
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

CSE Technical reports Computer Science and Engineering, Department 
of 

10-12-2006 

Dynamic Characterization of Web Application Interfaces Dynamic Characterization of Web Application Interfaces 

Marc Randall Fisher II 
University of Nebraska-Lincoln, fisherii@google.com 

Sebastian Elbaum 
University of Nebraska-Lincoln, selbaum@virginia.edu 

Gregg Rothermel 
University of Nebraska-Lincoln, gerother@ncsu.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/csetechreports 

 Part of the Computer Sciences Commons 

Fisher, Marc Randall II; Elbaum, Sebastian; and Rothermel, Gregg, "Dynamic Characterization of Web 
Application Interfaces" (2006). CSE Technical reports. 29. 
https://digitalcommons.unl.edu/csetechreports/29 

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an 
authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17231155?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csetechreports
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csetechreports/29?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages


Dynamic Characterization of Web Application
Interfaces

Marc Fisher II, Sebastian Elbaum, and Gregg Rothermel

University of Nebraska-Lincoln
{mfisher,elbaum,grother}@cse.unl.edu

Abstract. Web applications are increasingly prominent in society, serv-
ing a wide variety of user needs. Engineers seeking to enhance, test, and
maintain these applications and third-party programmers wishing to ut-
lize these applications need to understand their interfaces. In this paper,
therefore, we present methodologies for characterizing the interfaces of
web applications through a form of dynamic analysis, in which directed
requests are sent to the application, and responses are analyzed to draw
inferences about its interface. We also provide mechanisms to increase
the scalability of the approach. Finally, we evaluate the approach’s per-
formance on six non-trivial web applications.

1 Introduction

Consider a flight reservation web application, such as Expedia. Such an ap-
plication compiles data from multiple airlines, and provides a web site where
customers can search for flights and purchase tickets. The site itself consists
of HTML forms that are displayed to the customer in a web browser. Within
these forms, the customer can enter information in fields (e.g. radio buttons, text
fields) to specify the parameters for a flight (e.g. departure date, return date,
number of passengers). The web browser then uses this entered information to
assemble a request that is sent to a form handler. The form handler is a compo-
nent that serves as an interface for the web application. This form handler could
be responsible for queries submitted via multiple different forms, such as forms
for round-trip flights or one-way flights.

Proper understanding of the interface exposed by the form handler can help
engineers generate test cases and oracles relevant to the underlying web appli-
cations. Such an understanding may also be useful for directing maintenance
tasks such as re-factoring the web pages. Finally, as we shall show, information
that helps engineers comprehend web application interfaces may also help them
detect anomalies in those interfaces and the underlying applications.

An understanding of web application interfaces can also be valuable for third
party developers attempting to incorporate the rendered data as a part of a
web service (e.g. a site that aggregates flight pricing information from multiple
sources). Although web applications that are commonly used by clients may pro-
vide interface descriptions (e.g. commercial sites offering web services often offer

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 260–275, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

University of Nebraska–Lincoln, Computer Science and Engineering
Technical Report TR-UNL-CSE-2006-0014
Issued Oct. 12, 2006
Published in Matthew B. Dwyer and Antónia Lopes, editors, Fundamental Approaches to Software Engineering, 
volume 4422/2007 of Lecture Notes in Computer Science, pages 260-275, Braga, Portugal, March 2007. 
Copyright Springer Berlin / Heidelberg.



Dynamic Characterization of Web Application Interfaces 261

Fig. 1. WebAppSleuth architecture

a WSDL-type [1] description), many sites do not currently provide such support
mechanisms. Moreover, as we shall show, the level of interface understanding
that could be useful for comprehension and anomaly detection goes beyond that
usually provided by such interface descriptions, and could serve as a complement
to a WSDL description.

To support the various activities of both the engineers of sites, and third party
developers incorporating information from other sites, we have been research-
ing methods for automatically characterizing the properties of and relationships
between variables and values in web application interfaces. In this paper, we
present a methodology for characterizing the interface of a web application. Our
methodology involves making requests to a target web application, and analyz-
ing the application’s responses to draw inferences about the variables and values
that can be included in a request and the relationships among those variables
and values. We identify three specific types of inferences, all of which have the
ability to find anomalous behavior in and help increase understanding of web
applications. To enhance the scalability of the approach, we provide a family of
techniques for selecting requests to submit to the application.

We report the results of empirical studies of this approach, in which we apply
it to six non-trivial, real-world web applications from various sources (academic,
government, and commercial). Our studies show that our inferences are useful
for finding anomalous behavior in these applications. In addition, we show that
for these applications, our request selection techniques can reduce the number
of requests needed to find correct inferences and filter out incorrect inferences,
enhancing the scalability of the approach.

