the formula allows two neighbor
regions to be merged. If the changed cell now has the same formula
as two of its neighbors and those cells are in different regions, they
need to be merged. Because of the need to potentially split or mege
regions, this operation is linear in the size ofR and of any other
regions adjacent toC. A similar procedure is performed when a
cell is deleted or inserted, taking into account changing references
as in Section 5.2.1.

5.2.3 Rectangular regions
Forms/3 required regions to be rectangular, and Excel users may

tend to think of their spreadsheets in rectangular blocks. Thus we
also consider an algorithm that creates rectangular regions. To find
rectangular regions, our technique first iterates through the cells,
comparing their formulas to those of the cells directly above or
below, creating all regions one cell wide of maximum height. It
then iterates through these regions, comparing them to the regions
on either side of them, and merging the adjacent regions with for-
mula similar formulas with the same height.6 Again, assuming
an efficient region merge algorithm, this technique is linear in the
number of cells. Figure 11 presents the algorithm,R-Regions ;
Table 4 depicts the additional data structures it uses. In lines 1
to 9, R-Regions creates regions one cell wide and of maximum
height inWS. In lines 10 to 20,R-Regions finds regions created
in the first pass that can merged into rectangular regions of width
greater than 1.R-Merge , called in lines 6 and 17 is similar to the

6As described, the algorithm creates regions that favor height over
width. It could instead create regions that favor width over height
by altering the two passes.

C-Merge procedure used byC-Regions , but also updates re-
gionTop, Left, Width, andHeightattributes.R-RegionsPP is the
same asC-RegionsPP . This technique finds four regions in the
Grades spreadsheet in Figure 1, one for each of the labeled areas.

algorithm R-Regions (WS)
input WS: a Worksheet
1. for col = 1 to WS.LastCol
2. for row = 1 to WS.LastRow
3. cell1= WS.Cells(row, col)
4. cell2= WS.Cells(row +1, col)
5. if cell1.Formula= cell2.Formulathen
6. R-Merge (WS,cell1,cell2)
7. end if
8. end for
9. end for

10. for row = 1 to WS.LastRow
11. for col = 1 to WS.LastCol
12. cell1= WS.Cells(row, col)
13. cell2= WS.Cells(row, col +1)
14. region1= WS.Regions(cell1.RegionID)
15. reqion2= WS.Regions(cell2.RegionID)
16. if cell1.Formula= cell2.Formulaand

region1.Top= region2.Topand
region1.Height= region2.Heightthen

17. R-Merge (WS,cell1,cell2)
18. end if
19. end for
20. end for
21. R-RegionsPP (WS)

Figure 11: Calculating rectangular regions.

Information kept per region
Region.Top The top row of the region

.Left The left column of the region

.Width The width (in cells) of the region

.Height The height (in cells) of the region

Table 4: Additional data for R-Regions

When a formula in cellC in regionR is changed the region is
split into five regions. This can be done in many ways, but to be
consistent with our algorithm for finding regions it proceeds as fol-
lows: one region includes all cells inR to the left ofC, one region
includes all cells inR to the right ofC, one includes the cells in
R directly aboveC, one includes the cells inR directly belowC,
and the last includes onlyC (depending on where the modified cell
is located in the original region, one or more of these regions may
include no cells). Each of these regions is then compared with its
neighbor regions to determine whether they should be merged. The
total cost of this operation depends on the number of cells in the
region that is broken up and its neighboring regions.

There is one important thing to note about this approach: it does
not guarantee that the regions created are the same as they would
be if we re-ran the batch operation. For example, in Figure 1, if the
formula of cellI9 was changed to match the formulas in area 3, it
would be assigned to its own region. However, if it had been the
same as the formulas in area 3 when the batch operation was per-
formed, area 3 would have been divided into two regions (one for
columnI with I9 and one for columnJ). (Any update algorithm
that attempted to recreate the regions that were inferred by the batch
rectangular regions algorithm could potentially have wide-ranging
effects on the structure of the updated regions that could be con-
fusing to the user.) A similar procedure is performed when a cell
is deleted or inserted, taking into account changing references as
mentioned in Section 5.2.1.

