View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DigitalCommons@University of Nebraska

University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Computer Science and Engineering, Department

CSE Technical reports of

9-1-2001

The Impact of Test Suite Granularity on the CostEffectiveness of
Regression Testing

Gregg Rothermel
University of Nebraska-Lincoln, gerother@ncsu.edu

Sebastian Elbaum
University of Nebraska-Lincoln, selbaum@virginia.edu

Alexey Malishevsky
Oregon State University

Praveen Kallakuri
University of Nebraska-Lincoln, pkallaku@cse.unl.edu

Brian Davia
Oregon State University

Follow this and additional works at: https://digitalcommons.unl.edu/csetechreports

b Part of the Computer Sciences Commons

Rothermel, Gregg; Elbaum, Sebastian; Malishevsky, Alexey; Kallakuri, Praveen; and Davia, Brian, "The
Impact of Test Suite Granularity on the CostEffectiveness of Regression Testing" (2001). CSE Technical
reports. 30.

https://digitalcommons.unl.edu/csetechreports/30

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://core.ac.uk/display/17231178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csetechreports
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csetechreports/30?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages

University of Nebraska-Lincoln, Computer Science and Engineering

Technical Report # TR-UNL-CSE-2001-0003; issued 09/01/2001

The Impact of Test Suite Granularity
on the Cost-Effectiveness of Regression Testing

Gregg Rothermelt, Sebastian Elbaum?, Alexey Malishevsky’, Praveen Kallakuri*, Brian Davia'

tDepartment of Computer Science
Oregon State University
Corvallis, Oregon

{grother,malishal,davia}@Qcs.orst.edu

ABSTRACT

Regression testing is an expensive testing process used to
validate software following modifications. The cost-effective-
ness of regression testing techniques varies with characteris-
tics of test suites. One such characteristic, test suite granu-
larity, involves the way in which test inputs are grouped into
test cases within a test suite. Various cost-benefits tradeoffs
have been attributed to choices of test suite granularity, but
almost no research has formally examined these tradeoffs.
To address this lack, we conducted several controlled exper-
iments, examining the effects of test suite granularity on the
costs and benefits of several regression testing methodologies
across six releases of two non-trivial software systems. Our
results expose essential tradeoffs to consider when designing
test suites for use in regression testing evolving systems.

1. INTRODUCTION

As software evolves, test engineers regression test it to val-
idate new features and detect whether new faults have been
introduced into previously tested code. Regression testing
is expensive, and many approaches have been suggested for
lowering its cost. One approach re-uses all previously devel-
oped test cases, executing them on the modified program.
When only a small portion of a system is modified, however,
this retest-all approach can waste resources running unnec-
essary tests. Thus, regression test selection techniques [5,
17, 25] can be used instead to select a subset of an existing
test suite. Test re-execution can also be aided by test case
prioritization techniques [6, 29, 30], which order test cases so
that those that are better at achieving testing objectives are
run earlier in the regression testing cycle. Finally, test suite
reduction techniques [4, 10, 20] can reduce testing costs by
eliminating redundant test cases from test suites.

The cost-effectiveness of regression testing techniques can
vary with characteristics of test suites [6, 26, 27]. One such

Permission to make digital or hard copies of all or part o§ thiork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage @rat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquiees prior specific
permission and/or a fee.

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

tDepartment of Computer Science and
Engineering
University of Nebraska - Lincoln

Lincoln, Nebraska
{elbaum,pkallaku}@cse.unl.edu

characteristic is test suite granularity, which reflects the way
test inputs are grouped into test cases within a test suite.
For example, a test suite for a word processor might contain
just a few test cases that start up the system, open a doc-
ument, issue hundreds of editing commands, and close the
document, or it might contain hundreds of test cases that
each issue only a few commands. A test suite for a compiler
might contain several test cases that each compile a source
file containing hundreds of language constructs, or hundreds
of test cases that each compile a source file containing just a
few constructs. A test suite for a class library might contain
a few test drivers that each invoke dozens of methods, or
dozens of drivers that each invoke a few methods.

Faced with such choices in test suite design, test engineers
may wonder which direction to take. Textbooks and popular
testing literature offer advice. For example, Beizer [2, p.
51] writes: “It’s better to use several simple, obvious tests
than to do the job with fewer, but grander, tests.” Other
advice is framed in terms of test case size an important
factor in test suite granularity. Kaner et al. [13, p. 125],
suggest that large tests can save time, provided they are
not overly complicated, in which case simpler tests may be
more efficient. Kit [15, p. 107] suggests that when testing
valid inputs for which failures should be infrequent, large
test cases are preferable. Bach [1] states that small test cases
cause fewer difficulties with cascading errors; but large test
cases are better at exposing system level failures involving
interactions between software components.

Despite such suggestions, in our search of the research lit-
erature we find little formal examination of the cost-benefits
tradeoffs associated with choices of test suite granularity. A
more thorough investigation of these tradeoffs, and the im-
plications of these tradeoffs on testing across the software
lifecycle, could help test engineers design test suites that
support more cost-effective regression testing.

We therefore designed and conducted a family of con-
trolled experiments, in which we observed the application
of test suites of various granularities across six releases of
two non-trivial software systems. We measured the impact
of test suite granularity on the costs and savings of several
regression-testing methodologies: retest-all, regression test
selection, test case prioritization, and test suite reduction.
Our results expose essential tradeoffs to consider when de-
signing test cases for use in regression testing evolving soft-
ware systems.

2. OVERVIEW AND RELATED WORK

Following Binder [3], we define a test case to consist of
a pretest state of the system under test (including its envi-
ronment), a sequence of test inputs, and the expected test
results. We define a test suite to be a set of test cases.

A definition of test suite granularity is harder to come
by, but the testing problem we are addressing is a practical
one, so we begin by drawing on examples. Test engineers
designing test cases for a system identify various testing re-
quirements for that system, such as specification items, code
elements, or method sequences. Next, they must construct
test cases that ezercise these requirements. An engineer
testing a word processor might specify sequences of edit-
ing commands, an engineer testing a compiler might create
sample target-language programs, and an engineer testing
a class library might develop drivers that invoke methods.
The practical questions these engineers face include: how
many editing commands to include per sequence, how many
constructs to include in each target-language program, and
how many methods to invoke per driver.

The answers to these questions involve many cost-benefits
tradeoffs. For example, if the cost of performing setup ac-
tivities for individual test cases dominates the cost of exe-
cuting those tests, a test suite containing a few large test
cases can be less expensive than a suite containing many
small test cases. Large test cases might also be better than
small ones at exposing failures caused by interactions among
system functions. Small test cases, on the other hand, can
be easier to use in debugging than large test cases, because
they reduce occurrences of cascading errors [1] and simplify
fault localization [11]. Further, grouping test inputs into
large test cases may prevent test inputs that appear later
in the test cases from exercising the requirements they are
intended to exercise, by causing later inputs to be applied
from system states other than those intended.

In part, the foregoing examples involve test case size, a
term used informally in [1, 2, 13, 15] to denote notions such
as the number of commands applied to, or the amount of
input processed by, the program under test, for a given test
case. However, there is more than just test case size in-
volved: when engineers increase or decrease the number of
requirements covered by each test case, this directly deter-
mines the number of individual test cases that need to be
created to cover all the requirements. It is the interaction
of test case size and number of test cases that creates most
of the cost-benefits tradeoffs just discussed.