2 Methodology

Our methodology works by selectively submitting requests to a web applica-
tion, and using the responses to those requests to discover relationships between
variables and values in the application. Figure 1 shows the overall architec-
ture for our web application interface characterization methodology, WebApp-
Sleuth, with various processes (sub-systems) in the methodology shown as boxes.
WebAppSleuth begins with a Page Analyzer process, which statically analyzes
a target page containing a form generated by the web application. The Page



262 M. Fisher II, S. Elbaum, and G. Rothermel

Analyzer identifies all variables associated with the fields in the form, and then
associates a list of potential values with each identified variable. For each pull-
down, radio-button, or check-box variable, the Page Analyzer obtains values
from the possible values defined in the form. For text-type variables, the Page
Analyzer prompts the user to supply values that may elicit a correct response
from the web application.

Next, the Request Generator creates a pool of potential requests by explor-
ing all combinations of values provided for each variable, as well as cases where
variables are missing. Given this pool of requests, the Request Selector deter-
mines which request or requests will be submitted to the target application.
There are two general request selection modes: Batch (requests are selected all
at once) and Incremental (requests are selected one at a time guided by a feed-
back mechanism). The Request Submitter assembles the http request, sends it
to the web server, and stores the response. This response is classified by the Re-
sponse Classifier. The selected request and the classified response are then fed
into the Inference Engine, which infers various properties about the variables
and values used in submitted requests.

Currently, our methodology analyzes a single form handler within a web ap-
plication. The form handler is assumed to be stateless and deterministic with
respect to its inputs. Numerous important web applications satisfy (or mostly
satisfy) these requirements, including applications that support travel reserva-
tion searches (e.g. Expedia), mapping applications (e.g. MapQuest), product
searches (e.g. BuyAToyota’s used car search) and other search sites (e.g. NSF’s
funding search). For sites that do not fully satisfy these requirements, it is often
possible to approximate them by temporarily controlling the state (for develop-
ers characterizing their own site) or by limiting the time frame within which the
site is accessed to limit potential changes to the underlying state.

In the following sections, we explain (1) how we classify responses, (2) how
we use requests and responses to generate inferences, and (3) how we select the
requests we are submitting, including methods that use previously submitted
requests with responses and generated inferences to guide the request selection
process.

2.1 Classifying Responses

After submitting each request, we classify the response. The user must choose
between one of two methods for classification depending on the types of responses
received and the types of inferences they wish to make. For some sites, the
response is either some piece of information (i.e. a map for MapQuest) or an error
message. Therefore our first method is to classify responses as either “Valid”
(returns the request information) or “Invalid” (returns an error message). To
classify these types of responses, our methodology searches for substrings in the
result that match simple regular expressions.

Our second method is to extract a set of results from the response (for the
inference algorithms that require valid/invalid classification, an empty set is in-
valid, and any non-empty set is valid). For example, for BuyAToyota the response



Dynamic Characterization of Web Application Interfaces 263

page includes a set of identifiers representing cars, possibly with links to addi-
tional pages with more cars. We collect this set of identifiers (iterating through
the additional pages if necessary), and store these as the classification for the
request.

2.2 Discovering Inferences

We have devised a family of inference algorithms to characterize the variables
that are part of a web application interface, and the relationships between them.
The algorithms operate on the list of variable-value pairs that are part of each
submitted request, and on the classified responses (valid/invalid or a set of re-
turned results) to those requests.

To facilitate the explanation of the subsequent algorithms we use examples
that are further explored in our study in Section 3. Also, we simplify the termi-
nology by defining a valid request as one that generates a valid response from
the application, and defining an invalid request as one that generates an invalid
response. For space reasons, detailed algorithms and descriptions are omitted,
but can be found in [2].

Variable Classes and Values. It is common for web applications to evolve,
incorporating additional and more refined services in each new deployment. As
an application evolves, it becomes less clear what variables are mandatory (re-
quired in every valid request), and what variables are optional (may be included
or absent in a valid request). Distinguishing between these classes of variables is
helpful, for example, to anyone planning to access the web application interface,
and to developers of the web application who wish to confirm that changes in
the application have the expected results in the interface.

In addition to assisting developers with evolving applications, we can identify
anomalies in the application by finding mandatorily absent variables (variables
absent in every valid request). There are two potential reasons mandatorily ab-
sent variables may be identified: 1) the web page or web application contains a
error (e.g. a field was left in a form but is no longer used by the web application)
or 2) additional requests are needed to provide an appropriate characterization
of that variable.

Our algorithm identifies as mandatory any variable that appears in all valid
requests and is absent in at least one invalid request. Our algorithm identifies
as optional any variable that appears in at least one valid request and is absent
in at least one valid request. Our algorithm identifies as mandatorily absent any
variable that is absent in all valid requests and appears in at least one invalid
request.

