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Throughout the 20th century, a rapidly growing human population increased 
the global circulation of nitrogen (N). In the United States and elsewhere, human 
populations and activities have been disproportionately distributed towards coast
lines, leading to markedly increased N inputs to coastal receiving waters. Nitrogen 
inputs to coastal waters come from the land, from the sea, and from the air; because 
of these multiple sources and the complexity of the N cycle, confident estimates 
of total N loading to coastal systems are not routine. Ecological problems from 
increasing inputs of N to coastal waters are well known and arise from stimulation 
of algal growth. There is, however, a great diversity in coastal systems (estuaries, 
small and large embayments, lagoons, open shelfwaters, and semi-enclosed coastal 
seas) and vulnerability to increased N loading varies greatly. The combination of 
uncertainties in characterization of loading and variability in response together have 
hindered development of predictive N loading-ecological response relationships 
and, in part, have engendered a case-by-case approach to defining protective limits 
for N loading for coastal systems. 

Evidence for a causal relationship between N loading and a variety of ecologi
cal effects is strong. The general pattern for plankton responses to N inputs is non
linear, with sharpest effects at lower loading rates and progressively shoaling to a 
point where other factors (e.g., light, physical controls) become more limiting. Related 
effects of increased N loading include depressed levels of dissolved oxygen (hypoxia 
and anoxia) which injure or kill sensitive biological species; decline or elimination of 
submerged aquatic vegetation (SA V) which provides critical habitat for some fish and 
shellfish in shallow areas; promotion of certain algal species that are harmful because 
they produce toxins; and other effects on coastal food webs and fisheries. Evidence 
for effects comes from multiple observations in individual ecosystems over time, 
comparative analyses across many systems with different loading rates, empirical and 
sitnulation modeling, and from field-scale or mesocosm experiments. The progression 
of ecological symptoms from increasing levels of N is generally predictable, but the 
precise levels of loading that promote a certain effect vary across systems. 

This chapter updates the 1 st edition (2001) by reflecting on emerging 21 st cen
tury literature, which indicates this is a frenetic research area. Increasing N inputs to 
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the coastal zone have been contirmed in more places; symptoms of over-enrichment 
continue to be reported worldwide and apparently are growing. Fundamental simi
larities between coastal over-enrichment and lake eutrophication are broadly rec
ognized, although finer details are still debated. We cannot yet scale the effects of 
N loading to be predictive of effects, but this goal may be within our reach. Such a 
scaling would consider: water residence time, system bathymetry and morphology, 
water column stratitication, regional biogeography and landscape setting, water 
clarity and light penetration, food-web structure/history, and would recognize multi
ple limiting nutrients. The emerging research perspective has matured to appreciate 
how the problem is interwoven with a host of environmental and societal issues that 
converge in the coastal zone. 

1. INTRODUCTION: NITROGEN AND COASTAL MARINE SYSTEMS! 

In the late 1960s the problem of nutrient inputs to freshwater systems, and sci
entific debate about it, was reaching a peak. Although a critical volume on aquatic 
eutrophication edited by Gene Likens (1972) did not exclude papers on marine and 
estuarine systems, the principal focus was clear (Likens 1972, p. vi): 

"I hope that the information provided in this volume may be useful to decision
makers and thus contribute to a slowing of the eutrophication rate in our lakes 
and streams." 

Even before the freshwater decision-makers became fully focused on setting 
limits on phosphorus (P) loading by a seminal experiment of Schindler (1974); 
Ryther and Dunstan (197 I) suggested that N played the more critical role in coastal 
marine systems. We now know that there are low-salinity portions of some estuar
ies, as well as some special individual marine cases, which are P-sensitive (e.g., 
Howarth, 1988; Krom et aI., 1991; Doering et aI., 1995; Malone et aI., 1996; 
Boynton, 2000). Similarly, there are various freshwater systems that are N-sensitive 
(e.g., Elser et a!., 1990). Moreover, it is clear that there are possible ecological con
sequences of relative availability of silicate (Si) and N in coastal marine systems 
(e.g., Officer and Ryther, 1980; Ryther and Officer, 1981; Doering et aI., 1989; 
Conley, 2000; Rabalais et al., 2000). But the overwhelming evidence, including 

IThis chapter is only slightly revised from the 1st edition (2001). An "Afterword 
(2007)" (Section 6) has been included to discuss recent research trends and per
spectives on the problem in coastal systems. 

The term "coastal marine" or "coastal systems" is used in this chapter as short
hand for estuaries, shallow embayments, and lagoons, as well as more open near
shore and shelfwater ecosystems along oceanic-terrestrial margins, as distinct from 
similar coastal systems on large inland seas like the Great Lakes. 
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observational evidence and controlled mesocosm experiments, confirms a central 
role of N in establishing biological responses to nutrient loading in coastal waters 
(Howarth, 1988; Doering et a!., 1995; Oviatt et aI., 1995; NRC, 2000). 

Issues of shifted element ratios and their moderation of N effects are fascinating 
and substantial (cf. Nixon et a!., 1980; Nixon, 1981; Doering et a!., 1989; Rabalais 
et al., 2000; Seitzinger, 2000). But it is challenging enough to review effects relat
ing to different levels of N, which is the principal focus of this chapter. 

Nitrogen circulation through the global environment has been growing dramati
cally (Vitousek et aI., 1997). Delivery via rivers to receiving systems has increased 
greatly in the last half of the 20th century (e.g., Howarth et a!., 1996; CENR, 2000; 
and other chapters in this volume). Unlike P, there is a significant atmospheric path
way for N. Local- to longer-range atmospheric transport and deposition to many 
regions, including coastal waters, has risen as a consequence of fossil fuel burning, 
agricultural practices, and other human activities. Riverine and atmospheric enrich
ments, combined with burgeoning coastal zone populations of humans and their asso
ciated land use changes and wastewater releases, make coastal systems a frontline 
receiving system for much of the enormous global N enrichment experiment now in 
progress. What is happening in coastal ecosystems and what do we expect to happen 
ifN loads continue to rise? 

In the same volume cited above (Likens, 1972), Clifford Mortimer gave some 
opening comments (p. viii), which provide a fabric for this chapter: 

"Although the analogy can not be pressed too far, it will be noted that the 
research aimed toward cure of cancer-like eutrophication, a problem of 
unwanted proliferation of cells-devotes considerably more effort and resources 
to the study of cell processes than to description of symptoms. Until now, the 
reverse has been the case in eutrophication research." 

It is not that recognition of coastal marine eutrophication had its genesis in 
1971; indeed it began at least at the latter part of the 19th century (ef. historical 
perspectives of Nixon et aI., 1986; Nixon, 1992, 1998). But the paper of Ryther and 
Dunstan (1971), with work started much earlier by Ryther (1954), was an epiph
any which did spur an emphasis on N research that has continued and increased for 
the last three decades (Nixon, 1995). At the beginning of the 21 st century, we now 
have very little problem identifying Mortimer's "symptoms" of N overenrichment, 
due to innumerable related conferences, symposia, and associated volumes, articles, 
books, and virtually uncountable numbers of greyer-literature reports (Lauff, 1967; 
NAS, 1969; Nielson and Cronin, 1981; Boynton et a!., 1982; Carpenter and Capone, 
1983; Chesapeake Bay Program, 1983; Kennedy, 1984; Valiela, 1984; Rosenberg, 
1985; Nixon et a!., 1986; Kullenberg, 1986a; Howarth, 1988; Nixon, 1988; 
GESAMP, 1990; Elliott and Ducrotoy, 1991; Vollenweider et aI., 1992; NRC, 
1993; Nixon, 1995; Bricker and Stevenson, 1996; Nixon et aI., 1996; Anderson and 
Garrison, 1997; NRC, 2000; Hobbie, 2000). At core, symptoms are similar to those 
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noted early on by John Ryther in the oyster beds and waters adjacent to the 
N-polluting duck farms of Long Island. 

This chapter emphasizes that we now know quite a bit about coastal eutrophi
cation2 and Mortimer's "proliferation of [autotrophic] cells." We have struggled to 
provide good loading estimates and nutrient budgets. We have observed, probably 
in tens of thousands of places and in more than millions of samples, the concen
trations of nitrogenous nutrients in coastal waters. There has been strong progress 
made in connecting inputs, concentrations, and effects in concert in selected places. 
But we cannot yet predict the stimulation of some of the most undesired cells (e.g., 
toxic dinoflagellates) or the precise point at which adverse secondary consequences 
of cell proliferation will occur in any given system. And we do not have a general
ized and quantitative description of adverse effects of N loading, in part because 
there are a wide variety of coastal systems. 

Also complicating the picture of N as a pollutant is that to some level and to 
some beholders, the effects of N loading are desirable. This is the agricultural para
digm so effectively written about by Scott Nixon - the notion that fertilization 
enhances productivity and leads to higher yields of desired species (see Ketchum, 
1969; Sutcliffe, 1972, 1973; Sutcliffe et al., 1977, 1983; Nixon et al., 1986; 
Nixon, 1988, 1992, 1995). Nature repeatedly has shown that it can produce other 
than desired results, but we do not precisely know the positive limits of fertiliza
tion. Notwithstanding, the basic ingredients of the recipe for "enriching the sea 
to death" (Nixon, 1998) are known. Observations over the past few decades indi
cate that many individual system's limits have been passed to realize an oxygen
depleted, mortality-inducing recipe. Examination of such cases, among other lines 
of evidence, should help resolve a fundamental question: when and where does that 
unfortunate death recipe result? More subtle effects than fish kills occur, so there 
are related fundamental questions: when and where does N stimulate undesired spe
cies changes or wholesale food-web shifts? 

The state of knowledge is such that it does not yet allow us to answer the above 
questions to satisfaction for many systems. This is unfortunate, for such answers 
are critical to an ability to set N limits that would be protective. There is, however, 
a huge, and growing, world literature; this review draws heavily from it, even as it 
reflects my own experience and an admittedly US/north temperate bias. 

2 Nixon (1995) offered a definition of coastal eutrophication as "an increase in the 
rate of supply of organic matter to an ecosystem." It was offered, in part, because 
the term has had considerable ambiguity in usage and to emphasize that it is a 
process, not a state. In context, "eutrophication" does not necessarily equate to 
"undesired effects." In fact, Nixon suggested the definition to be "value neutral." 
Accepting it, one should talk of the "consequences" of eutrophication as part of the 
possible set of responses to, or effects of, N enrichment. 
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2. SYMPTOMS OF NITROGEN ENRICHMENT 

A recent summary (NRC, 2000) lists commonly known ecological responses to 
N enrichment. These include: 

• Increased plant biomass and primary productivity 
• Increased oxygen demand and hypoxia or anoxia 
• Shifts in benthic community structure caused by anoxia and hypoxia 
• Changes in plankton community structure caused directly by nutrient 

enrichment 
• Stimulation of harmful algal blooms (HABs) 
• Degradation of seagrass and algal beds, formation of macroalgal mats 
• Coral reef destruction 

Also listed as a concern, not with N per se, but with one vector for it, human 
sewage, is a potential increase in disease and pathogen species. With the exception of 
coral reefs, and the substitution of a term like "nuisance" for "harmful" and "macro
phytes" for "seagrass," these effects are the classic symptoms of lake eutrophication 
(Wetzel, 1983). 

I have grouped effects for review and discussion in this chapter into five prime 
categories of response to N loading. These have served generally as focal points and 
endpoints for research: 

1. Chlorophyll 
2. Phytoplankton primary production 
3. Dissolved oxygen (DO) 
4. Benthic producers (SAV, macroalgae) in shallow waters 
5. HABs, as part of change in phytoplankton species composition 

After a short discussion on N loading (Section 3), I examine each of these five 
fundamental effects of concern, using examples of where they have been noted and/ 
or have been increasing (Section 4). The probable role of N is suggested, and I try 
to capture the different kinds of evidence that can link it to the problem. Evidence 
includes what I refer to as "epidemiological" associations, a spatio-temporal 
co-occurrence, either local or regionalized. Other evidence includes: time trends of 
N and effects observed at individual or multiple sites; empirical patterns that emerge 
from comparing conditions across sites, which begins to assess the generality of the 
coupling between input and response; and finally, experimentally observed linkages 
(primarily in microcosm or mesocosm' experiments), which help confirm and in 
some cases quantify the nature of the relationship. The strength and kind of evidence 

3Mesocosms are considered to be contained systems (tanks, ponds) larger than bottle 
or laboratory-size (i.e.,"micro"-cosms), which capture some or many of the environ
mental features and realism of a natural system (usually outside exposed to natural 
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linking N and each problem varies, but to the degree possible I indicate some situ
ations where a quantitative linkage has been established. In summary (Section 5), 
I speculate on the quantitative sequence of events with increasing loading. 