The phenomenon we wish to study in this paper, then, in-
volves ways in which, in the course of designing a test suite
to cover requirements, test inputs are grouped into test cases
within that suite. Thus, we use the term test suite granular-
ity to describe a partition on a set of test inputs into a test
suite containing test cases of a given size. Section 3.1.1.2
provides a more precise measure of test suite granularity.

Other definitions of test case, test case size, and test suite
granularity are possible. Test engineers might choose to view
the individual inputs applied during a single invocation of a
word processor, or the individual method invocations made
from within a class driver, as individual test cases, each
with its own size. Also, in practice test suites may contain
test cases of varying size. However, our definitions facilitate
the controlled study of the cost-benefits tradeoffs outlined
above. Moreover, our definitions are suitable for use with
the programs we use as subjects in our experiments.

2.1 Regression Testing and M ethodologies

We wish to study the effects of test suite granularity on
the costs and effectiveness of testing activities across the
software lifecycle, i.e., in relation to regression testing.

Let P be a program, P' be a modified version of P, and
T be a test suite developed for P. Regression testing seeks
to test P'. To facilitate such testing, test engineers may
re-use 1" to the extent possible, but new test cases may also
be required to test new functionality. Both reuse of T" and
creation of new test cases are important; however, it is test
reuse that concerns us here, as it is test reuse that motivates
most suggestions about costs/benefits of test case size.

In particular, we consider four methodologies related to
regression testing and test reuse: retest-all, regression test
selection, test suite reduction, and test case prioritization.

2.1.1 Retest-all

When P is modified, creating P', test engineers may sim-
ply reuse all non-obsolete! test cases in T to test P’; this
is known as the retest-all technique [16]. The retest-all
technique represents typical current practice [21], and thus,
serves as our control technique.

2.1.2 Regression Test Selection

The retest all technique can be expensive: rerunning all
test cases may require an unacceptable amount of time or
human effort. Regression test selection (RTS) techniques [5,
17, 25] use information about P, P’ and T to select a subset
of T with which to test P'. (For a survey of RTS techniques,
see [24].) Empirical studies of some RTS techniques [5, 8§,
26, 28] have shown that they can be cost-effective.

One cost-benefits tradeoff among RTS techniques involves
safety and efficiency. Safe RTS techniques guarantee that,
under certain conditions, test cases not selected could not
have exposed faults in P’ [24]. Achieving safety, however,
may require inclusion of a larger number of test cases than
can be run in available testing time. Non-safe RTS tech-
niques sacrifice safety for efficiency, selecting test cases that,
in some sense, are more useful than those excluded.

2.1.3 Test Suite Reduction

As P evolves, new test cases may be added to T to val-
idate new functionality. Over time, T grows, and its test
cases become redundant in terms of code or functionality
exercised. Test suite reduction techniques® [4, 10, 20] ad-
dress this problem by using information about P and T to
permanently remove redundant test cases from 7', so that
subsequent reuse of T' can be more efficient. Test suite re-
duction thus differs from regression test selection in that the
latter does not permanently remove test cases from 7', but
simply “screens” those test cases for use on a specific version
P’ of P, retaining unused test cases for use on later releases.

By reducing test-suite size, test-suite reduction techniques
reduce the costs of executing, validating, and managing test
suites over future releases of the software. A potential draw-
back of test-suite reduction, however, is that removal of

!Test cases in T that no longer apply to P’ are obsolete, and
must be reformulated or discarded [16].

2Test suite reduction has also been referred to, in the litera-
ture, as test suite minimization; however, the intractability
of the test suite minimization problem forces techniques to
employ heuristics that may not yield minimum test suites;
hence, we term these techniques “reduction” techniques.

test cases from a test suite may damage that test suite’s
fault-detecting capabilities. Some studies [27] have shown
that test suite reduction can significantly reduce the fault-
detection effectiveness of test suites. Other studies [31] have
shown that test-suite reduction can produce substantial sav-
ings at little cost to fault-detection effectiveness.

2.1.4 Test Case Prioritization

Test case prioritization techniques [6, 29, 30] schedule test
cases so that those with the highest priority, according to
some criterion, are executed earlier in the regression testing
process than lower priority test cases. For example, testers
might wish to schedule test cases in an order that achieves
code coverage at the fastest rate possible, exercises features
in order of expected frequency of use, or increases the likeli-
hood that those test cases will detect faults early in testing.

Empirical results [6, 29, 30] suggest that several simple
prioritization techniques can significantly improve one test-
ing performance goal: namely, the rate at which test suites
detect faults. An improved rate of fault detection during
regression testing provides earlier feedback on the system
under test and lets software engineers begin locating and
correcting faults earlier than might otherwise be possible.

2.2 Reated Work

Many papers have examined the costs and benefits of re-
gression test selection, test case prioritization, and test case
reduction [5, 6, 8, 14, 27, 31]. Several textbooks and articles
on testing [1, 2, 6, 11, 13, 15, 27] have discussed tradeoffs
involving test suite granularity. None of these documents,
however, has formally examined these tradeoffs, or done so
in relation to regression testing.

In [26, 28], test suite granularity is specifically considered
as a factor in two studies of regression test selection, and
test suites constructed from smaller test cases are shown to
facilitate selection. These studies, however, measured only
numbers of test cases selected, and considered only safe RTS
techniques. In contrast, this paper presents the results of a
controlled experiment designed specifically to examine the
impact of test suite granularity on the costs and savings asso-
ciated with several regression testing methodologies, across
several metrics of importance.

3. THE EXPERIMENT

Informally, the research question we address is, “how does
test suite granularity affect the costs and benefits of regres-
sion testing methodologies across software release cycles?”
More formally, we wish to evaluate the following hypotheses
(expressed as null hypotheses) for three methodologies
regression test selection, test suite reduction, and test case
prioritization — at a 0.05 level of significance:

H1 (test suite granularity): Test suite granularity does
not have a significant impact on the costs and benefits
of regression testing techniques.

H2 (technique): Regression testing techniques do not per-
form significantly differently in terms of the selected
costs and benefits measures.®

H3 (interaction): Test suite granularity effects across re-
gression testing techniques do not significantly differ.

3This hypothesis has been tested in previous studies, and is
included primarily for completeness and replication.

We also wished to evaluate these hypotheses relative to
the retest-all technique. To simplify this, we treated that
technique as a control technique and assessed it in the con-
text of each of the other three methodologies.

To test our hypotheses we designed several controlled ex-
periments. The following sections present our measures, ma-
terials, design, threats to validity, and results.

3.1 Measures
3.1.1 Independent Variables

Our experiments manipulated two independent variables:
regression testing technique and test suite granularity.

3.1.1.1 Regression testing techniques.

For each regression testing methodology considered we
studied two or three techniques. In selecting techniques we
had two goals: (1) to include techniques that could serve
as practical experimental controls, and (2) to include tech-
niques that could easily be implemented by practitioners.

Regression test selection. We chose three RTS tech-
niques, retest-all, modified entity, and modified non-core en-
tity. As described in Section 2.1, the retest-all technique
[16] executes every test case in T on P’, and is our control
technique, representing typical current practice. The mod-
ified entity technique [5] is a safe RTS technique: it selects
test cases that exercise functions, in P, that (1) have been
deleted or changed in producing P’, or (2) use variables or
structures that have been deleted or changed in producing
P’. The modified non-core entity technique works like the
modified-entity technique, but ignores “core” functions, de-
fined as functions exercised by more than k% of the test cases
in the test suite (we set k to 80%). This technique trades
safety for savings in re-testing effort (selecting all test cases
through core functions may lead to selecting all of T').