In addition to finding mandatory, optional, and mandatorily absent variables,
we also find the range of values for variables that produced valid responses.
This allows us to detect values that never return valid results. These values
could indicate that there are problems with the web application (e.g. the form
includes a value for a variable that is no longer used in the application), that
more requests need to be made, or that there exists an opportunity for improving



264 M. Fisher II, S. Elbaum, and G. Rothermel

Table 1. MapQuest Requests and Variable Implications

address city state zip Implication At least one-of
1 absent absent present absent address =⇒ state
2 absent absent absent present address =⇒ state ∨ zip
3 present absent absent present address =⇒ zip state ∨ zip
4 present present present absent address =⇒ zip ∨ (city ∧ state) state ∨ zip
5 present present present present address =⇒ zip ∨ (city ∧ state) state ∨ zip

the web application (e.g. a possible value for a variable represents a value that
does not exist in the current state of the database, and filtering the values in
the form based on this state could be useful).

To find the range of values, our algorithm keeps track of the values that
appear in requests (distinguishing between those that appear in valid and invalid
requests) and reports a list of values that appeared in valid requests for each
variable. To reduce the number of falsely reported value inferences, the algorithm
reports an inference for a variable only after all values included for that variable
have been used at least once.

Variable Implication. Sometimes a request that contains a particular variable
can be valid only if other specific variables are present. Identifying such relation-
ships between variables is helpful for understanding the impact of application
changes, and for avoiding sending incomplete requests to the application.

To investigate this type of relationship, we began by defining the notion of
implication as a conditional relationship between variables p and q, namely: if p is
present, then q must be present. After examining existing implications on many
sites we decided to expand our attention to implications in which the right hand
side is a proposition in disjunctive normal form and does not contain negations
or the constant TRUE. This guarantees that our implications are satisfiable but
not tautological. Further, this type of implication (referred to henceforth as a
“standard” implication) is relatively simple to understand because it can easily
be mapped to the variables’ expected behavior.

Our technique constructs an implication for each variable in the application
by iterating through submitted requests, and adding clauses to the implica-
tion for requests in which the set of variables present is not a superset of the
variables in any other clause in the implication. For a basic notion of how our
technique operates consider Table 1, which shows the process for constructing
the address implication for MapQuest across a sequence of requests. For the
first two requests, address is not present in the request, so we do not update
the implication. The third row includes address and zip, so we need to add the
clause zip to the right side of the implication. The next request includes address,
city, and state, but does not include zip (the only variable included in the clause
in the implication so far), so we add the clause city ∧ state to the implication.
Finally, the fifth request includes all four variables, a superset of the variables
included in either of the existing two clauses, so a new clause is not needed.



Dynamic Characterization of Web Application Interfaces 265

In addition to standard implications, we use a similar algorithm to detect two
other types of inferences. One of these is the “at least one-of” inference. This
inference is a proposition in disjunctive normal form like those found on the right
side of our implications. Only one of these is created per site. The last column of
Table 1 shows how an “at least one-of” inference is found for the MapQuest site.

The other type of inference is value-based implication. This inference is an
implication in which the left side has the form of p = q, where p is a variable
and q is some value for that variable. We create one of these for each value of
each variable in the site.

Value Hierarchies. It is often the case that when given two values for a vari-
able, one of them should always return a subset of the results returned for the
other value. Consider the case for real estate search engines, which typically pro-
vide a “minimum price” variable. As the minimum price increases, if all other
variables are held constant, the returned results should be a subset of the results
for lower minimum prices. Such relationships cause a hierarchy of values to exist.
In the case of minimum price, this is a simple linear hierarchy with each lower
price subsuming all of the results of the higher prices.

We represent hierarchy relationships as a graph, with a node for each value,
and directed edges p → q indicating that q ⊆ p.

Most constrained inputs (i.e. radio button or pull-down inputs) should have
a hierarchical relationship between their different values. When this is the case,
the graph is a directed acyclic graph with a single root node, where that root
node represents an “all” or “don’t care” value for the variable (Figure 2(a)).

Anomalies in the structure of these graphs can be useful for finding problems
in the web application. For example, a common anomaly seen in the applications
used for our study in Section 3 is the presence of values without edges leading
to them from the “all” value. This usually indicates that there were results that
did not appear when the variable was set to its “all” value, but did appear under
some other circumstance.

There are two special cases of the hierarchy pattern that appear often enough
in web sites to warrant special consideration. The “flat” pattern (Figure 2(b))
often occurs when the underlying application looks only for exact matches of the
values for the variable (excluding the “all” value).

The other special case is the “ordered” pattern (Figure 2(c)). This represents
variables with values that indicate progressive restriction. The minimum price
variable mentioned above is an example of this case.