8

6. ASSESSMENT
Ultimately, our techniques must be empirically studied in the

hands of end users, to address questions about their usability and
effectiveness. Such studies, however, are expensive, and before
undertaking them, it is worth first assessing the more fundamental
questions of whether our techniques for handling formulas and re-
gions scale cost-effectively to real world spreadsheets, and how our
different region inference algorithms perform when applied to real
spreadsheets. If such assessments prove negative, they obviate the
need for human studies; if they prove positive, they provide insights
into the issues and factors that should be considered in designing
and conducting human studies.

More formally we consider the following research questions:

RQ1: How much does the use of WYSIWYT as extended slow
down commercial spreadsheets, and how does this vary with
region inference algorithms?

RQ2: How much savings in testing effort can be gained by each
of the region inference algorithms?

RQ3: How do the different region inference algorithms differ in
terms of the regions they identify?

To investigate these questions, we implemented a prototype in
Excel using Java and VBA. The Java component performs the un-
derlying analysis required for determining du-associations and track-
ing coverage, while the VBA component evaluates formulas and
expressions and displays our visual devices. The prototype ver-
sion used for this study provides support for most of the functions
described in Section 4, treating unsupported functions as a simple
computational function for purposes of testing. (It does not yet
support imperative code in spreadsheets.)

6.1 Objects of Analysis
As objects of analysis, we drew a sample of the spreadsheets

collected in our survey (Section 3), working with just the 1826 of
those spreadsheets that contained formulas and did not use macros.
The 176 selected spreadsheets ranged in size from 41 to 12,121
non-empty cells, with a mean of 1,235 non-empty cells.

6.2 Variables and measures

6.2.1 Independent variables
Our experiment involved two independent variables: region in-

ference algorithm and spreadsheet size.
We used all three region inference algorithms described in Sec-

tion 5: D-Regions , C-Regions , andR-Regions . As a base-
line we also used a version without region inference,No-Regions .

To measure spreadsheet size we used the number of non-empty
cells in the spreadsheet.

6.2.2 Dependent variables and measures
We explored four dependent variables: total time to load the

spreadsheet, time required for analysis on load, number of inter-
actions in the spreadsheet, and number of regions found.

To measure total time to load, we used the time from when an
open call is made for a spreadsheet until all of its user interface de-
vices have been displayed. We chose this measure because it is dur-
ing the loading of the spreadsheet that the most work in calculating
regions and interactions must occur and because previous work has
demonstrated that reasonable bounds hold on the time required to
respond to other user actions within the WYSIWYT methodology.

To measure time for analysis on load, we measured the time that
was spent in the analysis portion of loading the spreadsheet. The

total time to load measure lets us examine RQ1 for a specific im-
plementation, but since Excel provides only limited options for pro-
grammability, it is useful to also track the effort required when the
overhead associated with the creation of visual devices in Excel
is not included. This measure includes the time required to infer
regions and find all interactions in the spreadsheet.

To approximate the testing effort required by the different region
algorithms we use the number of interactions in the spreadsheet.
This works as an upper-bound on the amount of testing required,
since if there exists a test,t, in the test suite such that all interactions
that t validates are validated by other tests, thent can be removed
from the test suite without sacrificing coverage.

We know that if two of our region inference algorithms find the
same number of regions in a spreadsheet, they have found identi-
cal regions. Thus, measuring the number of regions found lets us
quickly determine whether two algorithms act identically, and we
can then further inspect interesting cases when this metric differs.
For theNo-Regions algorithm, the number of regions is equal to
the number of cells in the spreadsheet.

6.3 Experiment Methodology
For each spreadsheet, we ran five different executions that each

sequentially opened a spreadsheet, collected our measures, and then
closed the spreadsheet. The first execution was without the WYSI-
WYT framework, and was used to gather base-level timings of Ex-
cel opening spreadsheets. We then did an execution for each of
the four region inference algorithms utilizing the prototype Excel
interface and Java analysis engine described in [9].