Test suite reduction. We selected two test suite re-
duction techniques, no reduction and GHS reduction. The
no reduction technique (equivalent to retest-all) represents
current typical practice and acts as our control. The GHS
reduction technique is a heuristic presented by Gupta, Har-
rold, and Soffa [10] that attempts to produce suites that are
minimal for a given coverage criterion; we used a function
coverage criterion.

Test case prioritization. We selected three test case
prioritization techniques, random prioritization, additional
function coverage prioritization, and optimal prioritization.
Random prioritization (equivalent to retest-all in our exper-
iments, because we randomly ordered the test cases in our
test suites before using them) places test cases in 7' in ran-
dom order and is our control. Additional function coverage
prioritization [29] iteratively selects a test case that yields
the greatest function coverage, then adjusts the coverage in-
formation on subsequent test cases to indicate their coverage
of functions not yet covered, and then repeats this process,
until all functions covered by at least one test case have been
covered. When all functions have been covered, this process
is repeated on the remaining test cases. Optimal prioritiza-
tion uses information on which test cases in 7" reveal faults in
P’ to find an (approximate) optimal ordering for T'; though
not a practical technique (in practice we don’t know which
test cases reveal which faults beforehand), this technique
provides an upper bound on prioritization benefits.

3.1.1.2 Test suite granularity.

Our objective was to quantify the impact of varying test
suite granularities on the costs and benefits of regression
testing techniques. To do this, we needed to obtain test
suites of varying granularities, in a manner that controls for
other factors that might affect our dependent measures. We
considered two approaches for doing this.

The first approach is to obtain or construct test suites for
a program, partition them into subsets according to size,
and compare the results of executing these different subsets.
However, this approach would not let us establish a causal
relationship between test suite granularity and measures of
costs or benefits, because it does not control for other factors
that might influence those measures.

To see this, suppose T can be partitioned into subsets T}
containing test cases of size s, and T> containing test cases of
size ks. Suppose we compare costs or benefits of 77 and 15
and find that they differ. In this case, we cannot determine
whether this difference was caused by test suite granularity,
or by differences in the number or type of inputs applied
in Th and T>. (For example, it might be the case that all
modified functions are exercised only by inputs in 77.)

The second approach we considered is to construct test
suites of varying granularities by sampling a single pool or
“universe” of test grains. A test grain is a smallest input
that could be used as a test case (applied from a start state
and producing a checkable output) for a target program. A
sampling procedure can randomly select test grains to create
test cases of different sizes: a test case of size s consists of
s test grains. Applying this sampling procedure repeatedly
to a universe of n test grains, without replacement, until
none remain (partitioning the universe into n/s test cases of
size s, and possibly one smaller test case), yields a test suite
of granularity level s. Repeating this procedure for various
values of s gives us test suites of different granularity levels
that can be compared controlling for differences in types and
numbers of inputs.

We chose the second approach, and employed four gran-
ularity levels: 1, 4, 16 and 64, which we refer to as G1, G4,
G16, and G64, respectively.

3.1.2 Dependent Variables

To investigate our hypotheses we need to measure the
costs and benefits of regression testing techniques. To do
this we constructed three models. Our first two models as-
sess costs and benefits of regression test selection and test
case reduction, and our third model assesses the benefits
of test case prioritization. We restrict our attention to the
costs and benefits measured by these models; other costs
and benefits are mentioned in Section 3.4.

3.1.2.1 Savings in test execution time.

Regression test selection and test suite reduction achieve
savings by reducing the number of test cases that need to be
executed on P, thereby reducing the effort required to retest
P’. The use of larger test suite granularities is also expected
to produce savings in test execution and validation time. In
this experiment, to evaluate these savings, we measure the
time required to execute and validate® the test cases in test
suites, selected test suites, and reduced test suites, across
test suites of different granularities.

*Validation involved using the Unix “diff” utility to compare
all old and new outputs and external files.

3.1.2.2 Costsin fault-detection effectiveness.

One potential cost of regression test selection and test
suite reduction is the cost of missing faults that would have
been exposed by excluded test cases. This cost could also
vary with test suite granularity. Costs in fault-detection
effectiveness can be measured by studying programs that
contain known faults. When dealing with single faults, one
common measure [8, 12] estimates whether a test case ¢ de-
tects fault f in P’ by applying ¢ to two versions of P’, one
that contains f and one that does not. If the outputs of P
and P’ differ on ¢, we conclude that ¢ reveals f.

In our experiments, however, we wish to study programs
containing multiple faults. When P’ contains multiple faults
it is not enough to note which test cases cause P’ to fail, we
must also determine which test cases could contribute to
revealing which faults. One way to do this [14] is to instru-
ment P’ such that when t is run on P’ we can determine,
for each fault f in P’, whether: (1) ¢ reaches f, (2) t causes
a change in data state following execution of f, and (3) the
output of P’ on t differs from the output of P on ¢.

One drawback of this approach is that it can underesti-
mate the faults that could be found in practice with ¢. For
example, suppose P’ contains faults f; and f2, which can
each be detected by t if present alone. Suppose, however,
that when f; and fo are both present in P’, fi prevents
t from reaching f>. This approach would suggest that ¢
cannot detect f». In a debugging process, however, an en-
gineer might detect and correct fi, and then on re-running
t on the (partially) corrected P, be able to detect fo. A
second drawback of this approach is that testing for data
state changes can be infeasible in programs that manipulate
enormous data spaces, such as those used in this study.

For these reasons, we chose a second approach. We acti-
vated each fault f in P’ individually, executed each test case
t (at each granularity level) on P’, and determined whether
t detects f singly by noting whether it causes P and P’ to
produce different outputs. We then assumed that detection
of f when present singly implies detection of f when present
in combination with other faults.

This approach avoids the drawbacks of the first approach:
it accommodates incremental fault-correction and doesn’t
require detection of data state changes. However, the ap-
proach may err in cases where multiple faults would mask
each other’s effects such that no failures would occur on
t. We investigated the possible magnitude of this error by
also executing our test cases on our multi-fault versions, and
measuring the extent to which test cases that caused single-
fault versions to fail did not cause multi-fault versions to
fail.> The data showed that for one of these programs (emp-
server, described momentarily), across all versions and gran-
ularities, masking occurred on only 16 of 13,195 test cases
(.12%), and for the other program (bash), across all versions
and granularities, masking occurred on only 240 of 7,760
test cases (3.09%).

3.1.2.3 Savings in rate of fault detection.
The test case prioritization techniques we consider have
a goal of increasing a test suite’s rate of fault detection.

5This check does not eliminate the possibility that some
subset of the faults in a multi-fault version might mask one
another, and be undetected by test case t in that version
even though detected singly by ¢; however, it was not com-
putationally feasible to check for this possibility.

Changed Lines
Program Version | Functions | Functions | of Code
emp-server 4.2.0 1,159 — 67,719
emp-server 4.2.1 1,159 51 67,719
emp-server 4.2.3 1,171 286 68,626
emp-server 4.2.4 1,172 9 69,796
emp-server 4.2.5 1,173 100 68,739
emp-server 4.2.6 1,173 31 68,782
bash 2.0 1,499 — 48,292
bash 2.01 1,541 303 49,555
bash 2.01.1 1,542 39 49,666
bash 2.02 1,683 519 58,090
bash 2.02.1 1,683 12 58,103
bash 2.03 1,712 196 59,010

Table 1: Experiment Subjects.