The five effect categories are compiled in a very simple conceptual model to 
frame how symptoms relate to N loading (Figure I). I have not attempted to include 
all the ecological components, flows, confounding factors, etc. in a spaghetti-like 
picture of interactions that captures more of the true complexity of "sophisticated" 
constructs or model formulations. Briefly, water column chlorophyll, phytoplankton 
primary production, and other algal increases are viewed as a direct, nutrient uptake 
response. Algal increases, representing increased levels of organic matter, second
arily promote low DO through increased decomposition and respiration. Increased 
algae shade SAY in shallow water to produce a secondary effect of seagrass decline 
through light reduction. Competitions among the algal community may ultimately 
promote toxic or nuisance blooms of harmful algae. A concert of secondary effects 
acts further on food webs/fisheries, but even the direct and first-level indirect effects 
of N loading (Figure 1) have been difficult to quantify broadly. Sections 5 and 6 
discuss some ramifications of these effects, which have consequence to esthetics, 
human health, valued estuarine and marine populations, food webs, diversity, and 
ecosystem sustainability (CENR, 2000). 

Any consideration of coastal systems and their potential responses (Figure 1) 
must also recognize some special, complicating aspects. These systems are gen
erally very open to flow of water and materials, including organisms, from both 
"upstream" and "downstream" sources (due to tides and circulation changes, as well 
as biological transport or active migration). Most coastal systems have many subar
eas and pockets of different habitats, so spatial and temporal variability is a COll

founding problem in their fundamental ecological characterization and in definition 
of their response to inputs. Coastal systems also represent a set of fairly bewildering 
diversity in size, shape, and other physical, chemical, and biological characteristics. 
Monbet (1992) suggests that responses "vary from estuary to estuary, from segment 
to segment within a given estuary, and from time to time within any segment of 
an estuary." Perception of estuaries each as unique is echoed through the literature. 
The notion of "yes, but that doesn't hold for my system," is a common one and is 
bolstered by recognition that "the extreme variation in response to any level of load
ing clearly demonstrates the importance of other factors that determine differences 
between estuaries" (NRC, 2000). Continued intensive field studies and site-specific 

lighting). Systems are usually replicated and manipulated for controlled experiments. 
Example systems, cited in this chapter in relation to nutrient enrichment experi
ments, include the MERL (Marine Ecosystem Research Laboratory) systems (2.63m2 

area, 5 m deep, with coupled pelagic and soft-bottom communities; cf. Nixon et aI., 
1984, 1986) and several shallow pond/lagoon/tank systems used for macrophyte or 
seagrass studies (e.g., Twilley et a!., 1985; Short, 1987; Short et a!., 1995; Taylor 
et a!., 1995a, b). 
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Figure 1. Conceptual model of N loading and effects discussed in this chapter. 
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modeling of select systems will undoubtedly reveal much more we should know in 
terms of N and ecological responses. There also has been a strong recognition that 
we cannot study each of the many thousands of systems intensively. We need to be 
able to group similar systems in terms of their vulnerability to N enrichment. The 
notion of ecological classification is thus in the vanguard of the attempt to aggre· 
gate across the diversity of systems and to develop more generally a quantitative 
relationship of coastal responses to enrichment (cf. Jay et aI., 2000; NRC, 2000). 

3. NUTRIENT LOADING TO COASTAL SYSTEMS 

3.1. Multiple Sources, Uncertainties, and High Nutrient Loading 
To quantify effects and develop N loading-biological response relationships, one 

needs to start with nutrient inputs. Quantifying inputs to coastal systems has not been 
a small task, for several reasons. The possible sources of N are many. Obvious point 
sources were initially and easily tracked, but usable methods and models to assess non
point N surface flows, as well as atmospheric deposition, have taken considerable effort 
to develop and apply. Offshore exchanges and groundwater inputs are still not easily 
or routinely assessed. Moreover, ali sources have changed markedly in a brief span 
of history. In addition, there are many forms to analyze, which contribute to "tota!" 
N (TN = ammonia, nitrate, nitrite, dissolved organics, particulate matter, organic, and 
inorganic). Now standard analytical methods were not all standard until after 1970 and 
raging debates have ensued as to whether only dissolved inorganic N (DIN) loading, or 
also organic N forms, are stimulatory nutrient sources. So, estimating TN (like total P 
for lakes) has not always been the goal of those assessing loading or responses; many 
examples cited here use DIN. In addition to these factors, many coastal systems are 
large, so spatial and temporal assessment of sources is not a small matter. 

Even with incomplete N budgets and sources not as well characterized as for 
some other systems, we have known for some time that coastal systems receive 
high nutrient loading. Figure 2 shows estuarine systems for which land-derived 
inputs were summarized in the mid-1980s. Coastal systems often integrate flows 
and inputs from large watersheds, so from their position in the landscape, we could 
expect many of them to receive relatively high nutrient inputs compared with other 
systems. There is a significant range in loading for coastal systems, but it is not 
as wide as observed in lakes. Eutrophic/hypereutrophic lakes reach the same high 
levels of loading as many estuaries, but oligotrophic lakes are far less enriched (up 
to over two orders of magnitude lower). Less-enriched systems, such as some lakes 
and forests, tend to receive relatively high N loads (and thus have a higher NIP 
input ratio), because a majority of their input is from atmospheric sources (Kelly 
and Levin, 1986). Many estuaries receive inputs from terrestrial sources at rates 
well above those applied to intensively fertilized agricultural fields. 

In spite of the difficulties of source assessment, we now believe we have good 
input budgets for TN (and DIN) for a few coastal systems. The most complete load
ing estimates have a smattering of measurement, modeling, averaging across years, 
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Figure 2. Nitrogen and phosphorus input to a variety of terrestrial and aquatic eco
systems. Modified from Kelly and Levin (1986). Estuarine systems show DIN or 
TN input from land and in some cases, atmosphere. Boston Harbor is from land
derived sources only (Kelly, 1997a), showing an example range for a system con
sidering only DIN (lower end of bar) or TN (upper end of bar). 

and some measure of best professional judgment (e.g., Nixon et aI., 1995, 1996). 
Compared with values in the summary of Figure 2, total inputs are probably higher 
for most coastal systems, in part due to inclusion of several sources that were not 
well known or quantified in the mid-1980s. For example, atmospheric inputs are 
substantial to some systems (principally larger, more open-water ones), and also 
have been increasing (e.g., Paerl and Whitall, 1999). Groundwater inputs have also 
been quantified and are significant in certain systems (e.g., Valiela et aI., 1997a). 

Most recently, in the course of developing complete coastal nutrient budgets, it 
has become broadly recognized that loading from the seaward, as well as the land
ward, edge can be very substantial (Garside et aI., 1976; Nixon, 1997; Kelly, 1998; 
Sigleo et aI., 2005). Boston Harbor, Narragansett Bay, and other northeastern US sys
tems are an appropriate region to focus on ocean inputs because of large tidal ranges 
and, in comparison, relatively low freshwater inputs (Figure 3a). For example, Boston 
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Figure 3a. Freshwater (Fw) volume: tidal volume ratio in small and large coastal 
ecosystems. Data are from a summary of Maine (closed squares) and other (all 
open squares) larger northeast systems (Narragansett Bay, Boston Harbor, Buzzards 
Bay) by Kelly (l997b), along with intensive coastal LMER sites around the United 
States described by Jay et aI., J 997. Systems of different size range from river- to 
ocean-dominated. 

Harbor has a freshwater to tidal volume ratio <0.01. At this ratio, the concentration 
of N in freshwater must be ~ 100 times that in the tidal floodwater to provide equiva
lent loading; even with Boston's large effluent discharge to the Harbor (now being 
diverted offshore) this turns out not to be the case. Inclusion of ocean loading to the 
budget based only on land and atmosphere sources raises Boston Harbor's N input 
estimate by ~ I 00-200% (DIN and TN, respectively; Kelly, 1998). Many systems do 
not have the direct wastewater load of Boston and many have Fw/tidal volume ratios 
far less, indicating greater potential for ocean-domination of loading. Not all of the 
tidal volume input actually mixes with the water within an embayment, and this must 
be accounted for to assess ocean loading. The ratio nonetheless is a first-order illustra
tor of relative source strengths. Figure 3a suggests why several systems have "River" 
as part of their name and that Chesapeake Bay is much more freshwater-driven than 
many northeastern sites. 
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The northeast and its macrotidal conditions appears to be skewed to Fw/tidal 
volume ratios less than 1, whereas other US geographic regions have a distribution 
that includes ratios > 1, or even> 10 (Figure 3b). There is considerable overlap in 
the frequency distribution for each region; clearly the potential for both river- and 
ocean-dominated flows exists in all regions. The significance of ocean loading as 
a nutrient source will vary with the offshore N concentration, which may show a 
general decrease with latitude. Increased atmospheric N deposition (e.g., Pro spero 
et aI., 1996; Paerl and Whitall, 1999) directly to adjacent near-coastal waters could 
increase the role of the oceanside source of N to estuaries and embayments. These 
uncertainties reinforce the notion that we are still learning to quantify sources of 
nutrients to many coastal systems, and that source characterization is a big factor 
that has limited the development of loading-effects relationships. 
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Figure 3b. Frequency diagram, by US geographic regions, of the ratio of freshwater 
volume to tidal volume input. From data compiled by NOAA estuarine susceptibility/ 
eutrophication survey (see Bricker et aI., 1999), using tide gauges near mouths of 
estuaries. Pacific N = 32, Gulf N = 35, Southeast N = 20, Mid-Atlantic N = 27, 
Northeast N = 18. 

3.2. 20th Century Trend of Increasing Nitrogen Concentrations and Loading 
to Coastal Systems 

Human populations along coastlines have been dramatically increasing with 
global population rise, as have associated anthropogenic pressures on coastal sys
tems. Recent increases in loading to coastal systems are rather spectacular in 
some cases, but they are also just part of a general global increase in N circula
tion throughout the atmosphere and terrestrial as well as aquatic ecosystems 
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(e.g., Nixon, 1995; Howarth et aI., 1996; Prospero et aI., 1996; Vitousek et aI., 
1997; other chapters in this volume). 

For a number of coastal systems, it has been possible to measure or reconstruct 
trends of increase in N loading or in situ water column N concentrations over several 
decades or even from pre-European settlement in the United States. A few examples, 
all with markedly increasing N trends, include: the open and coastal Baltic Sea since 
the 1950s and I 960s (Elmgren, 1989; Cederwall and Elmgren, 1990; Rosenberg et al., 
1990), Narragansett Bay/ Albemarle-Pamlico Sound since the 1800s (Nixon, 1995), 
the Ythan estuary in Scotland from I 960s to 1990s (Balls et al., 1995), the Mississippi 
River plume from the 1960s to 1990s (Rabalais et al., 2000), and Chesapeake Bay 
from 1950 onward (Boynton, 2000). Conley (2000) compared several of these pub
lished trends in the United States and Europe; he summarized that N loads have 
increased by a factor of 1.5 to 4.5 over the 20th century and are presently as much as 
60 times more than what might be judged as "pristine" condition loading. 

3.3. Modifiers of Nitrogen Loading that have Consequence for Expression of 
Effects 

Like other aquatic systems, coastal systems experience mUltiple stressors. 
When we look for nutrient-related effects there can be confounding problems from 
suspended solids, toxic contaminants, and habitat loss. But even in cases where we 
think we know all the N inputs and other stressors, we do not necessarily know 
much. There are a number of features within coastal systems that modify how and 
when nutrients reach biological receptors and in essence create the N "exposure." 
Principal among these modifiers is flushing and the residence time of water within 
the system; this feature is an emphasis of this review. Other physical features, like 
stratification, are also significant. Additionally, work of Seitzinger (2000) and 
Nixon et al. (1996) show that sediment microbial denitrification converts DIN to N2 
gas, removing >25% of N loading to longer residence time systems. Also, larger 
biological organisms modify the distribution of N forms, spatially or seasonally, 
or graze upon plankton and affect the way primary producers respond to nutrients. 
As will be discussed, many features complicate relationships between N loading 
and effects, in part by affecting the concentration experienced at a given loading 
rate in different systems. 