6.4 Threats to Validity
Our study involves the first use of WYSIWYT on large-scale,

commercial spreadsheets and as such, addresses several threats to
external validity present in earlier studies of WYSIWYT.

Where internal validity is concerned, our load times may be af-
fected by characteristics of our implementation in Excel; however,
our separate measurement of analysis time factors out most poten-
tial sources of such effects.

Where construct validity is concerned, our measures represent
several factors important to the efficiency and effectiveness of WYSI-
WYT, but several other factors could also be considered. Our use
of numbers of interactions to assess testing effort is an approxi-
mation. We have also not yet considered the costs of modification
operations such as formula changes and cell addition/deletion. Fi-
nally, we have not yet considered measures involving user interac-
tion with the system, such as the support that the various region
algorithms provide for testing and for uncovering failures.

6.5 Data and Analysis

6.5.1 RQ1: Slowdown
To determine whether our algorithms slow Excel down, we mea-

sured the total time required to load each spreadsheet in “normal”
Excel. There was little variance in this time across spreadsheet
sizes: all times fell between 0 and 3 seconds. For the purpose of
considering slowdown we treat this time as a small constant.

Figures 12(a) and 12(b) display boxplots showing the distribu-
tions of the total time and time for analysis on loads, respectively.
In both plots, times cluster at lower values. The median total time
to load is between 14 and 18 seconds depending on the methodol-
ogy used. Times for analysis on load, for techniques that identified
regions, are considerably lower than total time to load, or analysis
times for theNo-Regions case. Each of the techniques had a few
extreme outliers (cases that are more than three box-lengths from

9

No-Regions R-Regions C-Regions
R-Regions 20.93
C-Regions 22.02 1.09
D-Regions 23.02 2.09 1.01

Table 5: Mean differences, total time to load.

No-Regions R-Regions C-Regions
R-Regions 9.68
C-Regions 9.69 .01
D-Regions 9.24 -.44 -.45

Table 6: Mean differences, analysis time on load.

the end of the box) including one spreadsheet that required between
25,000 and 31,000 seconds to load; these have been omitted from
the figures to allow the range of typical values to be viewed.

(a) Total time (b) Analysis time

Figure 12: Load times (seconds) per algorithm

Figure 13 plots load time against spreadsheet size, for each re-
gion inference algorithm. As the figure shows, load time varies
greatly, and there is no obvious trend relating total time to spread-
sheet size. Also of note, the extreme outlier mentioned above is not
a particularly large spreadsheet, which we thought to be unusual.
Further examination of this spreadsheet showed that it had many
errors that were indicated by Excel’s built-in error-checking sys-
tem, and we believe that these errors interacted with the drawing of
our visual devices to slow the system down.

Figure 14 provides a similar view of analysis time on load; this
omits the messaging and display overhead associated with our par-
ticular implementation. For the techniques with regions, there again
does not appear to be any correlation between size of spreadsheet
and time; however, with theNo-Regions approach it appears that
such a correlation might exist. A bivariate linear correlation analy-
sis of the data resulted in a Pearson value of .863 significant with a
p-value of less than .01, indicating a reasonably strong correlation
between analysis time forNo-Regions and spreadsheet size.

To further examine differences in load time across region algo-
rithms, Tables 5 and 6 show the mean differences in times (seconds)
between techniques, with significant differences (paired t-test, p-
value< .05) italicized. There were no significant differences in the
total time between any of the techniques, butNo-Regions was
significantly slower for analysis time than any of the techniques.

Figure 13: Total time to load vs. size

Figure 14: Analysis time on load vs. size

6.5.2 RQ2: Testing effort
Table 7 shows the total number of interactions found by each

techniques.No-Regions has more than 14 times as many in-
teractions as any of the other techniques on average (significant,
paired t-test, p-value< .05). BothC-Regions andR-Regions
had a slightly larger number of interactions thanD-Regions (sig-
nificant, paired t-test, p-value< .05), and approximately the same
number of interactions as each other. These results suggest that
testing effort could be reduced dramatically through the use of our
region inference algorithms.