To measure rate of fault detection, in [29] we introduced a
metric, APFD, which measures the weighted average of the
percentage of faults detected over the life of a test suite.
APFD values range from 0 to 100; higher numbers imply
faster (better) fault detection rates. More formally, let T
be a test suite containing n test cases, and let F' be a set
of m faults revealed by T'. Let T'F; be the first test case in
ordering T" of T which reveals fault i. The APFD for test
suite T” is given by the equation:

TF, +TF, + ...+ TF,, n 1
nm 2n

APFD =1 —

Examples and empirical results illustrating the use of this
metric are provided in [29].

3.2 Experiment Materials
3.2.1 Programs

For these experiments we obtained several releases of two
non-trivial C programs: emp-server and bash. Table 1 pro-
vides data on these programs, we describe that data below.

3.2.1.1 Emp-server program characteristics.

Emp-server is the server component of the open-source
client-server internet game Empire. Emp-server is essen-
tially a transaction manager: its main routine consists of ini-
tialization code followed by an event loop in which execution
waits for receipt of a user command. Emp-server is invoked
and left running on a host system; a user communicates with
the server by executing a client that transmits the user’s
inputs as commands to emp-server. When emp-server re-
ceives a command, its event loop invokes routines that pro-
cess the command, then waits to receive the next command.
As emp-server processes commands, it may return data to
the client program for display on the user’s terminal, or write
data to a local database (a directory of ASCII and binary
files) that keeps track of game state. The event loop and
program terminate when a user issues a “quit” command.

We obtained six versions of emp-server. Table 1 shows
the numbers of functions and lines of executable code in each
version, and for each version after the first, the number of
functions changed for that version (modified or added to the
version, or deleted from the preceding version).

3.2.1.2 Bash program characteristics.

Bash [23], short for “Bourne Again SHell”, is a popular
open-source application that provides a command line in-
terface to multiple Unix services. Bash was developed as

emp-server | bash
G1 1985 1168
G4 497 292
G16 125 73
G64 32 19

Table 2: Test Cases per Granularity Level.

part of the GNU Project, adopting several features from the
Korn and C shells, but also incorporating new functionality
such as improved command line editing, unlimited size com-
mand history, job control, indexed arrays of unlimited size,
and more advanced integer arithmetic.

Bash is still evolving; on average two new releases have
emerged per year over the last five years. For this experi-
ment we used six versions of bash released from 1996 to 1999
(see Table 1). Each release corrects faults, but also provides
new functionality as evident by the increasing code size.

3.2.2 Test Cases and Test Automation

To examine our research question we required test cases
for our subject programs. Moreover, these test cases had to
be structured in a way that facilitates the controlled inves-
tigation of the effects of test suite granularity, following the
methodology outlined in Section 3.1.1.2 The approaches
used to create and automate these test cases, which differed
somewhat between our subject programs, were as follows.

3.2.2.1 Emp-server test cases and test automation.

No test cases were available for emp-server. To construct
test cases we used the Empire information files, which de-
scribe the 196 commands recognized by emp-server, and
the parameters and environmental effects associated with
each. We treated these files as informal specifications for
system functions and used them, together with the category
partition method [22], to construct a suite of test cases for
emp-server that exercise each parameter, environmental ef-
fect, and erroneous condition described in the files.

We deliberately created the smallest test cases possible,
each using the minimum number of commands necessary to
cover its target requirement. Each test case consists of a
sequence of between one and six lines of characters (average
1.2 lines per test case), and constitutes a sequence of in-
puts to the client, which the client passes to emp-server.
Because the complexity of commands, parameters, and ef-
fects varies widely across the various Empire commands, this
process yielded between one and 38 test cases for each com-
mand, and ultimately produced 1985 test cases. These test
cases constituted our test grains, as well as our test cases
at granularity level G1. We then used the sampling pro-
cedure described in Section 3.1.1.2to create test suites of
granularity levels G4, G16, and G64, as shown in Table 2.

To execute and validate test cases automatically, we cre-
ated test scripts. Given test suite 7', for each test case ¢ in
T these scripts: (1) initialize the Empire database to a start
state; (2) invoke emp-server; (3) invoke a client and issue
the sequence of inputs that constitutes the test case to the
client, saving all output returned to the client for use in val-
idation; (4) terminate the client; (5) shut down emp-server;
(6) save the contents of the database for use in validation;
and (7) compare saved client output and database contents
with those archived for the previous version. By design,
this process lets us apply (in step 3) all of the test inputs
contained in a test case, at all granularity levels.

3.2.2.2 Bashtest cases and test automation.

Each version of bash was released with a test suite, com-
posed of test cases from previous versions and new test cases
designed to validate added functionality. We could not di-
rectly use these suites for our experiment, however, because
they were composed strictly of large test cases, each exer-
cising whole functional components. Further, the test suites
executed, on average, only 33% of the functions in bash.

We overcame these limitations by creating a new regres-
sion test suite using two complementary methods. First, we
partitioned each large test case that came with bash release
2.0 into the smallest possible test cases. (We used the test
cases from release 2.0 because they are the only ones that
work across all releases.) Second, to exercise functionality
not covered by the original test suite, we created additional
small test cases by considering the reference documentation
for bash [23] as an informal specification.

The resulting test suite has 1168 test cases, exercising
an average of 64% of the functions across all the versions.
Each test case in the new test suite contains between one
and 54 lines. Each line constitutes an instruction consisting
of bash or Expect [18] commands that can be executed on
an instance of bash. The 1168 test cases constituted our
test grains, and test cases at granularity level G1. As with
emp-server, we then followed the procedure described in
Section 3.1.1.2to create test suites at granularity levels
G4, G16, and G64, as reported in Table 2.

3.2.3 Faults

We wished to evaluate the performance of regression test-
ing techniques with respect to detection of regression faults

faults created in a program version as a result of the mod-
ifications that produced that version. To obtain such faults
for emp-server and bash, we asked several graduate and un-
dergraduate computer science students, each with at least
two years experience programming in C and unacquainted
with the details of this study, to become familiar with the
programs and to insert regression faults into the program
versions. These fault seeders were instructed to insert faults
that were as realistic as possible based on their experience
with real programs, and that involved code deleted from,
inserted into, or modified in the versions.

Given ten potential faults seeded in each version of each
program, we activated these faults individually, and exe-
cuted the test suites (at all granularity levels) for the pro-
grams to determine which faults could be revealed by which
test cases. We excluded any potential faults that were not
detected by any test cases at any granularity level: such
faults are meaningless to our measures and cannot influence
our results. We also excluded any faults that, at every gran-
ularity level, were detected by more than 80% of the test
cases; our assumption was that such easily detected faults
would be detected by test engineers during their unit testing
of modifications (only five faults fell into this category). The
numbers of faults remaining after exclusions, and utilized in
the studies, are reported in Table 3.

3.2.4 Additional Instrumentation

To perform our experiments we required additional in-
strumentation. Our test coverage and control-flow graph
information was provided by the Aristotle program analysis
system [9] and by the Clic instrumentor and monitor [7].
We created test case prioritization, test suite reduction, and

Regression
Program Version Faults
emp-server 4.2.0 -
emp-server 4.2.1 10
emp-server 4.2.3 10
emp-server 4.2.4 10
emp-server 4.2.5 10
emp-server 4.2.6 9
bash 2.0 -
bash 2.01 10
bash 2.01.1 9
bash 2.02 9
bash 2.02.1 4
bash 2.03 9

Table 3: Faults per Subject Version.

regression test selection tools implementing the techniques
described in Section 3.1.1.1 We used Unix utilities and di-
rect inspection to determine modified functions, or functions
using modified structures.

All emp-server timing-related data was gathered on a Sun
Microsystems Ultra 10 with 256 MB of memory. All bash
timing-related data was gathered on a SunUltra 60 with 512
MB of memory. While timing data was being collected, our
testing processes were the only active user processes on the
machines.