Similar to our methodology for finding implications, our hierarchy inference
methodology begins by creating a potential hierarchy for each variable in the
application. Each potential hierarchy has two n by n boolean arrays, where n
is the number of possible values for the associated variable. One of the arrays,
subset, keeps track of whether we have found a case in which the subset rela-
tionship holds between the two values. The other array, notSubset, keeps track
of whether we have found a case where the subset relationship does not hold



266 M. Fisher II, S. Elbaum, and G. Rothermel

all

v1 v2

v3 v4

empty

(a) Hierarchy

all

v1 v2 v3

empty

(b) Flat

all

v1

v2

v3

(c) Ordered

Fig. 2. Example Hierarchies

between the two values. Each of these arrays is initialized with “false” in each
of their cells. Then, as each request R1 is submitted and classified, these arrays
are updated.

To display hierarchical relationships, we iterate through all the possible com-
binations of values. If the cell in the subset array is “true” and the cell in
the notSubset array is “false”, we place an edge between the nodes. Beyond
this there are two optimizations that can be made to make the graph more
readable. The first is to combine values that return the same result into a sin-
gle node (frequently we find several values that always return the empty set).
The second optimization is to remove “transitive” edges from the graph. A tran-
sitive edge is any edge (u, v) where there also exist edges (u, u1), . . . (un, v).
Currently our tool outputs the graph in dot format, which can then be read into
GraphViz [3].

2.3 Selecting Requests

One of the fundamental challenges for characterizing a web application through
directed requests is to control the number of requests. Larger numbers of re-
quests imply larger amounts of time required to collect request-response data
(for Expedia, one of the sites we study in Section 3, each request took about 30
seconds) and this slows down the inferencing process. In addition, our techniques
are sensitive to the state of the underlying database, so when applying them to a
live web application, we need to limit the time frame within which the requests
are made to obtain consistent results.

To address these problems, the Request Selector can either select a sample of
requests from the pool up-front, or it can operate incrementally by selecting a
request based on previous results and continue selecting requests until the user
no longer wishes to refine the inference set.

We consider two batch selection approaches. The first approach, Random, sim-
ply selects a set of random requests from the pool of requests without repetition.
The second approach, Covering-Array, utilizes covering arrays [4] to determine
the set of requests to submit. In general, covering arrays ensure that all n-way
combinations of values are covered by the selected requests. For a given site with
m variables, we consider all n, such that 1 ≤ n < m (when n = m, all generated



Dynamic Characterization of Web Application Interfaces 267

requests are included). We used a tool developed by Cohen et al. [5] that uses
simulated annealing to find covering arrays.

We consider one incremental approach, Inference-Guided, which selects re-
quests based on requests already submitted and inferences already derived. To
select which request to submit, for each unsubmitted request, this approach de-
termines an award value, and selects the request with the highest award value.
To determine an award value for each unsubmitted request Ru, we consider those
requests that differ from some submitted request Rs in one variable (all other
unsubmitted requests are assigned an award value of 0). We focus on this set
of requests because it seems that similar requests are likely to return similar
results, and we can therefore use the classification of Rs as a predictor for the
classification of Ru. The award value of Ru is equal to the number of potential
inferences that would be changed if Ru has the same classification as Rs.

Inference-Guided selection requires that some requests be submitted before it
can begin to compute award values for other requests. We use two approaches
for this. One approach begins by randomly selecting the initial requests. Another
approach uses the Covering-Array tactic (for n = 2) to select an initial set of
requests to submit, and then incrementally selects additional requests.

3 Empirical Evaluation

The goal of our study is to assess whether our methodology can effectively and
efficiently characterize real web sites. In particular, we wish to answer the fol-
lowing research questions:

RQ1: What is the effectiveness of the characterization? We would like
our characterization to be useful for understanding and finding anomalies in web
applications. Therefore, we examine the inferences generated for various sites,
and consider how they reflect the observed behavior of those sites.

RQ2: What is the tradeoff between effectiveness and efficiency? As the
number of requests submitted to a web application increases, the quality of the
inferences we can obtain should improve. However, the number of requests that
can be made is limited by practical considerations. Therefore, we examine how
the quality of inferences varies as requests are selected.

3.1 Objects of Analysis

Our objects of analysis (see Table 2) are six applications from various domains
and implemented by various organizations. Three of them, MapQuest, Expedia,
and Travelocity, have been used in other studies [6,7] and are among the top-40
performers on the web [8]. BuyAToyota is an application to search for Toyota
certified used cars at local dealerships. NSF is an application supporting searches
for NSF funding opportunities. UNL is a job search application maintained by
the University of Nebraska - Lincoln human resources department.