4. LOADING-RESPONSE RELATIONSHIPS 

4.1. Chlorophyll Response to Nitrogen Loading and Concentrations 
Nutrient inputs (especially N) generally stimulate plankton biomass in coastal 

systems, and this is a first response in the sequence of related effects (Figure 1). The 
response is regularly measured in terms of chlorophyll a. Considerable evidence for 
stimulation exists at all levels of ecological organization and complexity (cf. Hecky 
and Kilham, 1988). Studies note enhancement by N additions in axenic cultures, 
community (bottle) assays whole-system enc1osure/mesocosm experiments, and 
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natural systems. The latter is inferred from historical trends, taking advantage of 
natural system "experiments" (e.g., sewage increases or diversions), and compar
ative trend analyses for many coastal systems (e.g., Boynton et aI., 1982; Nixon, 
1983; Nixon et aI., 1986; Howarth, 1988; Nixon, 1992). 

In examining empirical patterns to develop quantitative relationships across 
whole systems (experimental or natural), an interesting challenge is the characteri
zation of chlorophyll concentration, which has very high space and time variabil
ity. Should we be looking at peak (individual sample) concentrations, mid-summer 
ranges, or annual depth-integrated/spatially averaged means? The most successful 
efforts to relate N and chlorophyll have been constructed using annual means and 
spatial averaging across a range of sites when possible. Where data are too infre
quent or poorly spaced (in time or across the estuary) the estimate of a systems 
value may be miscast and create variability for pattern analyses. When we look 
across time or across systems we must constantly ask: are data summaries compa
rable and reliable, and how wide are the bounds of the estimate? 

Increasing chlorophyll concentrations over years to decadal or greater time scales 
have been observed at very many sites around the world in the last half-century. 
In many cases a rise in benthic microalgae or phytoplankton chlorophyll has been cor
related with N concentration increases. To generally summarize from many studies: 
when viewed across sites along enrichment gradients within or between ecosystems, 
a basic pattern often emerges between planktonic chlorophyll and water column DIN 
concentrations. Over a range of annual average DIN from <I to >20 11M, chloro
phyll tends to rise less than Illg/L of chlorophyll with every 111M increase in DIN; 
about O.7-0.8Ilg Chi/11M DIN is a very rough rule. There is variability and a tendency 
for the chlorophyll rise to be below the rough rule at increasingly higher DIN levels, 
such as may be found within a given coastal system near sewage treatment or other 
strong point source of nutrients. Observations such as this have been used to suggest 
light limitation at very high nutrient levels (e.g., Malone, 1982; Monbet, 1992). 

Many of these generalizations can be seen in Figure 4, which also adds a 
dimension of classification to the trends. The parameter range is broad enough that 
it has to be viewed on a log scale. The increasing general trends and variability 
noted above are nonetheless apparent, but for two fairly distinct classes of sys
tems - those which have very large tidal ranges (macrotidal) and those which have 
smaller (microtidal). Microtidal systems appear to be more sensitive to N enrich
ment, judging by a higher chlorophyll level observed at any given N level. Tidal 
energy may produce effects upon the light received by plankton by increasing verti
cal mixing. Destratification, sediment resuspension, and flushing may all reduce the 
chlorophyll a response per unit N. 

A number of studies, Monbet's included, have tried to relate chlorophyll with 
N loading, not just in situ N concentrations, with differing degrees of success. 
No doubt this is due to underlying variability in the nature of different systems (such as 
suggested by Figure 4), as well as uncertainties in both loading and response 
measurements. Efforts generally have confirmed a strong correlation to N loading 
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Figure 4. Mean annual concentrations of DIN and chlorophyll at multiple sites 
within different estuaries. Redrawn from Monbet (1992). Units are equal to /lM 
(DIN) and /lg/L (chlorophyll). See original reference for coastal systems (repre
sented by a series of similarly numbered stations) and data sources. 

(versus P), and provide evidence of a general relationship, but not necessarily a 
satisfyingly predictive one. Some issues of comparability and reliability inherent 
with empirical trends observed from cross-system correlations have been over
come by whole-system mesocosm experiments. For example, Marine Ecosystem 
Research Laboratory (MERL) enrichment gradient experiments (e.g., Nixon et aI., 
1986; Keller, 1988a, b) show an unequivocal tie between N loading and chlorophyll 
standing stock. Data show both a general increase in mean annual chlorophyll and 
an increase in the overall range of instantaneous measurement variability within 
increasing nutrients. Nixon et aI. (1986) showed a strong relationship between 
annual DIN inputs, annual average in situ DIN concentrations, and chlorophyll over 
the following ranges for DIN (~5-300 11M) and chlorophyll (~3-75 ~LglL). Marine 
and coastal systems, for which there are comparable loading and chlorophyll data, 
follow the general MERL trend, with exceptions noted by Nixon (1992) that are 
observable in Figure 5. The data overall (log-log scale) suggest a hyperbolic rela
tionship familiar from bottle assays. Chlorophyll, although it continues to increase 
with additional nutrients, does not keep pace I: I with increasing nutrient loads or 
concentrations. 

Nixon, Oviatt, and their co-workers' efforts to conduct experiments and com
pare results with natural systems have provided strong quantitative evidence of the 
relationship between N and chlorophyll. Scatter in the available data, however, sug
gest a single empirical relationship may not apply as a strong site-predictive model 
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Figure 5. Nitrogen loading and chlorophyll response in a mesocosm study com
pared to a range of coastal and marine systems. Redrawn from Nixon, 1992. 
Triangles are data from a MERL mesocosm enrichment experiment. Numbered 
points or polygons are natural field systems. The rectangles (1, 2) are open sea sys
tems (Sargasso Sea, North Central Pacific). Systems 9, 10, II are continental shelf 
and upwelling areas. The remainder includes estuaries or bays (e.g., Kaneohe Bay 
[HA], 14a!b [before/after sewage removal]; subestuaries of Chesapeake Bay, 3, 4, 
6, 7, 8). See original reference for systems and data sources. 

unless we improve in normalizing for other critical variables that will also influence 
the response. For example, all else being equal, shorter water residence time sys
tems (including those more energetically flushed by tides) will tend to have lower 
DIN concentrations for a given N loading (Kelly, 1997a, b), so that the problem 
of chlorophyll "sensitivity" to loading (versus concentration) in different systems 
is further complicated. Boynton and Kemp (2000) have tried a "primitive" scal
ing of nutrient loading (correcting areal input for hydraulic fill time and depth, as 
has been successful for lakes [Vollenweider, 1976]). Interestingly, their significant 
linear regression using mean chlorophyll and "scaled nutrient loading" for various 
Chesapeake Bay sites (and a few others) begins to suggest that physically different 
systems can be better aligned along similar response trends if properly normalized. 

The range of chlorophyll concentrations (e.g., Figures 4 and 5) is largely what 
would be considered mesotrophic (mean 4.7 ~lg/L, range 3-11) to eutrophic (mean 
14.3~g/L, range 3-78), with some hypereutrophic (range 100-150~g/L). Thisjudg
ment applies the standard lake classification (see Vollenweider, 1976; Wetzel, 1983; 
NRC, 1993). Few coastal marine examples would be oligotrophic (by the lake stand
ard: mean l.7 ~g/L, range 0.3--4.5); Kaneohe Bay (tropical, microtidal) or otTshore 
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areas of larger, open-water temperate macrotidal systems (e.g., Buzzards Bay [MA], 
Bay of Brest [France] might qualify). More fully marine systems, like mid-ocean 
gyres (Sargasso and North Pacific) as well as some continental shelves some dis
tance from land also have annual mean chlorophyll <2 ~lglL and also qualify as oli
gotrophic. The relative lack of low-Nil ow-chlorophyll coastal marine systems, at 
least among those that have been more extensively studied, has implications for try
ing to observe effects from N loading, and this is next put into perspective through 
examination of productivity-nutrient loading trends. 

4.2. Productivity Response to Nitrogen Loading 
It is important to derive a relationship between primary production and N load

ing, because in situ productivity in large part sets the system's organic supply and 
establishes a potential for metabolic effects (i.e., low DO, Figure 1); organic sup
ply has been cast as a prime basis for establishing "eutrophication" classes (Nixon, 
1995). The ability to quantify the productivity-loading relationship suffers from 
the same difficulties faced in relating chlorophyll and N. Year-to-year variabil
ity in production in coastal systems can be considerable even with fairly constant 
loading rates, a situation that limits site-specific predictability. Variability occurs 
because many factors besides nutrient loading can moderate production processes 
and response to enrichment (e.g., cloudiness, climate, water stratification and cir
culation; in situ physico-chemical properties; as well as grazing rates and biological 
structure). Nonetheless, a relationship should be at least broadly evident because 
phytoplankton production correlates well with chlorophyll biomass. For example, 
Keller (l988a) provides an empirical regression between annual productivity (PJ' 
g C/m2/year, using the 14C technique) and mean annual chlorophyll biomass (B, mg 
ChI alm3) for data from about nine natural systems and a MERL experiment: 

Py = 95.4 (±20.2) + 13.0 (±1.0)B, with n = 20, 

r2 = 0.91, standard errors in parentheses. 
(l) 

Using MERL studies and extensive data for Narragansett Bay from 1978 to 
1983, P, was correlated to a composite parameter (Keller 1998b; following Cole 
and Cloern, 1987) that recognizes not only the influence of B, but incorporates the 
influence of the depth of the photic zone (./1,) and incident light (/0)' The resulting 
relationship was: 

~. = 25 (±1O) + 0.3 (±0.02) B ZI/O' with n = 32, 

r2 = 0.92, standard errors in parentheses. (2) 

For the last century, we have known there is a connection between nutrient 
inputs and plankton productivity for marine systems (cf. Johnstone, 1908 or several 
historical considerations of productivity [Nixon et aI., 1986; Nixon, 1992]). Even 
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so, the relationship between N input and productivity has only comparatively 
recently been quantified, and this can best be seen in a succession of progressive 
efforts reported by Nixon (1983, 1992) and Nixon et al. (1986, 1996, 1997). When 
restricted to those relatively few field systems - mostly for open shelf and open or 
semi-enclosed seas (i.e., the Baltic) - for which there is high confidence in esti
mates of total DIN inputs (including ocean loading) and 14C-based production, and 
combined with experimental MERL mesocosm data, Scott Nixon's analyses show a 
trend that would suggest a strong predictive ability (Figure 6). 
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Figure 6. DIN inputs and phytoplankton primary productivity. Modified from Nixon, 
1997. Open squares are the first year of a MERL experiment (Nixon et aI., 1986; 
Nixon, 1992). Closed circles are various open marine systems, coastal continental 
shelf, or estuary systems. The regression shown from Nixon (1997) does not include 
data (all closed squares) which I have added to the original plot: outer Boston Harbor, 
Chesapeake Bay, Delaware Bay, Potomac River, and Baltic Sea. These additional 
areas have suitable data, including DIN loading estimates with offshore exchanges 
considered (Boynton et aI., 1995; Nixon et aI., 1996; Kelly, 1998; Nixon, 1992). 
Chesapeake uses 0.7 TN to estimate DIN, from Boynton et aI., 1995 (following Nixon 
et aI., 1996). Data for Boston Harbor are for the northern outer harbor where produc
tion measurements were made (Kelly, 1998). Plots like this attempt to derive a pat
tern of response to N as the primary stimulant; there are obviously other nutrients and 
inputs occurring in both experimental and tield situations. 

Nixon's resolution of the producers' response, because it relies on some of the 
most complete input budgets and productivity data, confirms a strong coupling, shows 
a strikingly tight trend, and has been already much cited. It draws from relatively few 



288 Nitrogen in the Environment 

systems, mostly more open coastal or marine, and the upper end is primarily driven 
by MERL results. Not all estuarine and coastal systems will strictly abide by it, a 
point illustrated in Figure 6, where I have added a few other systems that I believe 
have comparable and suitable data. The first "anomalous" example included on the 
plot is for outer Boston Harbor, a highly enriched shallow coastal embayment - one 
of the few such systems where all inputs, including offshore exchange have been esti
mated. Production in Boston Harbor appears distinctly low compared with the predic
tion. Kelly and Doering (1997) suggested this might be due to light limitation or a 
short water residence time. If the plankton doubling times are not always shorter than 
the water residence time, then the plankton population will be regulated by "washout" 
of cells to the offshore. The physics in such a case does not allow higher production 
because the population level to support it simply cannot accumulate. Boston Harbor 
stations have low chlorophyll for their nutrient levels, which is consistent with a lower 
than expected cell buildup and in situ production rate, but data otherwise seemed to 
follow the basic rules of chlorophyll-production relationships that apply to most other 
coastal waters (Cole and Cloern, 1987; Keller, 1988a, b; Kelly and Doering, 1997). 
We should indeed look at other factors to explain a situation like Boston Harbor, 
rather than suggest the anomaly invalidates a general prediction of increasing pro
duction with increasing input. On the other hand, we also know that there are upper 
limits on production (e.g., Bannister, 1974) and the increasing trend will not go with
out bounds, as self-shading by bloom conditions will become a factor (Wetzel, 1983). 
The MERL mesocosms operate with strong vertical mixing and a favorable light 
environment for plankton, so the upper treatments may be more productive than can 
be achieved in many field settings. However, treatments showing >900 g C/m2/year 
(Figure 6) are higher than those used in the model to estimate them and seem incon
sistently high compared with another measure of metabolism (Nixon, 1992), so there 
is reason to view them with caution. There are some natural systems with apparent 
loading rates that exceed the upper end of the MERL experiment (Jaworski, 1981; 
Monbet, 1992), but r am unaware of production estimates for them, except the Boston 
Harbor example. 