6.5.3 RQ3: Differences in regions
Examination of the number of regions found by the different

techniques shows that for 172 of the spreadsheetsR-Regions
found the same number of regions asC-Regions . Due to char-
acteristics of the algorithms, this implies thatR-Regions found
regions identical to those found byC-Regions in these cases.

D-Regions found fewer regions thanR-Regions and fewer
than C-Regions , as indicated in Table 7 (significant, paired t-
test, p-value< .05). Further examination shows thatD-Regions
found the same set of regions asC-Regions on only 36 spread-
sheets.

No-Regions R-Regions C-Regions D-Regions
interactions 1162.90 81.30 81.23 50.26
regions 1234.99 39.60 39.46 20.16

Table 7: Mean number of interactions and regions

10

6.6 Discussion
Our analysis timings show that it is feasible to perform WYSI-

WYT analysis on real spreadsheets, and that with region inference
and our formula extensions, WYSIWYT seems to scale quite well
to larger spreadsheets. Larger load times and differences in load
and analysis times suggest, however, that our current implementa-
tion incurs slowdown with respect to overhead in visual devices, a
problem that we believe an implementation integrated more tightly
into the Excel code could avoid. In addition, from the point of view
of timing, it does not seem to make much difference which region
inference algorithm is used.

As expected,D-Regions found significantly fewer (therefore
larger) regions than the other techniques, which led to fewer inter-
actions in the spreadsheet, implying less testing effort. The lack
of difference betweenC-Regions and R-Regions , however,
was somewhat surprising, although useful. As mentioned in Sec-
tion 5, R-Regions are difficult to update and efficient updat-
ing algorithms could lead to an inconsistent state, a problem that
C-Regions does not suffer from. Since it appears that the vast
majority of contiguous regions created by users are inherently rect-
angular in nature, there seems to be little reason to useR-Regions .
However, since there is a significant difference between the re-
gions identified byD-Regions and R-Regions , user studies
are needed to determine which of these methodologies provides the
best balance between usability and efficiency for users.

7. CONCLUSIONS
In this paper we have presented a new adequacy criterion, aimed

at supporting not only the usual dataflow relationships between for-
mulas, but also the more challenging multiparadigmatic features
of commercial spreadsheets. We show how the adequacy crite-
rion can be applied to Excel’s support of higher-order functions,
meta-programming constructs, pointer constructs, query language
mechanisms, and matrix constructs. We also present algorithms to
support the high degree of formula replication common in commer-
cial spreadsheets. Finally, we report on the first studies of WYSI-
WYT to ever be conducted within a commercial spreadsheet envi-
ronment.

In our continuing work, we are considering approaches for han-
dling other features of commercial spreadsheets. Charts could be
handled as a special form of cell that have targets for each cell
whose value is used to generate the chart. External data sources
are a form of input cell into the system. For purposes of testing
the spreadsheet, replacing them with temporary user-settable input
cells would allow the user to test the logic of the spreadsheet. Us-
ing an anomaly detection mechanism on the data feeds themselves
similar to that proposed in [18] could help to ensure that the data
feeds are reliable.

Also, our WYSIWYT methodologies in Forms/3 include sup-
port for several dependability features other than testing, including
fault localization, automated test case generation, regression test
selection and replay, and assertions, and we intend to extend these
features to support commercial spreadsheets. Ultimately, however,
a goal of this work is to provide a system that can be used to fur-
ther evaluate these methodologies with end users and large-scale
spreadsheets, and in particular, that can be used in long-term ethno-
graphic studies.

Acknowledgements
This work was supported in part by the EUSES Consortium via
NSF Grant ITR-0325273. Much of this work was performed while
the first two authors were at Oregon State University.

8. REFERENCES
[1] R. Abraham and M. Erwig. Header and unit inference for

spreadsheets through spatial analyses. InSymposium on
Visual Languages and Human-Centric Computing, pages
165–172, 2004.

[2] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi.
A type system for statically detecting spreadsheet errors. In
International Conference on Automated Software
Engineering, Oct. 2003.

[3] T. Antoniu, P. A.Steckler, S. Krishnamurthi, E. Neuwirth,
and M. Felleisen. Validating the unit correctness of
spreadsheet programs. InInternational Conference on
Software Engineering, May 2004.