268 M. Fisher II, S. Elbaum, and G. Rothermel

Table 2. Objects of Analysis

Object Relevant variables identified Variables Size
by Page Analyzer considered of

Text List Check & for request
Box Box Radio analysis pool

MapQuest 4 0 0 4 16
Expedia 4 5 2 9 49,996
Travelocity 4 7 1 9 49,996
BuyAToyota 2 5 0 5 33,408
NSF 1 7 0 7 72,576
UNL 2 4 0 4 42,345

Table 2 lists the numbers of variables identified by our Page Analyzer on the
main page produced by each of our target web applications, at the time of this
analysis, subdivided into basic input types, the numbers of those that we used
for our analysis, and the total of number requests in the initial request pool for
each of these applications. To keep the total number of requests manageable,
we limited the variables and values for those variables that we considered as
well as choosing relatively static web sites. When choosing which variables and
values to consider, we attempted to select them such that an interesting, but
representative range of behaviors for the web applications was explored. As we
show in Section 3.4, we did not always achieve this.

3.2 Variables and Measures

Our study requires us to apply our inferencing algorithms on a collected data
set of requests and responses to characterize the objects of study. Throughout
the study we utilize four request selection procedures corresponding to those
described in Section 2.3: Random, Covering-Array, Inference-Guided (Random),
and Inference-Guided (Covering-Array).

To quantify the impact of the request selection algorithms, we compute the
recall and precision as we select requests. To compute recall and precision, we
had to define a set of inferences as a baseline (the “expected” inferences). For
each application, we defined this set as the set of inferences reported when all
requests were selected. TotalExpectedInf is the cardinality of this set. Then, after
submitting a subset of the requests, S , we can define two additional values. The
first, ReportedExpectedInfS , is the number of inferences from the set of expected
inferences that were reported after submitting S . The second, ReportedInfS , is
the total number of inferences reported after submitting S . Finally we get:

RecallS = ReportedExpectedInfS/TotalExpectedInf
and

PrecisionS = ReportedExpectedInfS/ReportedInfS

Note that RecallS is 100% when the methodology reports all of the expected
inferences after submitting S , and that PrecisionS is 100% if we report no un-
expected inferences after submitting S .



Dynamic Characterization of Web Application Interfaces 269

3.3 Design and Setup

We applied the WebAppSleuth methodology to each of the objects of study. This
involved tailoring our request submission and response classification routines as
described in Section 2.1. For three of the sites (MapQuest, Travelocity, and
Expedia), we used the valid/invalid classification method. For the remaining
three sites we were able to collect a set of results (cars for BuyAToyota, funding
opportunities for NSF, and jobs for UNL).

To expedite the exploration of several alternative request selection mecha-
nisms and inference algorithms without making the same set of requests multiple
times, we performed all the requests in the pool, and then applied the different
mechanisms and algorithms to these results. This controlled for potential changes
in the state of the web applications by giving a common set of response pages to
operate on, while still obtaining results identical to what would have occurred
had we applied the analysis to the site directly.

We performed the analysis 25 times with each type of Request Selector to con-
trol for the randomness factor in the request selection algorithms. For the Ran-
dom and Inference-Guided selection each of these 25 runs selected one request at a
time and generated inferences after each request, continuing until all the requests
in the pool were selected. For Covering-Array, we selected 25 sets of requests for
each level of interaction from one to one less than the number of variables in the
application, and generated inferences for each of these sets of requests.

3.4 Results

We present the results in two steps, corresponding to our two research questions.
First, we show and discuss the characterization provided by the methodology for

Table 3. Inferences Found for each Web Application

Website Type Inferences
MapQuest Optional address, city, state, zip

Implications city =⇒ zip ∨ state, address =⇒ zip ∨ (city ∧ state)
Expedia Mandatory depCity, arrCity, depDate, retDate, depTime, retT ime

Optional adults, seniors, children
Implications (adults ∨ seniors)
Values children: 1 of 4 values

Travelocity All inferences from Expedia
Implications (adults = 0) =⇒ seniors, (seniors = 0) =⇒ adults

BuyAToyota Optional model, year, price, mileage, distance
Implications (year = 2006) =⇒ model
Values model: 13 of 28 values, price: 5 of 7 values
Hierarchies model: Flat, missing 3 edges from “all” value, empty val-

ues, mileage: Ordered, year: Flat, price: Ordered
NSF Mandatory pubSelect, fundType, queryText

Optional month, day, year, organization
Values organization: 46 of 48 values
Hierarchies fundType: Flat, organization: Missing edges from “all”

value, empty values, other anomalies, year: Ordered
UNL Values fte: 7 of 8 values, category: 7 of 9 values