3.3 Experiment Design

To address our hypotheses, we designed three sets of ex-
periments with the same format. Each experiment evalu-
ates the hypotheses for regression test selection, test suite
reduction, and test case prioritization. In addition, each
experiment employs blocking and two factors (one for each
independent variable) with multiple levels to ensure unbi-
ased treatment assignment. Table 4 depicts our Random-
ized Block Factorial (RBF-22) experiment design, showing
how treatment combinations were applied to subjects. The
RBF-22 design let us investigate the behavior of various
techniques (TQ) under different test suite granularity levels
(G), and let us quantify the impact of test suite granular-
ity on the costs and benefits of different regression testing
techniques as measured by our dependent variables.

Blocking. The decision to employ program as a blocking
criterion was not obvious because it could have been consid-
ered a factor or a block. However, given that our hypotheses
aim exclusively at evaluating techniques across different test
suite granularities, we decided to consider program a block.
Since we have two programs, we use two blocks under the
assumption that the observations within each program will
be more homogeneous than the entire sample set. This use
of program as a blocking factor minimizes the impact of
program variation on experimental error.

Sample Size. To choose sample size we performed an
a-priori study. Given the effort involved in preparing sub-
ject versions (in retrospect, over 80 hours per version after
establishment of the initial infrastructure) we wanted to de-
tect meaningful effects with a minimal number of invested
resources. There are several statistical approaches for deter-
mining sample size [19], they differ in terms of the informa-
tion they require as input for sample size calculation. We
decided to determine sample size using an approximation
of the difference that is worth detecting in the dependent
variables (also known as “D”) to distinguish practical dif-

Treat. Treat. Treat. Treat. Treat. Treat. Treat. Treat.

Comb. Comb. Comb. Comb. Comb. Comb. Comb. Comb.
Block bash TQ1G:1 | TQ1Gs | TQ1Gi6 | TQ1Gea | TQ2G1 | TQaGy | TQ2Gis | TQ2Gea
Block emp-server | TQ1G; | TQ1Gq | TQ1Gi16 | TQ1Geq | TQ2Gy1 | TQ2Gyg | TQ2Gis | TQ2Ges

Table 4: RBF-22 Design (TQ Stands for Technique, and G for Test Suite Granularity Level).

ferences among means. This procedure requires an estimate
of the standard deviation from the population and the size
of difference between means that would be worth detecting.

From previous studies on regression test selection [8], we
estimated the standard deviation of the population for a
subset of emp-server.® We decided that a difference of size
5% between two treatments on any of the metrics would be
a meaningful difference. Next, using the degrees of freedom
of the numerator and the degrees of freedom of the error
term over the operating characteristic curve, we estimated
that five observations per cell would be sufficient to achieve
a power greater than .80 (probability of rejecting a false
null hypothesis) for a two block factorial design with two
treatments, and alpha=0.05 [19]. Hence, each cell in Table
4 has five observations, corresponding to five versions from
each program under each treatment combination. These
versions constitute random effects that we do not control,
and we consider them samples from a population of versions.

3.4 Threatsto Validity

In this section we describe the internal, external, con-
struct, and conclusion threats to the validity of our experi-
ments, and the approaches we used to limit their impact.

Internal Validity. To test our hypotheses we had to con-
duct a set of experiments that required a large number of
processes and tools. Some of these processes involved pro-
grammers (e.g., fault seeding) and some of the tools were
specifically developed for this experiment, all of which could
have added variability to our results increasing the threats
to internal validity. We adopted several procedures and tests
to control and minimize these sources of variation. For ex-
ample, the fault seeding process was performed following a
specification so that every programmer operated in a similar
way, and it was performed in two locations using different
groups of programmers. Also, we carefully validated new
tools by testing them on small sample programs and test
suites, refining them as we targeted the larger subjects, and
cross validating them across labs.

Having only one test suite at each granularity level in
each subject might be another threat to internal validity.
Although multiple test suites would have been ideal, our
procedure for generating coarser granularity test suites in-
volved randomly selecting and joining test grains, which re-
duces the chances of bias caused by test suite composition.

External Validity. Two issues limit the generalization
of our results. The first issue is the quantity and quality of
subjects. Although using only two subjects might lessen the
external validity of the study, the relatively consistent re-
sults for bash and emp-server suggest that the results may
generalize. Regarding the quality of the subjects, there is a
large population of C programs of similar size. For exam-
ple, the linux RedHat 7.1 distribution includes source code

fSince we did not have any other studies on these subjects,
we assumed that prioritization and reduction behaved sim-
ilarly for emp-server and bash.

for 394 applications; the average size of these applications is
22,104 non-comment lines of code, and 19% have sizes be-
tween 25 and 75 KLOC. Still, replication of these studies on
other subjects could increase the confidence in our results.
The second limiting factor is test process representative-
ness. Although the random grouping procedure we em-
ployed to obtain coarser granularity test suites is power-
ful in terms of control, it constitutes a simulation of the
testing procedures used in industry, which might also im-
pact the generalization of the results. Complementing these
controlled experiments with case studies on industrial test
suites, though sacrificing internal validity, could help.

Construct Validity. The three dependent measures that
we have considered are not the only possible measures of the
costs and benefits of regression testing methodologies. Our
measures ignore the human costs that can be involved in
executing and managing test suites. Our measures do not
consider debugging costs such as the difficulty of fault local-
ization, which could favor small granularity test suites [11].
Our measures also ignore the analysis time required to se-
lect or prioritize test cases, or reduce test suites. Previous
work [27, 28, 29], however, has shown that at least for
the techniques considered — analysis time is either much
smaller than test execution time, or analysis can be accom-
plished automatically and in off-hours prior to the critical
regression testing period.

Conclusion Validity. The number of programs and ver-
sions we considered was large enough to show significance
for some of the techniques we studied, but not for others.
Although the use of more versions would have increased the
power of the experiment, the average cost of preparing each
version exceeded 80 hours, limiting our ability to make ad-
ditional observations.

3.5 Dataand Analysis

In the following sections we investigate the effects of test
suite granularity on our three regression testing methodolo-
gies, in turn, employing descriptive and inferential statistics.

3.5.1 Granularity and Regression Test Selection

We begin by exploring the impact of test suite granularity
on regression test selection techniques. To facilitate compar-
ison with the control technique and save space, we present
several graphs as part of Figure 1. The pair of graphs in the
leftmost column present results for the retest-all technique,
the pair second from left present results for the modified en-
tity RTS technique, and the pair third from left present re-
sults for the modified non-core entity RTS technique. (The
pair in the rightmost column present results for test suite
reduction, discussed in the next section.)

In each graph, the horizontal axis represents test suite
granularity, and the vertical axis represents either fault de-
tection effectiveness (top row of graphs) or test execution
time (bottom row of graphs). Each graph contains four data
points per program, with each point representing the aver-

100 100

100 100

80 o 80

80 e 80

40 40

60 60

—o— bash
-+- emp-server

% Faults Detected

—o— bash
-+ emp-server

a0 40

—o— bash —o— bash
—+— emp-server -+- emp-server

20 20

G1 [G16 G64 Gl G4 G16 G64. o1 Ga 16 G4 Gl G4 G16 G64
400 400 400 400
30 —o— bash 30 g —o— bash 300 —o— bash 300 —— bash
—*— emp-server E —¢— emp-server —4- emp-server -~ emp-server
[%]
[0
=
> i
£ 2w i 200 200 200
=
100 o - 100 100 100
e \ [o S
. *\0\(.)\0\(o — 0
Gl G4 G16 G64 Gl G4 G16 G64 Gl G4 G16 G64 Gl G4 G16 G64
Retest-All RTS (Modified Entity) RTS (Modified non-core Entity) Test Suite Reduction

Figure 1: Fault detection effectiveness (top) and test execution time (bottom) for regression test selection
and test suite reduction techniques across test suite granularities, averaged across versions.

age, across all five modified versions of the given program,
of the metric being graphed (fault detection effectiveness or
test execution time). We joined the data points with lines
to assist interpretation.