A second "anomaly" is Chesapeake Bay. It has been noted (e.g., Boynton et aI., 
1982; Nixon, 1992) that this bay's chlorophyll and productivity ranges are relatively 
high for the input of N, as shown on the plot. The same appears to be true for the 
Baltic Sea, although it is a little less pronounced. 

The main trend and deviations of Figure 6 are usefully put in another perspective 
(Figure 7). Following an earlier paper (Kelly and Levin, 1986), I have overlain pro
duction data for freshwater systems (using P loading) with coastal and marine systems 
(using N loading) by rectifying the axis to a Redfield ratio (N:P = 16: I, by atoms). 
From the previous summary, I excluded lakes where production data included macro
phytes or other producers in addition to plankton. For lakes, instead of actual N input, 
the x-axis is simply representing the P input times 16, which is the necessary N equiva
lent for the average marine or freshwater plankton tissue (e.g., Schindler, 1974; Hecky 
and Kilham, 1988). This approach is preferable to using actual N inputs to freshwaters, 
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Figure 7. Production-loading response in aquatic ecosystems. Lakes (closed tri
angles) are overplotted on the estuarine/marine data of Figure 6, by converting P 
inputs to the equivalents needed by phytoplankton (Kelly and Levin, 1986). Using a 
classic empirical model for lakes (see text), which recognizes the influence of water 
residence time and depth, the plot shows lines of predicted production for condi
tions, as a function of nutrient input on an areal basis. The family of solid curves 
shows different water residence times for a 5-m water depth. The unmarked dotted 
curve below the I-year, 5-m projection represents a 20-year, 50-m condition, such 
as the Baltic Sea. 

since lakes are usually responsive to P and can make up for N deficiencies by N fixa
tion, which is often not measured as a loading term (see Howarth et aI., 1988). 

Figure 7 also shows predictions of pelagic primary production (PP) based on 
the empirical lake model of Vollenweider (1979 - see Wetzel, 1983). This is of the 
form: 

PP(g C/m2/year) = 6.985 (X076 )/(O.29 + 0.11X076) (3) 

where 

(4) 
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based further on P;=average P intlow concentration and Tw=average residence 
time. X is the "expected" or predicted P concentration for the water body (see Wetzel, 
1983). 

Using this empirical model, aquatic production has been forecast in Figure 7 for 
several water residence times (1 week to 10 years) and a standard depth of 5 m, typ
ical of many coastal systems. A projection is also shown for a longer residence time 
(20 years) and greater depth (50 m) appropriate for some lakes and the Baltic Sea. 
The PP prediction is actually based on X which estimates in-lake concentration, not 
loading. From it, one can back-calculate to units of areal loading and plot results con
sistent with the standard expression that has been used in marine studies (Figure 6). 
The formulation, within the bounds of parameters chosen, encloses most of the 
lake data (from which it is generally derived); use of longer residence times would 
include virtually all of it. 

There are a number of messages to be gleaned from this exercise. First is the 
notion pointed out above with respect to Figures 2, 4, and 5 - that coastal sys
tems generally receive high nutrients and are not like oligotrophic lakes. The more 
rapid rise in production that is apparent from the least-loaded freshwater systems 
cannot be assessed for coastal systems because no such poorly loaded ones are 
studied on this scale. Even a prehistoric input estimate to Narragansett Bay, about 
0.27-0.33 mols N/m2/year (Nixon, 1997), is an order of magnitude higher than 
equivalent loading to oligotrophic lakes. 

Second, it has often been noted that the range of production in marine coastal 
systems is not very large, especially in comparison with loading (e.g., Nixon and 
Pilson, 1983; Nixon et aI., 1986; Oviatt et aI., 1986; Nixon, 1992). The regression 
of Figure 6 shows the relation is non-linear and there is only a factor of 4.4 increase 
for each order of magnitude increase in loading. From the perspective of Figure 7, 
this range of production and degree of stimulation is consistent with the fact that the 
coastal marine systems are biased to the upper half of the general aquatic nutrient 
saturation curve, a non-linearity that would be more evident if the plot were not on 
a log-log scale. Both lake and marine studies recognize a self-shading effect begins 
to limit phytoplankton at very high nutrient levels. An appreciation for the difficulty 
of sorting out a production increase "signal," amidst the "noise" of system differ
ences (and potential signal modifiers) is gained, and the role of the MERL meso
cosm experiment in defining an unambiguous response is recognized. 

Third, lakes and coastal systems may be described by the same simple rules -
loading, depth, and residence time - once critical limiting nutrients are accounted 
for. Hecky and Kilham (1988) point out fundamental similarities in physiology 
between freshwater and marine algae, and perhaps it should not be surprising that 
the two conditions could basically follow the same model. But to my knowledge, 
this has never been fully recognized and Figure 7 is the first suggestion this may be 
so. The freshwater model curve pretty well predicts Nixon's trend for conditions of 
a I-month water residence time and a 5-m water column, which is basically the con
figuration of the MERL nutrient gradient experiment (Figures 6 and 7). The model 
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does not, however, duplicate the trend for the upper two MERL points, although it is a 
near-perfect hit for the very enriched outer Boston Harbor (2-day residence time, 5-m 
depth). The Baltic Sea, with a 20-year, 50-m condition is predicted. By the model, the 
Chesapeake Bay (~8-month residence time, 6-m depth) should indeed have higher 
production than the MERL trend, and the match for the Chesapeake is close; it would 
improve if TN input (rather than DIN, ~0.7 TN) had been used. 

There is undoubtedly room to review more coastal data and improve model for
mulations, but the principal lesson from Figure 7 involves water residence time. 
A linchpin of the lake model concept is that internal system physics modifies load
ing to produce different concentrations of nutrients maintained within the receiv
ing water, to which biology responds. Evidence confirms a relationship between 
residence-time corrected inputs and in situ concentrations for open coastal systems 
and the MERL experiment (e.g., Kelly, I 997a). Estuarine scientists have been slow 
to incorporate this concept, developed long ago for lakes (e.g., Dillon, 1975). Part 
of the problem is that residence time in estuaries is not dictated just by freshwater 
throughput as it is in lakes, and it has been difficult to come to grips with this. Tidal 
inflow and mixing are significant and in very many cases the "freshwater residence 
time" is much longer than the true estuarine water residence time. Some physical 
oceanographers (Geyer et a!., 2000) provide a perspective: 

One of the most important quantities relating physics to the ecology of estu
aries is residence time. A widely cited example is the work of Vollenweider 
(1976), who demonstrated that in lakes it is not just the nutrient loading, but 
rather the product of nutrient loading and residence time that determines the 
impact of phytoplankton production. Unfortunately, estuarine physicists have 
been rather unenthusiastic about attempting to quantify residence time, due in 
part to how easily misinterpreted a single number would be in characterizing 
the complex exchange processes that int1uence an estuary. 

While "more effort should be placed in developing more accurate and sophis
ticated approaches to estimating residence time" (Geyer et ai., 2000), there are 
already simple box-modeling techniques to derive estuarine water residence times 
useful for exercises like Figure 7 (e.g., Officer, 1980; Pilson, 1985; Doering et a!., 
1990; Asselin and Spaulding, 1993; Smith, 1993; Kelly, 1998; Hagy et aI., 2000). 
Such studies, along with results in some cases of complex hydrodynamic mixing 
models, are the basis for residence-time corrections used by Nixon et a!. (1996) in 
assessing estuary retention of nutrients, in characterizing the anomalies of Figure 6, 
and later in this chapter. 

4.3. Dissolved Oxygen Response to Nitrogen 
The most obvious concern of an adverse ecological effect with N enrichment 

is development of low DO (hypoxia) or even anoxia (no oxygen) in the water col
umn of coastal marine systems. The fundamental conceptual model for the effect of 
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N on DO is simple. Nitrogen stimulates primary production (i.e., it causes "eutrophi
cation"). At some point of stimulation, the associated respiration rate of accrued 
autotrophic biomass begins to exceed the capacity of the water body to replenish 
itself by re-aeration and equilibration with the atmosphere, and DO concentrations 
can fall to hypoxic or anoxic levels. A water column concentration of DO >0 but 
<2 mg/L is the common definition of hypoxia. Most often noted in stable bottom 
waters of vertically stratified systems (and thus affecting sessile benthic organisms), 
hypoxic/anoxic levels can also occur throughout the water column, even in verti
cally well-mixed conditions. It is, of course, true that DO concentrations often go to 
zero within several millimeters of the surface of soft-sedimentary deposits. Benthic 
infauna, which live in these sediments and which cannot easily move to avoid con
ditions, can tolerate low DO (even hypoxia) in the overlying water column. For 
example, Rosenberg (1980) suggested ~2.8 mg/L as a limit noted for coastal ben
thic communities, and later Rosenberg et ai. (1991) lowered this limit to an over
lying water exposure of 1.4 mg/L for several days to weeks, using shallow shelf 
organisms tested within their natural sediment environment. Many US States have 
long used 5 or 6 mg/L as a standard, recognizing that the lower thresholds for bio
logical effects are higher in sensitive species and sensitive life stages (e.g., NRC, 
2000), including species which live within the water column, where DO concentra
tions are measured. Bricker et ai. (1999) recognized this in the National Oceanic 
and Atmospheric Administration (NOAA) survey, and thus characterized hypoxia 
as >0 and ,,:;2 mg/L, with >2-5 mg/L characterized as "biologically stressful," in an 
effort to note different levels of potential DO problems. These characterizations are 
offered as a point of reference; it is not the goal of this review to develop estuarine/ 
marine DO criteria, which is an ongoing effort within the USEPA. T focus on the 
occurrence of hypoxia/anoxia (,,:;2 mg/L) as a very serious condition documented in 
coastal systems, and explore how it may generally relate to N loading. 

Hypoxia and a "dead zone" in the northern Gulf of Mexico have received recent 
attention in the both scientific and public sectors (e.g., Rabalais et ai., 1991, 2000; 
CENR, 2000; NRC, 2000). But a DO problem has been found in many coastal sys
tems worldwide (e.g., GESAMP, 1990; Nixon, 1998) and major one-time or chronic 
low DO events have been detected since the 1970s. Examples include the New York 
Bight, Chesapeake Bay, Potomac River, Baltic Sea, ScheIdt River estuary, west
ern Long Island Sound, the Venice lagoon, northern Adriatic Sea, several Alabama 
estuaries, Pamlico River, Providence River, and Hudson River areas (Falkowski 
et ai., 1980; Officer et ai., 1984; Oviatt et ai., 1984; Larsson et ai., 1985; Kullenberg, 
1986b; Justic et a!., 1987; Turner et ai., 1987; Parker and O'Reilly, 1991; Stanley 
and Nixon, 1992; Nixon et a!., 1996; NRC, 2000). 

A recent Science news article (Malakoff, 1998) suggested the Gulf of Mexico 
hypoxia was one of more than 50 coastal regions worldwide experiencing severe 
oxygen decline. A citation for these 50 systems was not given, but worldwide there 
are a substantial number of coastal systems presently affected, or vulnerable to low 
oxygen in the near future. In the United States alone, NOAA's National Estuarine 
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Eutrophication Assessment survey (Bricker et al. 1999) categorized 42 of 121 estu
aries (~35%) with sufficient information as having "moderate or high" depression 
of DO concentrations. The NOAA survey relied on conditions described by regional 
experts with extensive first-hand knowledge of each estuary. A USEPA Environmental 
Monitoring and Assessment Program (EMAP) statistical study (Summers, 2001) 
has reported results of an unbiased random sample (n = 1,133 stations) of 1,516 
Atlantic (south of Cape Cod) and Gulf Coast estuaries. The study included a total of 
74,744km2 (42 large estuaries [>250km2], 1,464 small estuaries [2-250km2 1, and 
tidal portions of 10 large tidal rivers). Stations were sampled between 1990 and 1997 
in late summer, when DO problems tend to be most pronounced. The spatial distribu
tion of stations with measured hypoxia was centered among northern Gulf of Mexico 
estuaries and Chesapeake Bay subestuaries, with a sprinkling in the Florida and New 
York/southern NE regions. The EMAP study estimated that 4% of the represented 
area had hypoxic conditions and another 16% had DO concentrations between 2 and 
Smg/L. Thus, an estimated ~3000km2 was hypoxic, and a total of ~ 15,000km2 had 
DO within a threshold range for biological responses. In comparison, the Gulf of 
Mexico hypoxic zone may cover up to an additional ~20,000km2 of the Louisiana 
continental shelf adjacent to the Mississippi and Atchafalaya River deltas (Rabalais 
et a!., 2000). 