Hierarchies fte: Flat, missing 5 edges from “all” value, empty value,
category: Flat, missing 1 edge from “all” value, empty
value, reportsTo: Flat, title: Flat



270 M. Fisher II, S. Elbaum, and G. Rothermel

Table 4. Summary of Anomalies Found in Sites

Site and Symptom Significance
Expedia and Travelocity:
children had 3 invalid values

We did not consider the age variables associated
with the children variable

Expedia: missing implica-
tions

Site returned flights in some cases when the total
number of travelers was 0

BuyAToyota: missing values
for model and price

We limited our search geographically, excluding
results that would have filled in the missing values

BuyAToyota: year =
2006 =⇒ model

New cars were added to site as we collected re-
quests

BuyAToyota: model hierar-
chy was flat

Models such as “Camry” did not include submod-
els such as “Camry Solara”

BuyAToyota: misplaced
value in hierarchy

“> 100,000” miles functioned like “< 32, 767”
miles

NSF: queryText variable was
mandatory

Blank value for queryText treated different than
not including queryText

NSF: missing values for
program

We limited our search to active funding opportuni-
ties, excluding archived funding opportunities that
would have filled in the missing values

NSF: fundType hierarchy
was flat

Aggregate values such as “Standard or Continuing
Grant” not treated proper aggregates

NSF: program hierarchy had
numerous anomalies

Problems with application logic

NSF: inconsistent treatment
of missing variables

Design inconsistency makes maintenance more dif-
ficult

NSF: missing implication
(pubSelect = “After”) =⇒
day ∧ month ∧ year

Site treated “After” the same as “Ignore” if de-
pendent values were missing

UNL: fte and category had
missing values

Certain values of these fields did not appear in
database

UNL: title hierarchy was flat Titles such as “Assistant Professor” and “Assis-
tant Professor-Political Science” returned disjoint
sets of results

UNL: missing edges in fte
and category hierarchies

Either problems with application logic or the data-
base state changed as we submitted requests

each target web application when the entire pool of requests is utilized. Second,
we analyze how the characterization progresses as the requests are submitted
and analyzed, utilizing four different request selection mechanisms.

RQ1: Effectiveness of the Characterization. Table 3 presents the inferences
derived from the requests we made and the responses provided by each of the
target applications. Overall, we were able to find anomalies on five of the six
web applications, suggesting that our methodology can be used to help improve
the dependability or usability of web applications. Table 4 summarizes all of the
anomalies found. For space reasons we discuss just two of these in detail, the
others are discussed in Reference [2].

The first example anomaly is for Expedia and Travelocity. On these appli-
cations we looked at sets of variables and values for which we expected to get
identical results. However, there were two value-based implications found for
Travelocity that did not appear in Expedia. These implications were the result
of Travelocity never returning a list of flights if the total number of selected
passengers was 0, while in some cases Expedia would return a list of flights.
Since flight search in both of these sites is just the first step in a process for pur-
chasing tickets and since Expedia’s behavior has changed since the original set



Dynamic Characterization of Web Application Interfaces 271

all

BIO EHR MPS OPP

BIO/EF EHR/DUE MPS/DMS MPS/OMA OPP/PRSS

(a) Expected

BIO

BIO/EF

MPS/OMA

all

EHRMPS OPP

EHR/DUE

OPP/PRSS

MPS/DMS

(b) Actual

Fig. 3. NSF Organization Hierarchy

of requests was submitted, this difference in behavior indicates that the earlier
version of Expedia probably contained a fault.

The second example anomaly was on NSF. The NSF grant search applica-
tion includes a variable, organization, that allows the user to select which NSF
program they are interested in. Figure 3(a) shows the expected hierarchy for an
interesting subset of the values for the organization variable, while Figure 3(b)
shows the hierarchy that was actually generated. The first thing to note is some
missing edges (e.g. between all and BIO and between MPS and MPS/DMS).
In addition, the value MPS/OMA is a child of multiple values: BIO/EF, MPS,
MPS/DMS, and EHR/DUE. This occurred because particular grants could be-
long to multiple programs and, in this case, only one grant offered through
MPS/OMA appeared in our results, and it belonged to the other programs as
well. Finally, OPP/PRSS appears at the bottom as a descendant of every other
node as no grants were ever returned for this value.

RQ2: Effects of Request Selection. Figure 4 presents our results with re-
spect to the precision and recall of the Inference-Guided and Random request
selection techniques, for three of the six web applications (with only 16 requests,
MapQuest is too small an example for request selection to be useful, Travelocity
had results nearly identical to Expedia and NSF had results similar to Buy-
AToyota). In each of the graphs, the x-axis represents the number of requests
selected from the pool, and the y-axis represents the average recall (left column)
or precision (right column) over the 25 runs. Each of the lines represents one
of the request selection techniques, and the legend below indicates which line
corresponds to which technique.