For example, the upper-left graph shows that for the retest-
all technique, fault detection effectiveness presented similar
trends across test suite granularities for the two programs,
increasing with granularity. For emp-server this increase
ranged from 48% at granularity level G1 to 98% at granu-
larity level G64, whereas for bash it ranged only from 85%
to 100%. The lower-left graph shows that for the retest-all
technique, test execution times presented similar trends, for
emp-server ranging from 371 minutes at level G1 to 23 min-
utes at level G64, and for bash ranging from 57 minutes at
G1 to 6 minutes at G64.

The trends observed across granularities for the modified-
entity and modified non-core entity RTS techniques were
similar to those observed for the retest-all technique; how-
ever, the two RTS techniques behaved quite differently. The
modified-entity technique retained the fault-detection effec-
tiveness of the retest-all technique; but it achieved no sav-
ings in execution on bash, and saved less than a minute
in execution time at granularity level G1 (too small to be
visible on the graphs) on emp-server.

In contrast to the modified entity technique, the modi-
fied non-core entity technique achieved substantial savings
in test execution time on both programs, at lower test suite

granularities. These savings decreased, however, as granu-
larity increased, and were barely noticeable at granularity
level G64. Notably, the modified non-core entity technique
was nearly equivalent, in terms of fault-detection effective-
ness, to the other two techniques; it missed two faults for
test cases at granularity level G1 and one fault for test cases
at level G4 in one version of bash, and only one fault in one
version of emp-server, at granularity level GI1.

To determine whether the impact of test suite granular-
ity on our dependent variables was statistically significant,
we performed an analysis of variance (Anova) on the data.
Table 5 presents the results of this analysis applied to the
retest-all and modified non-core entity techniques.” For each
dependent variable we performed one independent analysis
that includes the sources of variation considered, the sum
of squares, degrees of freedom, mean squares, F value, and
p-value for each source. Since we set alpha to 0.05, and
the p-value represents the smallest level of significance that
would lead to the rejection of the null hypothesis, we reject
the hypothesis when p is less than alpha.

"Our sample size was chosen to allow us to compare pairs
of techniques, and we compared each pair. However, since
the data for retest-all and the modified entity technique were
nearly identical, we present only the comparison between the
retest-all and modified non-core entity techniques. Results
of the other Anovas are available in the Appendix.

Techniques: Modified non-core Entity and Retest-all
Variable: Percentage of faults detected.

Source SS D.F. MS F p
Granularity | 15078.22 3 5026.07 | 19.92 | 0.00
Technique 90.31 1 90.31 0.36 | 0.55
Interaction 120.94 3 40.31 0.16 | 0.92
Error 18164.85 72 252.29

Variable: Percentage of time saved.

Source SS D.F. MS F p
Granularity 7955.33 3 2651.78 8.22 | 0.00
Technique 11567.93 1 11567.93 | 35.87 | 0.00
Interaction 7955.33 3 2651.78 | 8.22 | 0.00
Error 23217.09 72 322.46

Table 5: Selection Anovas.

The results indicate that test suite granularity signifi-
cantly impacted fault-detection effectiveness. They also show
that test suite granularity and technique can significantly
impact savings in execution time. There is also a signifi-
cant interaction between technique and test suite granularity
when evaluating savings, which was expected given that the
retest-all technique produced no savings while the modified
non-core entity technique saved up to 94% of test suite exe-
cution time (at granularity level G1 on emp-server). These
findings agree with our previous observations and conjec-
tures. However, one place we expected significance and did
not find it was in the interaction between technique and test
suite granularity on fault detection effectiveness.

3.5.2 Granularity and Test Suite Reduction

Test suite reduction results were similar to those produced
by regression test selection when exposed to the spectrum
of test suite granularities. In the top graph in the right-
most column in Figure 1 we again observe similar patterns.
In both bash and emp-server, fault-detection effectiveness
increased as test suite granularity increased, in a manner
similar to that observed for the retest-all technique. For
emp-server the increase ranged from 38% at granularity
level G1 to 96% at granularity level G64, whereas for bash
the increase ranged from 89% to 100%. In the bottom graph
in the rightmost column, we also see that savings in test
suite execution time decreased as test suite granularity in-
creased. For example, test suite reduction for bash reduced
execution time by 93% at granularity level G1, but by only
10% at granularity level G64. It is apparent that as test
suite granularity increased, the effectiveness of the reduced
test suite increased, but the opportunities to save through
reduction also decreased.

We performed an Anova to further evaluate our conjec-
tures and test our hypotheses. Table 6, which follows the
same structure as the table for regression test selection,
presents the results for each dependent measure. The results
indicate that granularity significantly affected both depen-
dent measures. In addition, and differing from the findings
for RTS techniques, the use of reduction significantly de-
creased the number of faults detected.

3.5.3 Granularity and Test Case Prioritization

Our third experiment considered test case prioritization.
Within this methodology we analyze three techniques: ran-
dom prioritization (through retest-all) as a control, and op-
timal and additional function coverage prioritization.

Figure 2 displays three graphs, one per technique, with
our measure of rate of fault detection, APFD, in the y-axis.

Techniques: Reduction and Retest-all
Variable: Percentage of faults detected.

Source SS D.F. MS F P
Granularity | 17413.01 3 5804.34 20.30 0.00
Technique 1402.81 1 1402.81 4.91 0.03
Interaction 605.23 3 201.74 0.71 0.55
Error 20589.91 72 285.97

Variable: Percentage of time saved.

Source SS D.F. MS F P
Granularity | 13468.92 3 4489.64 79.49 | 0.00
Technique 74246.06 1 74246.06 | 1314.52 | 0.00
Interaction | 13468.92 3 4489.64 79.49 | 0.00
Error 4066.67 72 56.48

Table 6: Reduction Anovas.

-,

100

90

APFD

o i
)) e

—o— Bash
+- Empire

80

70

G1 G4 G16 G64 Gl G4 G16 G64 G1 G4 G16 G64
Random (Retest-All) Optimal Additional Coverage

Figure 2: APFD for test case prioritization.

Results for both programs were similar under the optimal
technique: there was a consistent decrease in APFD as test
suite granularity increased. This was what we expected,
since having more test cases provides more opportunities
for prioritization; still, the differences were small. The ran-
dom and additional functional coverage techniques, however,
presented great variation in results that cannot be explained
based solely on the increase in granularity.

The Anova presented in Table 7 confirms these observa-
tions relative to optimal and random techniques. (Anovas
for all pairs of techniques are given in the Appendix; we omit
the other two here because they are similar to the one in Ta-
ble 7.) The techniques are significantly different. However,
we could not reject the hypotheses about test suite granular-
ity, or about interaction between techniques and granularity,
and their lack of influence on variations in APFD.

4. DISCUSSION

Our results strongly support our hypothesis that test suite
granularity significantly impacts the cost-effectiveness of re-
gression testing methodologies (at least, for regression test
selection and test suite reduction methodologies). In other
words: granularity matters. We also rejected our second
null hypothesis, providing further evidence about the perfor-
mance of certain regression testing methodologies and tech-
niques. Last, we detected that in most instances, technique
effectiveness varies depending on test suite granularity.