The inherent vulnerability of systems to low DO events must vary, indepen
dent of the N delivery, because factors such as climate, river flow, tides, physical 
oceanography, individual bathymetry, and geomorphology have int1uence through 
constraints on t1ushing, stratification, and temperature (as a regulator of metabolic 
processes). Such processes are usually mathematically formalized in sophisticated, 
coupled hydrodynamic-water quality models or even in simpler DO models (e.g., 
Officer et aI., 1984). Models may not yet fully capture some finer-scale physical 
processes (Kelly and Doering, 1999), or include all significant biological structure, 
such as benthic grazers, which potentially affect DO via food web and metabolic 
influences (e.g., Cloern, 1982; Doering et aI., 1986, 1989; Simenstad et a!., 2000). 
In principle though, sophisticated mass-balance or process-type models can link 
nutrient loading to DO response. Importantly, model formulations explicitly recog
nize that DO levels will vary with factors other than nutrient delivery or organic 
matter supply, and they can be useful sensitivity tools for that reason. Models are 
available and parameterized for a handful of coastal systems, but there are scores 
of coastal ecosystems for which there exists no calibrated or validated predictive 
model. Recognizing this lack, it may still be possible to examine time and space 
trends for a variety of coastal systems to make broader statements about a relation
ship between N levels and DO depression. 

Malakoff (1998) suggested there has been a tripling of reports of dead zones in 
the last 30 years. At a broad scale, such reports of hypoxia/anoxia in coastal waters 
map principally within the northern hemisphere (US Atlantic and Gulf coasts, west
em and northern Europe, areas of the Mediterranean, Japan) around industrialized 
regions with high human populations and downstream of their associated N exports 
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(Malakoff, 1998, Nixon, 1998). However, it is always a quandary to determine if an 
increased incidence in part arises from looking more, and the connection to a spe
cific cause can be tenuous as we try to interpret, in essence, "epidemiological" data 
on the basis of an observed symptom. In the United States, for NOAA's (Bricker 
et aI., 1999) study, of the 44 (of 121) systems expressing what were termed highly 
"eutrophic" conditions, only about 22 were included for having a "high" or "moder
ately high" expression of low DO symptoms. Also, some systems display "eutrophic" 
symptoms unrelated to variations in nutrient loading (e.g., Bricker et aI., 1999). 

Fortunately, there is more than epidemiological evidence. It is not common to 
have the intensity of monitoring information to detect signals among the noise of 
natural variability, but there are cases of an increased scale or intensity of low DO 
documented within the last half-century. Some cases show DO strongly correlated 
to nutrient deliveries (Officer et aI., 1984; Justic et aI., 1987; Parker and O'Reilly, 
1991; Boynton and Kemp, 2000). 

One study, Rabalais et al. (2000), has described the Mississippi plume dynam
ics in the northern Gulf of Mexico. By patching together and comparing several 
time series, it is shown that surplus oxygen concentrations in surface water (indica
tor of net production from river-originated nutrients) peaks about one month after 
the Mississippi River flow peaks. A resultant DO minimum in bottom-water follows 
the surface-water peak by about another month, and is thus associated with decay 
of recently produced organic matter settling from surface production by diatoms. 
Most instances of hypoxia are coincident with high water column stability and 
stratification produced by strong surface-to-bottom density differences. A lighter, 
freshwater surface plume overlying a denser, saline layer creates such stratification. 
Importantly, the rate of N loading and the level of diatomaceous remains (as Si) 
in underlying sediments appear to increase in lock-step through the century, thus 
indicating how an increase in diatom blooms and resultant hypoxia has arisen in the 
latter half of the 20th century. 

Boynton and Kemp (2000) examined a lengthy time series (1985-1992) at a mes
ohaline site in Chesapeake Bay (Figure 8a). They were able to correlate seasonal DO 
decline in subpycnocline deep water to spring bloom deposition of organic matter. 
Chlorophyll, primary production, and organic deposition were all strongly correlated 
with river tlow, which is a primary determinant of nutrient input to this region. Thus, 
in part by proxy, higher N input and lower DO are related by a series of expected 
connections that lead to a secondary consequence from initial plankton stimulation. In 
spite of strong correlations, Boynton and Kemp (2000) note that other factors may be 
involved, such as annual variability in temperature and stratification. 

Some trends over space or across systems have been also noted. As the work of 
Boynton and Kemp (2000) and others (Jay et aI., 2000; NRC, 2000) tend to high
light, it requires some level of "scaling" or "classification" to apply cross-system 
analyses most appropriately in a search for more generalized rules. These efforts 
have not yet been generally extended to examination of N-induced DO effects (see 
also Section 6.). 
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Figure 8a. Empirical relationship between spring organic matter input and summer 
seasonal DO decline rates in bottom-water at a site in the mainstem of Chesapeake 
Bay. Redrawn from Boynton and Kemp (2000). The date at which hypoxia (as DO 
<1 mg/L) was first encountered in years with highest and lowest organic matter is 
indicated. 

In contrast, Figure 8b shows a group of estuaries and embayments in Maine, 
where DO minima were measured along with TN concentrations and a number of 
other features of each system (morphology, watershed, salinity, temperature, fresh
water inputs, tidal range and flushing, stratification). Hypoxia is not generally an 
issue in this region and the variability among sites within and across systems is 
small. A multivariate step-wise regression analysis nonetheless suggested a strong 
relationship between TN and observed DO minima, if a system's flushing time (cal
culated from tides rather than freshwater flow in these ocean-dominated systems) 
was considered as a classification factor. Interestingly, the resultant multiple regres
sion comes close to predicting the DO concentration that occurs with the flushing 
time and TN concentrations of nearby Boston Harbor (Kelly, 1997a, 1998). The 
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Maine 1996 study 
DO = a - b (TN) - c (FT) 

8.---------------------------------------~ 

• • 
7 • , - ~, , . , 

'~- ... 
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.~ • 

5 - 1 Day 
<1 Day 

Flushing time >1 Day 

4+-------4-------~------_r------_r------~ 

10 15 20 25 30 35 

Mean TN (11M) 

Figure 8b. Relationship observed among N concentrations, minimum DO concen
trations, and flushing time for 15 small, short-residence time, tidally flushed estu
aries and embayments. Adapted from Kelly, 1997c, in which stepwise multiple 
regression analyses selected TN and flushing as first-order explanatory variables 
accounting for >60% of the variability. One point (circled) did not fit the trend. 
Flushing time is based on replacement of estuarine volume by tidal volume input 
every l2.42h, and as such assumes complete mixing. Freshwater replacement 
time is much slower; these systems generally have low Fw/tidal volume ratios (see 
Figure 3a). 

Maine systems are all cold-water and relatively pristine, with very short residence 
times because of flushing dominated by tidal actions. General applicability of these 
results is thus untested, although the indication of physical control of DO response 
to N is intriguing. 

There is compelling experimental evidence on the relationship between N load
ing and low DO. A MERL nutrient gradient experiment produced oxygen problems 
at its upper N loading levels, >9,000mmol TN/m2/year (Oviatt et aI., 1986). Low 
DO was also concomitant with primary production that reached at least 400 g C/m21 
year but the two most enriched MERL treatments, which had more severe, chroni
cally-low DO, averaged production rates above 750 g C/m2/year for the 2 years it 
was measured (Oviatt et aI., 1986 and see Table 1). In contrast to many natural 
systems where DO problems are known, the MERL studies were conducted using 
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(intermittently) well-mixed mesocosms with a 5-m deep water column and underly
ing active and functional benthic community (e.g., Kelly et a!., 1985; Nixon et aI., 
1986). 

I have brought together several bits of data to explore patterns across experi
ments and field studies (Table I). Included are natural or experimental systems hav
ing the most complete N loading (TN) and budgets available in the literature, each 
with indirect or direct estimates of ocean N loading. Not all of these systems have 
DO problems, but many do. Summarized systems have great diversity - in lati
tude (Baltic to Gulf of Mexico), size (for natural systems, 10-100,000 s of km2), 
depth (I-55m), estuarine residence time (days to years), and vertical stratifica
tion (well-mixed to strongly stratified). Areal TN loading rates have a wide range 
(217-107,692mmol N/m2/year). Table comparisons indicate DO problems in some 
low- to medium-loaded systems (Baltic, Chesapeake), but not necessarily in all 
those with higher loading (e.g., Delaware Bay or Narragansett Bay), which illus
trates some of the difficulty of defining directly an N loading-DO relationship. 

In spite of all their differences, systems with DO problems may share a similar 
residence-time corrected loading, or "expected" concentration. The "expected" con
centration of Table 1 is a simple correction of areal N loading for residence-time 
and depth, a parameter that correlates well with observed mean in situ N concen
trations in some coastal systems (Kelly, 1997a, b). This is a similar scaling con
cept analogous to that used in Figure 7 and explored by others (e.g., Valiela and 
Costa, 1988; Kelly, 1998; Boynton and Kemp, 2000). A rough hypoxic threshold 
value, scanning the data of Table I, might be an "expected" TN concentration on 
the order of 80I1M. There are several important issues of scale. First, Providence 
River has a DO problem compared with its parent Narragansett Bay system and 
also a higher "expected" (as well as measured) concentration (Table I). In contrast, 
the outer Boston Harbor region itself does not have a DO problem and its value is 
lower than its whole parent system (Table I). Both these sub-area observations sup
port a threshold concept. Second, freshwater residence time in the Providence River 
strongly affects the expected value (Table I) and it may be significant to occasional 
development of hypoxia/anoxia. This is a phenomenon similar to that described 
recently by Howarth and co-workers (in NRC, 2000) for low tlow conditions in 
the Hudson River estuary; in that case not only was residence time affected by low 
flow but other elements of the hypoxic recipe, stratification and primary production, 
both increased. Third, note that the "illustration" value calculated for the northern 
Gulf of Mexico uses various assumptions that should be challenged. Input occurs 
to an area larger than the immediate hypoxic zone, so loading must also be lower; 
I do not know of an estimate for residence time in this open shelf situation and just 
assumed a seasonal turnover. Lastly, a suggested value near 80 for stratified natural 
systems is lower than indicated for the well-mixed conditions of the MERL experi
ment, where low DO was produced at values >130. 

If the very speculative concept were valid, it would operate mechanistically 
through an influence of residence time on production (as per Figure 7). It is clear 
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that hypoxia occurs at lower primary production levels in stratified natural systems 
than it took in well-mixed MERL conditions. Production ranges for each system are 
large. If hypoxia occurs towards the higher end of most systems' range (Table I), 
we could tentatively place most hypoxia-associated conditions with production 
;:.300g C/m2/year. The Baltic Sea would be a distinct exception; its very long resi
dence time possibly allows greater long-term accrual of organic material, so leg
acies of past production help promote low DO. This is unproven, as is a distinct 
threshold of production to produce hypoxia. The simple point is that DO problems 
obviously occur at different levels of (area-based) N loading, so it seems logical to 
explore flushing and residence time as scaling factors that moderate effects such as 
lowered DO. 

Besides production, the strength and spatial details of stratification, among oth
ers, are factors intluencing DO (e.g., Turner et ai., 1987, Kelly and Doering, 1999). 
A pattern like Figure 8b might arise in part through flushing effects on stratifica
tion. Also, temperature, turbidity or periods of cloudiness, or even shallowness 
itself may also be key factors. The growth of macroalgae and associated hypoxia in 
shallow water may occur at levels of N lower than the loading necessary to produce 
hypoxia in deeper areas (see Section 4.4). In contrast, grazing by benthic filter feed
ers may moderate enrichment effects of chlorophyll or productivity (e.g., Cloern, 
1982). Ultimately, we have to recognize that N loading and productivity create only 
a potential for lowered DO; to develop quantitative relationships we need continued 
work to classify systems by attributes which make a DO problem more likely. 