On two applications, Expedia and UNL, Inference-Guided request selection
(with Random or Covering-Array seeds) had average recall equal to or bet-
ter than Random or Covering-Array request selection regardless of the number
of requests selected. On these objects we see little difference between the two
Inference-Guided techniques or between the Random and Covering-Array tech-
niques (when considering the graphs for the Covering-Array technique, the points
of interest are the corners of the “steps” as these represent the collected data
points, while the other points along these plots are meant to aid in their inter-
pretation). For BuyAToyota, all the techniques were only slightly different in
terms of recall throughout the process.



272 M. Fisher II, S. Elbaum, and G. Rothermel

(a) Expedia

(b) BuyAToyota

(c) UNL

Fig. 4. Recall and precision vs percent of requests submitted

For all of the web applications, Inference-Guided request selection
(with Random or Covering-Array seeds) had average precision equal to or bet-
ter than Random or Covering-Array request selection throughout the request
selection process. Again, there was little difference between Inference-Guided
(Random) and Inference-Guided (Covering-Array) or between Random and
Covering-Array.

These results are encouraging because they show that we can often dramati-
cally reduce the number of requests required, while still reporting most correct
inferences and few incorrect inferences. In particular, for the application with
just valid and invalid classifications (Expedia) we needed fewer than 650 requests
(1.3% of the pool) to achieve 100% recall and precision with the Inference-Guided



Dynamic Characterization of Web Application Interfaces 273

techniques, and 21,500 requests (43% of the pool) with Random selection. The
addition of set classification and hierarchy inferences makes request selection
less effective, but we can still reduce reported incorrect inferences quickly using
Inference-Guided selection. In addition, it appears that using Covering-Array
techniques does little overall to improve the recall and precision of reported in-
ferences (either by itself in comparison to Random or as a seeding technique for
Inference-Guided instead of using random seeding).

4 Related Work

There has been a great deal of work to help identify deficiencies in web sites,
to provide information on users’s access patterns, and to support testing of web
applications [9,10,11,12,13]. Among these tools, our request generation approach
most resembles the approach used by load testing tools, except that our goal is
to generate a broad range of requests to characterize the variables in the web
application interface. There are also tools that automatically populate forms by
identifying known keywords and their association with a list of potential values
(e.g., zipcode has a defined set of possible values, all with five characters). This
approach is simple but often produces incorrect or incomplete requests, so we
refrained from using it in our studies to avoid biasing the inferencing process.

Our work also relates to research efforts in the area of program character-
ization through dynamic analysis [14,15,16,17,18,19]. These efforts provide ap-
proaches for inferring program properties based on the analysis of program runs.
These approaches, however, target more traditional programs or their byprod-
ucts (e.g., traces) while our target is web application interfaces. Targeting web
applications implies that the set of properties of interest to us are different and
that we are making inferences on the program interface instead of on the program
internals.

Recent approaches also attempt to combine dynamic inference with input
generation [20,21]. These approaches use dynamic inference techniques to classify
the behavior of the program under generated inputs to determine the usefulness
of these inputs for finding faults. Our approach differs in that we want to avoid
executing new inputs that will not help our characterization due to the high cost
of their execution and the large number of potential requests.

In our own prior work, we have made several inroads into the problems of au-
tomatically characterizing the properties of and relationships between variables
in web application interfaces. In earlier work [7] we presented static approaches
for analyzing HTML and JavaScript code to identify variable types, and a dy-
namic approach for providing simple characterizations of the values allowed for
variables (e.g., a variable cannot be empty). However, deeper characterizations
of web application interfaces were not obtainable through the mechanisms that
we considered. More recent work [6] presented our techniques for finding manda-
tory, optional and valid value and implication inferences as well as a less general
version of our Inference-Guided request selection technique. This work did not



274 M. Fisher II, S. Elbaum, and G. Rothermel

consider classification of sets of results, hierarchy inferences, or the application
of covering array techniques to request selection, and looked at only three of the
six applications we examined here.

5 Conclusion

We have presented and evaluated what we believe to be the first methodology for
semi-automatically characterizing web application interfaces. This methodology
submits requests to exercise a web application, and analyzes the responses to
make inferences about the variables and values within the application interface.
As part of the methodology we have introduced a family of selection mechanisms
for submitting requests more efficiently. Further, the results of an empirical study
of six web applications from a variety of domains indicate that the methodology
can effectively derive inferences that can help with anomaly detection or under-
standing of the web application interface and that our Inference-Guided request
selection technique can reduce the number of requests required to get correct
inferences and filter out incorrect ones.