More important from a practitioner’s perspective, how-
ever, are implications for tradeoffs and factors involved when
designing test suites and choosing granularities. The follow-

Techniques: Optimal and Random

Variable: APFD.

Source SS D.F. MS F P
Granularity 33.19 3 11.06 0.42 | 0.74
Technique 4725.04 1 4725.04 | 179.10 | 0.00
Interaction 117.55 3 39.18 1.49 | 0.23
Error 1899.48 72 26.38

Table 7: Prioritization Anova.

ing paragraphs address some of these implications, and help
clarify the practical impact of the results (taking into con-
sideration the threats to validity discussed in Section 3.4).

Reducing the test suite versus reducing overhead.
Coarser granularity can greatly increase the efficiency of a
test suite. For example, increasing granularity from G1 to
G4 on the emp-server test suite saved an average of 270
minutes (73% time reduction). Finer granularity, however, is
clearly more supportive of regression test selection and test
suite reduction, since the effectiveness of these techniques
diminishes as granularity increases. This tendency was evi-
dent for both programs (see Figure 1). For example, when
the modified non-core entity RTS technique was applied to
the G1 suite of emp-server, the suite’s average execution
time was reduced from 371 to 149 minutes (60% time re-
duction). When the same technique was applied to the G64
suite for emp-server, the average savings were less than 2%.
Hence, finer granularity provides greater flexibility through
larger numbers of small test cases that can be successtully
manipulated by RTS and test suite reduction techniques to
reduce the number of test cases to be executed.

Even when RTS and test suite reduction methodologies
can save significant execution time, however, increasing test
suite granularity by joining small test cases might be prefer-
able to employing such methodologies. When test suite re-
duction was applied to the G1 test suite for bash, three out
of five versions required less retesting time than their cor-
responding versions under G64 test suites. On the other
hand, the savings obtained by applying test suite reduction
to the emp-server G1 test suites were less than the savings
generated by using level G64 suites, independent of version.
These differences can be attributed to the amount of over-
head in test suite execution required for each program. In
our experiments, the savings generated by increases in gran-
ularity resulted primarily from reduction in the overhead
associated with test setup and cleanup. (In other cases,
another factor in overhead might be the cost of human in-
tervention.) Test suites with larger granularity had fewer
test cases, which reduced the overall overhead of the suite;
this effect was more profound for emp-server, whose test
cases carried more overhead than the bash test cases.

Note, however, the other side of the tradeoff: test suites
with low overhead are not likely to yield time savings through
increases in granularity. For such suites, potential savings
through RTS or reduction may become the dominant factor
in choosing granularity.

Diminishing returns of granularity increases. Even
when finer granularity turns out to be better from an RTS
or test suite reduction perspective, smaller test cases might
not be as effective at detecting faults as larger ones. Larger
test cases usually cover more code and, in our experiments,
were more likely to execute faulty functions and to expose
faults. Table 8 lists the total number of faults missed at each

10

Undetected Faults Avg. Faults Detected per Test
emp-server bash emp-server bash
G1 27 7 1.09 2.02
G4 12 3 1.16 2.08
G16 3 0 1.45 2.80
G64 0 0 2.89 4.52

Table 8: Fault Detection Effectiveness.

granularity for each program, and the average number of
faults detected per test for retest-all. Clearly, fault detection
effectiveness increases with granularity.

However, although increases in granularity provide greater
fault detection effectiveness, there seems to be a point of di-
minishing returns at which granularity increments don’t pro-
vide additional power. Furthermore, the effectiveness gains
seem to become smaller in spite of our exponential granu-
larity increments. In our experiments, bash test suites G16
and G64 detected the same numbers of faults, and only two
versions of emp-server presented differences in fault detec-
tion between G16 and G64. The same argument applies to
savings in execution time: there is a point of diminishing
returns at which increasing granularity does not result in
significant time savings.

Change characteristics and granularity. In our ex-
periments we also discovered that fault location and likeli-
hood of execution had an impact on the methodologies.

First, we found that the number of test cases through
changed functions can greatly impact fault detection effec-
tiveness. For example, on the bash G1 test suite, missed
faults were located in functions executed by an average of
3% of the test cases, while exposed faults were located in
functions executed by an average of 66% of the test cases.
This difference can be overcome, however, if the test cases
executing changed functions are effective at exposing faults.
For example, on the emp-server G1 test suite, fewer than
2% of the test cases execute changed functions, but 26% of
them expose faults.

Second, the percentage of changes located in core func-
tionality impacts the effectiveness of RTS techniques. For
example, for the G1 test suite on version 4 of bash, modi-
fied entity selection included all tests cases, while modified
non-core entity selection included only 3% of the test cases.

Unresolved issues and opportunities. Several ques-
tions remain unanswered and new questions have emerged
as a result of these experiments. First, we must be sensitive
to the existence of metrics that capture other meaningful
attributes impacted by test suite granularity. For example,
test suites with finer granularity might facilitate fault local-
ization. Our metrics do not reflect all possible impacts.

Second, we cannot fully explain the prioritization results
and we realize that there are factors affecting variation in
rate of fault detection that we are not capturing. Although
we corroborated previous studies by providing additional
empirical evidence about the potential of prioritization tech-
niques in general, our expectation of greater APFD for finer
granularities was true only for optimal prioritization.

Third, the greater fault detection effectiveness of coarser
granularity test suites might be attributed (at least in part)
to the execution of additional code which causes data state
changes occurring in earlier stages of execution to be visible.
It might be that smaller granularity test suites could be more
effective if they were equipped with the right observers.

5. CONCLUSION

Writers of testing textbooks have long shown awareness
that test suite granularity can affect the cost-effectiveness
of testing. These effects can begin when testing the initial
release of a system: success in finding faults in that release,
as well as the amount of testing that can be accomplished,
can vary based on test suite granularity. However, successful
software evolves: the costs of testing that software are com-
pounded over its lifecycle, and the opportunity to miss faults
through inadequate regression testing occurs with each new
release. It is therefore imperative to study the effects of test
suite design across the entire software lifecycle.

Several test suite design factors, such as test suite size and
adequacy criteria, have been empirically studied, but few
have been studied with respect to evolving software. Sev-
eral regression testing methodologies have been empirically
studied, but few with respect to issues in test suite design.
This paper brings the empirical study of test suite design
and regression testing methodologies together, focusing on
a particular design factor: test suite granularity. Our results
highlight cost-benefits tradeoffs associated with granularity,
and lay the groundwork for further empirical study.

We are continuing this family of experiments. We plan to
obtain and create additional subject infrastructure, to ex-
periment with wider samples of faulty versions, regression
testing techniques, and test suite granularities, and to ex-
tend our measures to incorporate other cost-benefits factors.
We also plan to consider the use of other groupings of test
inputs. We then hope to use the data and results obtained
to provide guidelines that will help practitioners design test
suites that can be used more efficiently and effectively across
the entire lifecycle of evolving systems.

ACKNOWLEDGEMENTS

This work was supported by the NSF Information Tech-
nology Research program under Awards CCR-0080898 and
CCR-0080900 to University of Nebraska, Lincoln and Ore-
gon State University, and by NSF Awards CCR-9703108
and CCR-9707792 to Oregon State University. We thank
Xuemei Qiu, Satya Kanduri, and Srikanth Karre for helping
prepare the emp-server and bash subjects.