4.4. Benthic Primary Producer Response (SA V, Macroalgae) to Nitrogen in 
Shallow Systems 

There are a number of excellent site summaries and reviews of submerged 
(often called submersed) aquatic vegetation (SAV) and macroalgae in coastal sys
tems - freshwater, estuarine, and marine. SAY is a broad term that includes sea
grasses (marine angiosperms) as well as freshwater macrophytes which are found 
in fresher regions of estuaries (e.g., Dennison et ai., 1993). Studies describe many 
facets of SAY: the ecological importance of rooted macrophytes and seagrasses in 
coastal water; temporal patterns of seagrass decline, including possible relationships 
to nutrient loading, water quality, or other historical factors; potential for recovery 
from anthropogenic nutrient/sediment loads. Still other studies describe the stimu
lation of nuisance blooms of macroalgae by nutrients in shallow coastal systems, 
including coral reefs. The reader is referred to a number of examples (Thayer et a!., 
1975; Zieman, 1982; Stevenson, 1988; Sand-lensen and Borum, 1991; Dennison 
et a!., 1993; Stevenson et aI., 1993; Duarte, 1995; Lapointe, 1997; Valie1a et a!., 
1997b; Fourqurean and Robblee, 1999; NRC, 2000). 

SAY is ecologically significant. It is important to waterfowl, it affects water 
quality by buffering turbidity in estuaries, contributes very high primary productiv
ity and feeds a significant food chain through (mostly) detrital pathways, and offers 
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habitat or nursery for larvae, juveniles, or adult fish and shellfish. As an example, 
Heck et a!. (1995) suggests that eelgrass habitat can support macroinvertebrate pro
duction (prey items for fish) that is disproportionately large compared with unveg
etated areas (intertidal and subtidal muds). SAY can dominate overall secondary 
productivity of shallow estuaries even when its areal coverage is as low as 10%, 
and its contribution to the consumer food web can be more significant than implied 
by its level of contribution to primary production. Simply put, concern for SAY 
decline or loss focuses on the loss of all the stated functions above, especially for 
the food web (fish and shellfish) supported by its presence. 

The evidence for SAY response to nutrients goes beyond epidemiological and 
anecdotal site trends, and there are a number of detailed examples of global SAY 
decline in the last half-century, in Europe, North America, and Australia (e.g., 
Orth and Moore, 1983; Costa, 1988; Yaliela et a!., 1992; Dennison et al., 1993; 
Fourqurean and Robblee, 1999). Throughout history there have been other causes 
of seagrass declines, but many during the last half of the 20th century have been 
linked to nutrients, specifically N. A variety of controlled experiments, including 
in mesocosms, have confirmed a link to N and the qualitative sequence of events 
with increasing loading (cL Kemp et a!., 1983; Twilley et a!., 1985; Short et aI., 
1995; Taylor et a!., 1995a, b). Based on various site trends, comparative analyses, 
and experimental evidence, Duarte (1995) determined that there was "an adequate 
empirical basis to formulate qualitative predictions on the direction of change in 
submerged vegetation upon nutrient enrichment," but there was a lesser basis to pre
dict recovery with lessening of nutrient loading. 

It has been noted that changes in SAY are not gradual, but have thresholds and 
appear as step changes with a sudden shift in vegetation, implying both direct and 
indirect effects are at play. A principal mechanism for nutrient effects on SAY is 
uniformly recognized as a secondary consequence of enrichment of other primary 
producers. Hansson (1988) confirmed that under very low nutrient conditions in 
lakes, benthic algae can access nutrients from sediments and have a competitive 
advantage over planktonic algae, whose advantage grows with nutrients in the water 
column, due to their superior access to light. Similar concepts apply where principal 
benthic producers are rooted macrophytes or seagrasses (Figure 9a). Direct nutrient 
stimulation of plankton; periphyton on sediments; epiphytes on the vegetation, or 
other algal, emergent; or floating overgrowth all can induce light limitation of the 
seagrass or macrophyte, rooted to the bottom and thus subject to shading by unat
tached forms. Studies also suggest that algal stimulation can affect root metabolism 
and indirectly affect SAY, and there is some variability in the paradigm that may 
be induced by the effects of grazers on different producer forms. But the simple 
progression of Figure 9a, long described as a freshwater eutrophication paradigm 
(Wetzel, 1983), appears applicable to estuarine areas (Stevenson, 1988; Sand-Jensen 
and Borum, 1991) and has been a principal conceptual foundation of studies exam
ining SAY decline. 
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Figure 9a. General pattern of changes among primary producers with increased nutri
ent loading in shallow aquatic ecosystems. Redrawn from Sand-Jensen and Borum 
(1991). Conceptual progression based on summary of data for temperate lakes. 

Figure 9a is fundamentally similar to trends established for a shallow southern 
Massachusetts estuary (Figure 9b), although the "emergentlfloating" macrophyte 
forms are replaced by nuisance macroalgae (e.g., Cladophora, Gracilaria sp.) with 
high nutrient uptake rates. In Waquoit Bay, eelgrass was shown to decline from 
1951 to 1987, from an extensive spatial coverage to restriction to a small patch 
near the mouth of the estuary. Duarte (1995) compared producer forms (seagrass, 
macroalgae, phytoplankton) in terms of various physiological properties in relation 
to the environment (light, nutrients) to suggest that macroalgal forms have physi
ological advantages over seagrasses in N-Ioaded systems, being more nutrient- and 
less light-limited. The Valiela et al. (l997b) trends in Waquoit Bay fundamentally 
followed the qualitative predictions of Duarte (1995). Sub-estuary data (Figure 9b) 



304 Nitrogen in the Environment 

100 
S Q C 

Phytoplankton 

c 
0 

""B 75 
:::J 

""0 
0 
0. 
~ 

50 co 
E Macroalgae 
.§. 

C 
OJ 
~ 25 
OJ 

0... 

0 
0 100 200 300 400 500 

N loading rate (kg/ha/year) 

(b) 

Figure 9b. Trends in primary producers with increased nutrient loading: an example 
from three subestuaries of Waquoit Bay, MA. Redrawn from Valiela et al. (l997b). 
The position of three short-residence time sub-estuaries (S, Q, and C) placed along 
a loading axis. Note: 1 kg/ha is about ~ 7 mmol N/m2. Eelgrass (Zostera marina) 
decline is rapidly promoted; >50% relative reduction is >700mmol N/m2

. A spec
ulated threshold for full phytoplankton domination is ~3500mmol N/m2

. 

suggest that at only modest N-loading enrichments, macroalgae replaced eelgrass, 
and increased watershed N inputs could be isotopically linked to all producers. 
Previously, Valiela et al. (1992) showed that enhanced macroalgal development 
facilitates development of anoxia, a mechanism to promote problems inherent to 
shallower systems that may not be captured in previous DO discussions (Table 1). 
Anoxia is among several ecological process/food web changes accompanying the 
shift to macroalgal dominance that are consequential to commercial shellfish popu
lations (Valiela et aI., 1992). 

Consistent with a theoretical succession which shifts, essentially from nutrient to 
light limitation, various studies have noted that seagrasses colonize to a depth with a 
certain light level. Requirements are species-specific, but the light minima averages 
near II % of surface light (Duarte, 1995). Negative relationships between nutrient 
concentrations and the depth limit of benthic macrophtyes have been noted. Decline 
in seagrass beds sometimes has been observed from depth shoreward, as phytoplank
ton and epiphytes reduce available light. Related to this effect, the bathymetry of veg
etated area can affect the pace and spatial distribution of seagrass decline and resultant 
patchiness in different systems. This phenomenon contributes to a lack of a general 
quantitative relationship between SAY declines and N loading (Duarte, 1995). 



Nitrogen Effects on Coastal Marine Ecosystems 305 

There is, however, some information and data such as given in Figure 9b can 
be used to place some bounds on thresholds for shifts between eelgrass and mac
roalgae, in response to N. A value of <700mmol/m2/year (converted from figure 
units of kg/ha/year to be consistent with other expressions in this chapter) is sug
gested for eelgrass decline when macroalgae become dominant. Given a very short 
water residence time (~I--4 days) and shallow water depth (0.9 m) (Jay et aI., 1997; 
Valiela et aI., 1997b; ) this value would equate to a residence-time and depth
normalized loading of about 4 [lM (cf. data of Table I). In a rough sense this expec
tation seems consistent with conditions in the main body of Waquoit Bay where 
there was a vestige of seagrass bed still remaining in 1987. This sub-area has higher 
salinity, low chlorophyll (~3-5 [lg/L), little N03, and NH4 concentrations averaging 
~2 11M in summer (Yaliela et aI., 1992). Nitrogen concentrations increase upstream 
into fresher water and this is where extensive Cladophora mats are found, where 
water concentrations average perhaps 20 ~lM (Yaliela et aI., 1992), or roughly con
sistent with expectations for a 3500 mmol/m2/year threshold implied as the edge of 
phytoplankton dominance (Figure 9b). 

Another extended example for assessing thresholds comes from Chesapeake 
Bay and its subareas. Brush and Hilgartner (2000) present a record of SAY in the 
upper Bay since the 1600s, from paleo-evidence of SAY seeds in sediments. SAY 
distributions have high variability in space and over time. Nonetheless a distinct 
threshold is suggestible in response to land use change (with sediment/nutrient 
loading increases) that began in the 1700-1800s and intensified in the last half of 
the 20th century. The number of tributaries with SAY has decreased markedly in the 
1900s. In 1983, Orth and Moore (1983) detailed a major loss of SAY. Studies at that 
time and soon after, including controlled microcosm and field experiments, demon
strated a connection between SAY, turbidity, and N (Kemp et aI., 1983). 

Subsequent studies have used an understanding of light requirements to define 
conditions where water quality is sufficient to support SAY (Dennison et aI., 1993). 
By surveying nutrients, chlorophyll, turbidity, and light extinction at different depths 
and areas, studies established where SAY was present, or where transplants were able 
to survive. Using an experimental field study, Stevenson et a1. (1993) transplanted 
plugs of living plants (Ruppia maritima, Potamogeton peifoliatus and Potamogeton 
pectinatus) to different areas in the Choptank River, and assessed survival. The fol
lowing water quality thresholds for survival were indicated: ~ 15-20 mglL total sus
pended solids, 15 [lg/L chlorophyll, DIN < 10 [lM, and P04 <0.35 [lM. Stevenson 
et aI., (1993) emphasize that survival may occur at lower levels than that which would 
instigate declines. Concurrent work of Dennison et al. (1993) in higher salinity areas 
of the Bay (York River) indicated a similar range for patterns of eelgrass, Zostera 
marina. 

Boynton (2000) provides a final Chesapeake Bay example, for the Patuxent River. 
He shows a precipitous seagrass decline concomitant with increased chlorophyll 
and decreased light penetration between ~ 1960 and 1980. During this time, chlo
rophyll rose from < 10 to almost 30 [lglL. Total N loading increased from ~0.91 to 
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1.73 X 106 kg N/year from 1963 to 1985-1986 (Boynton et a!., 1995). Using dimen
sions from Boynton et al. (1995) and the estuarine residence time recently estimated 
by Hagy et a!. (2000), one can calculate the TN loading range as ~515-980mmol/ 
m2/year. With a mean depth of about 4.8 m and median estuarine residence time of 
25 days, calculations suggest an increase in residence-time corrected, volumetric
expressed loading from ~7 to 14 flM over the period (see above, and Table 1). These 
values coincide with DIN concentrations near 10 flM in 1969 (cf. Boynton et a!., 
1982; Nixon and Pilson, 1983), increasing to an average DIN value of ~ 15 flM in 
1985-86 (Boynton et aI., 1995). Interestingly, these values all surround the survival 
conditions suggested by Dennison et aI. (1993) and Stevenson et al. (1993). 

There are other examples of trends, both response and the recovery, for both 
seagrass decline and macroalgal problems. For example, by lowering chlorophyll 
levels to a target of 8 flglL, seagrass recovery appears to be proceeding, after a lag, 
in Tampa Bay (NRC, 2000). More examples should be used to develop appropriate 
comparisons of threshold levels of loading for different systems, SAY species, and 
geographic regions, but the few examples here suffice to put the problem in some 
quantitative perspective in relation to other effects (Section 5). 