These results suggest several directions for future work. First, we would like
to extend our methodology to work with different types of web applications.
Second, the current non-automated steps of the methodology, customization
of the request submission and response classification routines, required between
four and eight hours for each of the sites we studied. Hence, we plan on leveraging
patterns in web applications along with clustering techniques to build heuristic
methods for automating these parts of WebAppSleuth. Finally, we will explore
additional types of inferences.

Acknowledgements. Thanks to M. Cohen who provided us with her tool
for generating covering arrays. K.-R. Chilakamarri participated in the early
portions of this work. This work was supported in part by NSF CAREER
Award 0347518, the EUSES Consortium through NSF-ITR 0325273 and the
ARO through DURIP award W911NF-04-1-0104.

References

1. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services de-
scription language. http://www.w3.org/TR/wsdl (2001)

2. Fisher II, M., Elbaum, S., Rothermel, G.: Dynamic characterization of web applica-
tion interfaces. Technical Report UNL-TR-CSE-2006-0010, University of Nebraska
- Lincoln (2006)

3. GraphViz. http://www.graphviz.org/ (2006)
4. Cohen, D., Dalal, S., Fredman, M., Patton, G.: The AETG system: An approach

to testing based on combinatorial design. IEEE Trans. on Softw. Eng. 23(7) (1997)
437–444

5. Cohen, M., Colbourn, C., Gibbons, P., Mugridge, W.: Constructing test suites for
interaction testing. In: Int’l Conf. on Softw. Eng. (2003) 38–48

http://www.w3.org/TR/wsdl
http://www.graphviz.org/


Dynamic Characterization of Web Application Interfaces 275

6. Elbaum, S., Chilakamarri, K.R., Fisher II, M., Rothermel, G.: Web application
characterization through directed requests. In: Int’l Workshop on Dynamic Analy-
sis. (2006)

7. Elbaum, S., Chilakamarri, K.R., Gopal, B., Rothermel, G.: Helping end-users
“engineer” dependable web applications. In: Int’l Symp. on Softw. Reliability Eng.
(2005) 31–40

8. Consumer top 40 sites. http://www.keynote.com/solutions/performance indices/
consumer index/consumer 40.html(2006)

9. Benedikt, M., Freire, J., Godefroid, P.: VeriWeb: Automatically testing dynamic
web sites. In: Int’l WWW Conf. (2002)

10. Elbaum, S., Rothermel, G., Karre, S., Fisher II, M.: Leveraging user-session data
to support web application testing. IEEE Trans. on Softw. Eng. (2005) 187–201

11. Ricca, F., Tonella, P.: Analysis and testing of web applications. In: Int’l Conf. on
Softw. Eng. (2001) 25–34

12. Software QA and Testing Resource Center: Web Test Tools.
http://www.softwareqatest.com/qatweb1.html (2006)

13. Tilley, S., Shihong, H.: Evaluating the reverse engineering capabilities of web tools
for understanding site content and structure: A case study. In: Int’l Conf. on Softw.
Eng. (2001) 514–523

14. Ammons, G., Bodik, R., Larus, J.: Mining specifications. In: Symp. on Principles
of Prog. Lang. (2002) 4–16

15. Ernst, M., Cockrell, J., Griswold, W., Notkin, D.: Dynamically discovering likely
program invariants to support program evolution. In: Int’l Conf. on Softw. Eng.
(1999) 213–224

16. Hangal, S., Lam, M.: Tracking down software bugs using automatic anomaly de-
tection. In: Int’l Conf. on Softw. Eng. (2002) 291–301

17. Henkel, J., Diwan, A.: Discovering algebraic specifications from Java classes. In:
Eur. Conf. on OO Prog. (2003) 431–456

18. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A
dynamic data race detector for multithreaded programs. ACM Trans. on Comp.
Systems 15(4) (1997) 391–411

19. Yang, J., Evans, D.: Dynamically inferring temporal properties. In: Workshop on
Prog. Analysis for Softw. Tools and Eng. (2004) 23–28

20. Pacheco, C., Ernst, M.: Eclat: Automatic generation and classification of test
inputs. In: Eur. Conf. on OO Prog. (2005) 504–527

21. Xie, T., Notkin, D.: Tool-assisted unit test selection based on operational viola-
tions. In: Int’l Conf. on Auto. Softw. Eng. (2003) 40–48

http://www.keynote.com/solutions/performance_indices/consumer_index/consumer_40.html
http://www.keynote.com/solutions/performance_indices/consumer_index/consumer_40.html
http://www.softwareqatest.com/qatweb1.html

	Dynamic Characterization of Web Application Interfaces
	

	Introduction
	Methodology
	Classifying Responses
	Discovering Inferences
	Selecting Requests

	Empirical Evaluation
	Objects of Analysis
	Variables and Measures
	Design and Setup
	Results

	Related Work
	Conclusion