REFERENCES

[1] J. Bach. Useful features of a test automation system (part
iii). Testing Techniques Newsletter, Oct. 1996.

[2] B. Beizer. Black-Boz Testing. John Wiley and Sons, New
York, NY, 1995.

[3] R. Binder. Testing Object-Oriented Systems. Addison Wes-
ley, Reading, MA, 2000.

[4] T. Chen and M. Lau. Dividing strategies for the optimization
of a test suite. Info. Proc. Let., 60(3):135-141, Mar. 1996.

[5] Y. Chen, D. Rosenblum, and K. Vo. TestTube: A system for
selective regression testing. In Proc. 16th Int’l. Conf. Softw.
Eng., pages 211-220, May 1994.

[6] S. Elbaum, A. Malishevsky, and G. Rothermel. Prioritizing
test cases for regression testing. In Proc. Int’l. Symp. Softw.
Testing and Analysis, pages 102 112, Aug. 2000.

[7] S.Elbaum, J. Munson, and M. Harrison. CLIC: A tool for the
measurement of software system dynamics. In SETL Tech-
nical Report - TR-98-04., 04 1998.

[8] T. Graves, M. Harrold, J.-M. Kim, A. Porter, and G. Rother-
mel. An empirical study of regression test selection tech-
niques. In Proc. 20th Int’l. Conf. Softw. Eng., pages 188-
197, Apr. 1998.

11

[9] M. Harrold and G. Rothermel. Aristotle: A system for re-
search on and development of program analysis based tools.
Technical Report OSU-CISRC- 3/97-TR17, Ohio State Uni-
versity, Mar 1997.

M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology
for controlling the size of a test suite. ACM Trans. Softw.
Eng. and Meth., 2(3):270 285, July 1993.

R. Hildebrandt and A. Zeller. Minimizing failure-inducing
input. In Proc. Int’l. Symp. Softw. Testing and Analysis,
pages 135 145, Aug. 2000.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experi-
ments on the effectiveness of dataflow- and controlflow-based
test adequacy criteria. In Proc. Int’l. Conf. on Softw. Eng.,
pages 191 200, May 1994.

C. Kaner, J. Falk, and H. Q. Nguyeen. Testing Computer
Software. Wiley and Sons, New York, 1999.

J.-M. Kim, A. Porter, and G. Rothermel. An empirical study
of regression test application frequency. In Proc. 22nd Int’l.
Conf. Softw. Eng., pages 126 135, June 2000.

E. Kit. Software Testing in the Real World. Addison-Wesley,
Reading, MA, 1995.

H. Leung and L. White. Insights into regression testing. In
Proc. Conf. Softw. Maint., pages 60—69, Oct. 1989.

H. Leung and L. White. A study of integration testing and
software regression at the integration level. In Proc. Conf.
Softw. Maint., pages 290 300, Nov. 1990.

D. Libes. Ezploring Ezpect: A Tcl-Based Toolkit for Au-
tomating Interactive Programs. O’Reilly & Associates, Inc.,
Sebastopol, CA, Nov. 1996.

D. C. Montgomery. Design and Analysis of Ezperiments.
John Wiley and Sons, New York, fourth edition, 1997.

J. Offutt, J. Pan, and J. M. Voas. Procedures for reducing
the size of coverage-based test sets. In Proc. Twelfth Int’l.
Conf. Testing Computer Softw., pages 111 123, June 1995.
K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma.
Regression testing in an industrial environment. Comm.
ACM, 41(5):81-86, May 1988.

T. Ostrand and M. Balcer. The category-partition method
for specifying and generating functional tests. Comm. ACM,
31(6), June 1988.

[23] C. Ramey and B. Fox. Bash Reference
O’ReillyO’Reilly & Associates, Inc., Sebastopol,
2.2 edition, 1998.

G. Rothermel and M. Harrold. Analyzing regression test se-
lection techniques. IEEE Trans. Softw. Eng., 22(8):529 551,
Aug. 1996.

G. Rothermel and M. Harrold. A safe, efficient regression
test selection technique. ACM Trans. Softw. Eng. Meth.,
6(2):173-210, Apr. 1997.

G. Rothermel, M. Harrold, and J. Dedhia. Regression test
selection for C++ programs. J. Softw. Testing, Verif., Rel.,
10(2), June 2000.

G. Rothermel, M. Harrold, J. Ostrin, and C. Hong. An em-
pirical study of the effects of minimization on the fault de-
tection capabilities of test suites. In Proc. Int’l. Conf. Softw.
Maint., pages 34 43, Nov. 1998.

G. Rothermel and M. J. Harrold. Empirical studies of a safe
regression test selection technique. IEEE Trans. Softw. Eng.,
24(6):401-419, June 1998.

G. Rothermel, R. Untch, C. Chu, and M. Harrold. Test case
prioritization. IEEFE Trans. Softw. Eng., Oct. 2001.

W. Wong, J. Horgan, S. London, and H. Agrawal. A study of
effective regression testing in practice. In Proc. Eighth Intl.
Symp. Softw. Rel. Engr., pages 230-238, Nov. 1997.

W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Ef-
fect of test set minimization on fault detection effectiveness.
Softw. Pract. and Ezp., 28(4):347-369, Apr. 1998.

(10]

(11]

(12]

(13]

[14]

[15]

(22]
Manual.
CA,
[24]

(25]

[26]

Appendix: Additional Anovas

Techniques: Modified non-core Entity and Modified Entity

Variable: Percentage of faults detected.

Source SS D.F. MS F p
Granularity | 15078.22 3 5026.07 | 19.92 | 0.00
Technique 90.31 1 90.31 0.36 0.55
Interaction 120.94 3 40.31 0.16 0.92
Error 18164.85 72 252.29
Variable: Percentage of time saved.
Source SS D.F. MS F p
Granularity 7976.04 3 2658.68 8.24 0.00
Technique 11484.79 1 11484.79 | 35.61 0.00
Interaction 7934.77 3 2644.92 8.20 0.00
Error 23219.91 72 322.50
Table 9: Selection Anovas.
Techniques: Retest-All and Modified FEntity
Variable: Percentage of faults detected.
Source SS D.F. MS F P
Granularity | 12515.06 3 4171.69 | 15.23 | 0.00
Technique 0.00 1 0.00 0.00 | 1.00
Interaction 0.00 3 0.00 0.00 | 1.00
Error 19727.90 72 274.00
Variable: Percentage of time saved.
Source SS D.F. MS F P
Granularity 0.08 3 0.03 0.64 | 0.59
Technique 0.15 1 0.15 3.83 | 0.05
Interaction 0.08 3 0.03 0.64 | 0.59
Error 2.82 72 0.04
Table 10: Selection Anovas.
Techniques: Optimal and Additional Coverage
Variable: APFD.
Source SS D.F. MS F P
Granularity 166.66 3 55.55 2.44 | 0.07
Technique 1475.35 1 1475.35 | 64.80 | 0.00
Interaction 60.38 3 20.13 0.88 | 0.45
Error 1639.22 72 22.77
Table 11: Prioritization Anova.
Techniques: Random and Additional Coverage
Variable: APFD.
Source SS D.F. MS F P
Granularity 149.72 3 49.91 1.02 | 0.39
Technique 919.82 1 919.82 | 18.76 | 0.00
Interaction 126.78 3 42.26 0.86 | 0.46
Error 3530.66 72 49.04

Table 12: Prioritization Anova.

12

	The Impact of Test Suite Granularity on the CostEffectiveness of Regression Testing
	

	tmp.1250004090.pdf.PYt9E