Before leaving SAY effects, it is worth considering in concept possible differ
ences across systems. Yaliela et a!. (1997b) discuss two factors. First, they hypoth
esize that presence of fringing salt marsh may intercept groundwater and surface 
flows and lead to denitrification along the flow path; thus variations in the area of 
tidal salt marshes in an estuary could affect its vulnerability by affecting the even
tual loading to the estuarine receiving waters. Second, Waquoit Bay has a short 
water residence time (~1-2.5 days); phytoplankton has less ability to respond to 
nutrients at these very short residence times. This may exacerbate the ability of 
macroalgae to replace seagrasses in this estuary, compared with those having longer 
residence times, where phytoplankton may more easily dominate and shade both 
seagrass and macroalgae, at relatively lower input rates. 

4.5. Phytoplankton Species Response to Nitrogen, Stimulation of 
"Harmful Algal Blooms" 

There are a variety of nuisance algal blooms (such as blue-green algae) which 
cause aesthetic and other problems, generally in only the oligohaline portions of 
estuaries (salinity of 0-5 PSU) (Paerl, 1988). Of more concern to this review are 
saline forms, which characteristically include dinoflagellates. There are nearly two 
dozen noted genera of phytoplankton that produce potent toxins, including ones 
historically called "red tide" dinoflagellates (Anderson and Garrison, 1997). There 
are species-specific toxins, which include those named for their symptomology in 
human consumers: paralytic, neurotoxic, amnesic, and diarrhetic shellfish poison
ing (respectively, PSP, NSP, ASP, and DSP). There are endotoxins that accumulate 
through the food chain (and thus to commercially sought fish and shellfish species) 
and there are exotoxins that are exuded in the water. But not all "red tides" or dino
flagellates are harmful, not all toxic species are dinoflagellates (e.g., cyanobacteria 
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of the genus Trichodesmium, diatoms of the genus Pseudo-nitzchia, prymnesio
phytes of the genus Phaeocystis - various references in Anderson and Garrison, 
1997, such as Turner and Tester, 1997), and not all problem species discolor the 
water at all (or are "brown tides"). Blooms also can disrupt normal filter feeding or 
grazing, change the food chain, foul beaches, or cause acute DO problems through 
rapid accumulation and decay. Thus, the term "harmful algal bloom(s),"or HAB(s), 
was coined to include species-level growth that is toxic, hypoxia-inducing, or food
web disrupting. Many HABs are elusive in the sense that they exist in some type of 
resting stage (such as a cyst), which can lay dormant in sediments, until it "excysts" 
and provides a seed population in favorable conditions. The triggers for this action 
are not well understood, but cysts are a mechanism for remaining in a location for 
a long time once advected or carried there (in ballast water?) and established. The 
various known mortality modes and impact mechanisms of HABs are summa
rized in Anderson and Garrison, 1997 (cf. Smayda, 1997). In broadest use, HABs 
includes both microalgae and macroalgae; the latter has been included in Section 
4.4. Many microplankton HABs problems occur in slightly deeper coastal waters, 
so there is often a physical separation in potential SAV/macroalgal and HAB 
effects, whereas DO effects can occur in both shallow and deep systems. 

ECOHAB (1995) and Anderson and Garrison (1997) offer excellent summa
ries of the problem. Concerns for HABs have heightened principally because the 
types of observed problems (numbers of newly identified problems and problem 
species), the spatial extent or new locations of cases, and the incidence of reported 
occurrence all have expanded in the past few decades. This seems especially true 
in Western Europe and North America, where N loading increases are particu
larly notable. As an example, Paerl and Whitall (1999) examine the case for open 
coastal systems of the North Atlantic Ocean (Europe and North America), where 
new atmospheric inputs, in particular, have increased and form a substantial por
tion of the external N input. Concurrence of HAB events with high atmospheric N 
loading is part of the epidemiological evidence that has been compiled to suggest 
a linkage with increasing N inputs. Earlier, Smayda (1990) suggested a global epi
demic of "novel" (~harmful) blooms and summarized evidence for increased spa
tial occurrence around the world. There is provocative epidemiological evidence, 
but strong direct linkages to N loading have not been confirmed and, certainly, no 
cross-system comparisons can be developed to suggest that a certain critical N load 
is involved. 

Some sites with long-term data sets have reported an increased HABs occur
rence frequency, coincident with a temporal increase in nutrient loading. One is 
Tolo Harbour, Hong Kong (Smayda, 1990). NRC (2000) cites another example 
from the inland Sea of Japan. Burkholder and Glasgow (1997) make an argument 
for a recently identified "phantom" dinoflagellate (with encysting form), Pfiesteria. 
They suggest that nutrients may foster outbreaks of these organisms, which can kill 
fish and also cause human health effects. Of course, there are areas of the world 
with increasing nutrient loading which do not have an increased occurrence of HAB 
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species. The challenge to epidemiological and time series evidence is that increas
ing reports could be due to increased attention and detection ability. 

Smayda (1990) speculated that changes in observed NISilP ratios in some 
coastal areas (with increased N loading) over the last few decades may be promot
ing growth of forms that have low (or no) Si requirements (e.g., dinoflagellates, 
Phaeocystis) over more favorable bloom diatom species (expected from tenets of 
Officer and Ryther, 1980; Ryther and Officer, 1981). Rabalais et a!. (2000) show 
NISi ratio changes in the Mississippi and changes in the mix of diatom species. They 
note that some harmful forms (e.g., Pseudo-nitzchia spp. and maybe others) are 
more recently observed, but a wholesale shift to HAB forms has not been observed. 
Interestingly, various MERL mesocosm enrichment studies have never noted a 
shift to HABs or extensive HAB species development even though plankton bio
mass and productivity climb (Oviatt et ai., 1986; Doering et a!., 1989). Moreover, 
there is a contrasting case. Keller and Rice (1989) noted that a brown tide organism 
(Aureococcos anophagegefferens) was present at a MERL experiment's start (from 
Narragansett Bay feedwater), in which nutrient levels and NISi ratios were subse
quently altered. After a brief response to initial enrichment, populations declined, 
appearing to be out-competed by diatoms; the organism did best in initial low nutri
ent conditions. Perhaps the simple message is that species-level response predic
tions are exceedingly difficult in complex ecosystems. 

In all, we do know that relative increases of N might selectively favor some phy
toplankton forms. It is possible that HABs could increase as part of a general increase 
in the phytoplankton community biomass and production associated with higher 
N loads, as is now somewhat described (Sections 4.1 and 4.2). It is far more con
troversial, as there seems meager evidence, to suggest that HAB species are being 
selectively stimulated. The contrasting physical (and chemical, ecological) condi
tions favorable to diatoms, dino-and micro-flagellates as groups have been outlined 
for marine systems (e.g., Pingree et a!., 1975; Margalef, 1978; Demers et a!., 1986; 
Legendre and Le Fevre, 1989). However, we cannot easily predict when any particular 
phytoplankton species among the community will actually nourish. In sum, a major 
concern exists, and HABs have been expanding according to available records, but a 
quantitative linkage to N for individual harmful species has not yet been confirmed. 

5. A SUMMARY (CIRCA 2001) AND SPECULATION ON 
PROGRESSIONS WITH INCREASING ENRICHMENT 

The evidence demonstrating a variety of effects of N on coastal systems is strong, 
and found at many levels of investigation. By most accounts, the scales of the 
problems have been growing rapidly throughout the 20th century. We have devel
oped some general rules relating chlorophyll and production responses to N load
ing. By and large, the chlorophyll and production trends have strong similarity to 
those established for lakes. Chlorophyll and production increases are precursors to 
adverse secondary effects of concern (Figure I), but even for these primary effects 
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we do not yet have site-specific predictability. I have three brief summary topics 
related to thi s. 

One recurrent theme in this review has been the significance of physics, spe
cifically water residence time. Recognition of the importance of residence time has 
long been woven into coastal studies, but only as specks of color here and there; 
it needs to be a dominant hue in the fabric of eutrophication research. We know, 
for example, that water residence time can affect how coastal systems remove N 
loading via denitrification losses (e.g., Nixon et aI., 1996) and how it can influ
ence the expression of benthic grazers on overlying plankton (e.g., Simenstad et aI., 
2000). We recognize its influence on water quality/biological dynamics and role in 
determining vulnerability to enrichment effects. Residence time has been a corner
stone of the concept of lake eutrophication, where general predictive relationships 
with residence-time normalized loading have been developed for chlorophyll, sec
chi depth, primary production, hypolimnetic oxygen depletion, and fish yield (e.g., 
Jones and Lee, 1986). This summary suggests that residence time plays a very simi
lar role in coastal estuarine/marine production. 

The second topic focuses on our understanding, both qualitative and quantitative, 
of the primary and secondary effects of N enrichment (e.g., Figure I). In at least a 
handful of systems, enrichment progressions have been noted and linked to increasing 
nutrients, such as depicted in Figure 9a, b for shallow systems. Observation or histori
cal reconstruction of change shows subtle-to-dramatic algal increases, sharp food-web 
shifts from benthic producers to planktonic producers and associated higher trophic
level organisms, and mortality from anoxia. From these, management strategies for 
specific systems have been formulated; there are examples where target reduction 
goals have been set which have helped with the problem (e.g., NRC, 2000). 

There are, however, different levels of confidence in our general ability to 
link the response to N loading for the different categories of effects reviewed. 
Considering confidence, quantification, and generality of findings, I believe it rea
sonable to rank our overall understanding of effects (in decreasing order) as: 

Chlorophyll> Primary production > DO>SAV~Macroalgae» HABs 
(phytoplankton) 

Some will argue the exact order, the middle being the contentious ranking. The 
ranking is not to imply we have site-specific predictive capability for any effects. 
For even the best of the derived quantitative relationships, one always seems to be 
able to find new, outlier systems, as examples in this chapter illustrate. 

The ranking, of course, suggests that the closer the effect is to the stimulus the 
greater our ability to couple the two. With "secondary" effects (such as DO, SAY, 
macroalgae, HABs; see Figure I), and specific population responses, each highly 
dependent on many confounding factors, the requirements for details about the 
character, history, and structure of the system grow. Intensive studies and uniquely 
tailored simulation models should convince us that resolving such effects with 
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Figure 10. A speCUlative concept of the progression and thresholds for effects of 
N loading. Wavy lines and partial curves suggest possible threshold ranges for the 
combination of N loading and production based on where a noted effect has been 
reported. The sequence of arrows along a dotted line suggesting hypoxia/anoxia, rep
resent (from left to right): Baltic Sea, Chesapeake Bay, Potomac River, Mississippi 
plume, and Providence RiverlBoston Harbor (Table 1). The partial curves for seagrass 
and macroalgae are based on description for Waquoit Bay and the Patuxent River (see 
text). The figure concept is borrowed from Figure 7, but ranges for axes have been 
narrowed to reflect the ranges reported only for marine coastal systems. 

some level of predictive confidence is possible, but takes considerable effort. The 
demands and precision of research must be balanced against a coarser level of guid
ance that can be effective for management action, where setting targets within a 
range can help be protective. 

With this thought, I have compiled information to illustrate development of quanti
tative thresholds (Figure 10). Increasing nutrients cause various algal changes affecting 
SAY, followed or accompanied by macroalgal changes (in shallow systems), with 
hypoxia/anoxia therefore one of the later effects. I have crudely attempted to map 
some boundaries for effects over the pattern and range of N loading, water residence 
time, and productivity observed for the bulk of coastal systems. These "thresholds" 
should, at best, be a speculative hypothesis to be tested and improved. Productivity 
data for systems with a DO problem are from Table 1. For SAY and macroalgae, the 
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domains are suggested without productivity data, that is, only from measured N input 
and residence times. It is clear that a given effect, such as hypoxia, occurs across a 
range of areal loading rates, probably being manifest more by productivity and 
affected by residence time. The array of north temperate systems with DO problems 
(Table I) includes many with productivity> 300-400 g C/m2/year. But it is also clear 
that only the potential for an effect is suggested and not all at these levels have hypoxia 
(thus a wavy dotted line, Figure 10). High loading and very high productivity were 
necessary to induce a chronic DO problem in the well-mixed MERL mesocosms. 

Some have wondered whether the suggested growing global incidence of 
hypoxia might be our figurative "canary in the coal mine." This may be true only 
in the sense of presently providing warning of the increasing scale of coastal prob
lems. At least for shallow systems, evidence suggests that before situations actu
ally advance to a low DO problem arising from loading and plankton productivity, 
effects such as SAY loss and problem macroalgae blooms, will indeed appear. 
Based on the chlorophyll data for the systems with SAY loss or macroalgal bloom 
thresholds, one would expect associated plankton productivity to be very low, as 
is suggested (Figure 10). We do not know this to actually be the case in all sys
tems, and the figure only begins to illustrate how variations in physics may modify 
a sequence of effects at a given loading rate. The illustration indicates a great deal 
of complexity still to be resolved, probably through further classification of sys
tems and their responses to enrichment. Importantly, though, the figure reinforces 
the notion that it would help to have greater study of systems in different physical 
settings, and especially, more at the lower end of the coastal loading range. Many 
coastal areas being observed at their high, present-day levels of loading probably 
have passed already through a succession of changes. 