[4] Y. Ayalew and R. Mittermeir. Interval-based testing for
spreadsheets. InInternational Arab Conference on
Information Technology, Dec. 2002.

[5] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet,
and C. Wallace. End-user software engineering with
assertions in the spreadsheet paradigm. InInternational
Conference on Software Engineering, pages 93–103, May
2003.

[6] M. Burnett, A. Sheretov, B. Ren, and G. Rothermel. Testing
homogeneous spreadsheet grids with the “What You See Is
What You Test” methodology.IEEE Transactions on
Software Engineering, 28(6):576–594, June 2002.

[7] M. Clermont. Analyzing large spreadsheet programs. In
Working Conference on Reverse Engineering, pages
306–315, Nov. 2003.

[8] M. Clermont and R. Mittermeir. Auditing large spreadsheet
programs. InInternational Conference on Information
Systems Implementation and Modelling, Apr. 2003.

[9] T. Creelan and M. Fisher II. Scaling up an end-user
dependability framework for spreadsheets. Technical Report
04-60-09, Oregon State University, Aug. 2004.

[10] D. Cullen. Excel snafu costs firm $24m. The Register, June
19 2003.

[11] M. Erwig, R. Abraham, I. Cooperstein, and
S. Kollmansberger. Automatic generation and maintenance
of correct spreadsheets. InInternational Conference on
Software Engineering, pages 136–145, May 2005.

[12] M. Fisher II, M. Cao, G. Rothermel, C. Cook, and
M. Burnett. Automated test case generation for spreadsheets.
In International Conference on Software Engineering, May
2002.

[13] M. Fisher II, D. Jin, G. Rothermel, and M. Burnett. Test
reuse in the spreadsheet paradigm. InInternational
Symposium on Software Reliability Engineering, 2002.

[14] M. Fisher II and G. Rothermel. The EUSES Spreadsheet
Corpus: A shared resource for supporting experimentation
with spreadsheet dependability mechanisms. InWorkshop on
End-user Software Engineering, May 2005.

[15] R. Panko. What we know about spreadsheet errors.Journal
of End User Computing, pages 15–21, Spring 1998.

[16] R. Panko and R. Halverson. Spreadsheets on trial: A survey
of research on spreadsheet risks. InHawaii International
Conference on System Sciences, Jan. 1996.

[17] S. Prabhakararao, C. Cook, J. Ruthruff, E. Creswick,
M. Main, M. Durham, and M. Burnett. Strategies and
behaviors of end-user programmers with interactive fault
localization. InIEEE Symposium on Human-Centric
Languages and Environments, 2003.

[18] O. Raz, P. Koopman, and M. Shaw. Semantic anomaly

11

detection in online data sources. InInternational Conference
on Softwae Engineering, May 2002.

[19] G. Rothermel, M. Burnett, L. Li, C. DuPuis, and A. Sheretov.
A methodology for testing spreadsheets.ACM Transactions
on Software Engineering, pages 110–147, Jan. 2001.

[20] K. Rothermel, C. Cook, M. Burnett, J. Schonfeld, T. Green,
and G. Rothermel. WYSIWYT testing in the spreadsheet
paradigm: An empirical evaluation. InInternational
Conference on Software Engineering, June 2000.

[21] J. Ruthruff, M. Burnett, and G. Rothermel. An empirical
study of fault localization for end-user programmers. In
International Conference on Software Engineering, pages
352–361, May 2005.

[22] J. Sajaniemi. Modeling spreadsheet audit: A rigorous
approach to automatic visualization.Journal of Visual
Languages and Computing, 11(1):49–82, 2000.

[23] A. Scott. Shurgard stock dives after auditor quits over
company’s accounting. The Seattle Times, Nov 18 2003.

[24] R. Smith. University of Toledo loses $2.4m in projected
revenue. The Toledo Blade, May 1 2004.

12

	Scaling a Dataflow Testing Methodology to the Multiparadigm World of Commercial Spreadsheets
	

	tmp.1250005156.pdf.BKAhB