With progressive enrichment comes consequential species change, SAY being 
our best example. We have the least information on the general topic of specie's 
compositional change, and have little to guide us as to whether there is any thresh
old stimulation point for a specific biological change, such as HABs. This raises 
the third related topic. Food webs and fisheries are a fundamental societal con
cem, but they are ecologically removed from the direct effects of nutrient loading. 
The world is not lacking for evidence of fish kills, but it is fascinating that, with 
hypoxia and benthic mortality documented at a huge scale in the northern Gulf of 
Mexico, analyses have difficulty showing the effect on total fish catch even though 
decline in important species (e.g., brown shrimp) has been noted (CENR, 2000). 
Reasons for this, include the difficulty of obtaining data on fisheries that reflect 
the actual conditions of the stock. There may also be time lags for expression of 
effects in longer-lived species. Unlike infaunal benthos, fish and epifaunal organ
isms (adult shrimp) can move to avoid hypoxia, but with such a large benthic food 
base affected, the concerns are large for the long-term sustainability of the fishery 
and fundamental shifts in the nature of the fish consumers in the food web (Caddy, 
1993). In Caddy's view (Figure II), there are consumer food-web changes across 
the loading regime (often to less desirable, commercially sought species), many of 
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Figure II. A speculative concept of fisheries change with nutrient enrichment. 
Redrawn from Caddy (1993). A qualitative progression was suggested from a 
review of patterns in different enclosed and semi-enclosed seas. The recent trajec
tory of different systems with respect to trophic status is indicated at the top. The 
bottom suggests a progression of change in the structure of food webs and compo
sition of fisheries prior to a dramatic loss of yield with permanent bottom anoxia. 

which become more consequential at high loading. The progression to anoxia, even 
in deeper, unvegetated systems, begins a decoupling of the functional connection 
of pelagic and benthic food webs (cf. Pearson and Rosenberg, 1978; Oviatt et ai., 
1986). Sediments become uninhabitable and only selected organisms thrive (less 
"choice" for some commercial fish species). Eventually, the benthos is lost totally, 
and further pelagic consumer food-web changes follow, sometimes with lags typi
cal of longer-lived species. 

Caddy's image of eventual collapse can be compared with some other trends. 
There appears to be a fundamental relationship between primary production in the 
water column and fisheries yield of different marine areas, as well as lakes (Nixon, 
1998). Interestingly, with increasing production (such as is stimulated by higher 
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nutrients), the efficiency of conversion to fish appears to increase, not decrease. 
It has been suggested that this could relate to the nutritional quality (higher N for 
protein) of the phytoplankton (Iverson, 1990; Nixon, 1992). The trend compiled by 
Nixon does not in any way suggest a fisheries collapse at high production, although 
his summary does not include eutrophic/hypereutrophic areas with sustained 
productivity >500 g C/m2/year. Judging from this level compared with Figure 10, 
perhaps protecting against anoxia will generally prevent wholesale fisheries col
lapse due to eutrophication, but it will not prevent shifts in fish and shellfish, nor 
the loss of some species that are most valued by humans. 

6. AFTERWORD, 2007 

In the ~ 7 years since this original chapter was written, there has been high 
interest in marine eutrophication and countless measurements of N in the environ
ment. In an estuaries chapter for an update of Capone and Carpenter's 1983 book, 
Nitrogen in the Marine Environment (Capone et aI., in press), Boynton and Kemp 
rightfully describe this research area as "hyperactive." Major compendia have been 
published by several professional societies - at least two with missions that focus on 
aquatic science and coastal waters (Estuarine Research Federation, see Rabalais and 
Nixon, 2002; and American Society of Limnology and Oceanography, see Smith 
et aI., 2006) and one that integrates across ecological and human health (Journal of 
the National Institute of Environmental Health Sciences, see McGeehin and Rubin, 
2001). There are many new papers in the primary literature and there have been 
reviews and historical perspectives on individual systems or regions (e.g., Rabalais, 
2002; Rabalais et aI., 2002; Smith, 2003; Smith et aI., 2003; Turner and Rabalais, 
2003; Kemp et aI., 2005). In all the frenzy, a cautious sense of consensus would be: 

" ... progress is being made in our ability to understand, manage, and per
haps mitigate the impacts of recent and widespread inadvertent fertilization 
of the coastal marine environment, [but that] ... quantifying the relationship 
between nitrogen or phosphorus inputs to coastal marine systems and particu
lar responses remains a scientific challenge." (Rabalais and Nixon, 2002). 

The results of new millennium's research are neither fully assimilated nor 
synthesized. I have chosen only to note several themes within the ~2000-2007 
literature. The themes, in part, reflect on Cloem's (2001) thoughtful classification 
of past, present, and future mental models for coastal eutrophication research and 
management. Cloem suggested a continuing evolution in thinking about the com
plexity, diversity, and perspective on coastal marine responses, from 

• earliest (past) models (~simple input-response concepts for a few prime 
symptom parameters, borrowed from early limnological successes with phos
phorus), to 
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• "present" models (~more complex sets of direct and indirect responses 
[Figure Il, with overall variability in different system responses as a func
tion of system attributes that act as filters or moderators [some of which are 
referenced in Sections 3.3, 4, and 5 including tidal influence, water residence 
times, turbidity/light, food-web structureD, and toward 

• "future" models (which consider N as one of many interacting stressors, and 
which view the coastal zone in a larger earth system perspective, more firmly 
embedded within social and economic frameworks). 

6.1. Increasing Scale of the Issue 
Humans have significantly altered the global N cycle, nearly doubling the 

amount of bio-available (reactive) N in circulation compared with pre-industrial times 
(Galloway et aI., 1995; Galloway and Cowling, 2002). One consequence is an increas
ing N input from terrestrial systems through both watershed and airshed sources. 
Since 2000, there are many new records of local, watershedlcatchment-Ievel scales 
of atmospheric, surface, and groundwater inputs to estuaries (e.g., Cloem, 2001; 
Bowen and Valiela, 2001; Valeila and Bowen, 2002; Kemp et aI., 2005; Clarke et al., 
2006; Boynton and Kemp, in press). Increases in N loading to the coastal marine 
environment have been confirmed at more regional levels and suggested at the global 
scale, with projections of particular vulnerability in certain regions of the globe (e.g., 
Howarth et aI., 2002; Seitzinger et aI., 2002; Paerl et aI., 2002). Human population 
density and nutrients through runoff (affected by human activities on the landscape 
and on hydrological cycles) are the key independent variables of the global predic
tive regression equation for loading of Smith et al. (2006) who suggest, "Apparently 
human activities have increased DIP and DIN (Dissolved Inorganic P and N, respec
tively) above natural fluxes by more than a factor of three, and those changes appear 
to be recognizable on time scales as short as two decades." 

While the scale of effects also seems to have increased with N loading, so has 
our recognition of the scale of the issue. Eutrophication of freshwater and marine 
systems is unequivocably termed a "global problem" (Rabalais, 2002; Smith, 
2003). Scavia and Bricker (2006) use assessments to "document that N-driven 
coastal eutrophication is widespread and increasing in the US." Others see some 
prime symptoms such as lowered DO as: (a) very likely due to excess N enrich
ment, (b) occurring worldwide, and (c) having increased rapidly within the past 
two decades. Diaz (2001) suggested "Oxygen deficiency (hypoxia and anoxia) may 
very well be the most widespread anthropogenically induced deleterious effect in 
estuarine and marine environments around the world." Kemp et aI. (2005) provide a 
dctaikd chronology and synthesis for one of 011f best 3tudied fi)'fitemfi, Cheoapeake 
Bay, and another revealing chronology has been reconstructed for the Adriatic Sea 
(Sangiorgi and Donders, 2004); each of these systems has had hypoxia/anoxia 
issues, a response seen as intermediate to late in a progressive enrichment sequence. 
These and other studies continue to support and refine the image of a progression 
of autotrophic and secondary effects and thresholds reached with increased 
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N (e.g., Havens et al., 2001; Rabalais, 2002; Scavia and Bricker, 2006; Boynton and 
Kemp, in press). If DO characteristically does decline to levels of hypoxia/anoxia 
at loading rates beyond which other "significant" and/or "undesired" ecological 
changes have already occurred, then concurrent with Diaz's and other evidence 
(Section 4.3) of DO losses worldwide, there must be substantial growth of many 
other unmeasured, undocumented effects. 

6.2. "Simple" Models and Evolving Perspectives for Aquatic Ecosystems 
A strong consensus exists that N is the primary cause of eutrophication in many 

coastal ecosystems, even though there are locations and times where excess P and 
the availability of Si playa role (Howarth and Marino, 2006). Many studies sug
gest control of both Nand P is wise. There is no dispute of the more prominent, but 
again not exclusive, role for P in freshwaters (Schindler, 2006; see also Blomqvist 
et aI., 2004). 

There continue to be interesting contrasts in freshwater and marine perspectives 
on eutrophication. Estuarine science has been more reluctant to draw cross-system 
generalizations that long ago stimulated freshwater eutrophication research (see 
Introduction). The continuing perspective of some estuarine scientists on applica
tion of simple Iimnological models was noted by Smith (2006): 

"In a synthesis of our knowledge of coastal marine eutrophication, Richardson 
and Jorgensen (1996) concluded that there are essential differences between 
freshwater and marine environments that prevent us from simply apply
ing knowledge gained from limnological studies to the marine environment. 
... Sharp (200 I) took a much stronger view, asserting that Iimnological stud
ies and concepts and observations often lead to incorrect conclusions when 
they are applied to estuarine and coastal marine waters." 

Smith (2006) counters that marine coastal plankton growth from Nand P 
enrichment is highly consistent with the general pattern previously reported in the 
limnological literature for freshwater lakes and reservoirs. Sections 4.1 and 4.2 
and Figure 7 in this chapter report a similar general predictive response in aquatic 
primary production, if freshwater and marine systems are scaled for the more lim
iting nutrient of each system and the water residence time is taken into account. 
Section 4 noted that it is harder to find marine coastal systems of low loading rates, 
compared with lakes, and this is a theme of Guildford and Hecky (2000). Havens 
et al. (2001) found support for the general model of transition from vascular plant 
to a\~a\ domi.nance with enrichment of shallow water systems (Section 4.4) when 

several detailed freshwater and marine examples were compared. 
Recent estuarine studies have successfully applied the basic concepts of a Iim

nological model to coastal marine settings. These include Boynton et al. (1996) and 
Dettman (2001). Dettman was able to relate annual N inputs and N concentrations, 
using freshwater residence time to model first-order internal loss and net export; 
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the model was adapted directly from the Dillon and Rigler (1974)IVollenweider 
(1976) approach. Dettman's simple model broadly applied to a group of north tem
perate estuaries with a range of physical and morphometric characteristics, loading 
rates, and biogeographical settings. Meeuwig et aI. (2000) developed a ChI a -
TP regression model in the Baltic and also empirical regression models of ChI a 
with land use/estuarine mean depth for systems dominated by nonpoint source 
inputs. Similarly, Meeuwig (1999) successfully derived a simple regression model, 
with ChI a described as a function of land use/estuarine morphometry for a set of 
systems in eastern Canada. Kauppila et aI. (2003) report success in relating DO to 
land use, mean depth, and fetch, as well as near-bottom TN. These studies have 
provided some new regional examples to complement those in Sections 4 and 5. 
We are indeed able to develop some simple regression models relating nutrient sen
sitive response parameters to nutrient inputs and concentrations in many regional 
settings, and these make use of simple, fundamental mass-balance concepts of lim
nological models. A trick is in knowing if, or how finely, we must divide regions, 
and which additional parameters or modifying aspects (Cloern 2001) might have 
particular relevance in given cases. A fundamental utility is there through correla
tions and other evidence, even if satisfying predictive power in each individual case 
remains elusive. 

There are indeed interesting and important differences between lakes and 
marine systems (cf. Nixon, 1988). But in part, a "but estuaries-are-so-different
and-each-so-unique" view comes from focusing on site to site variation (see also 
Howarth and Marino, 2006), and sometimes from using only two (or few) quite 
different settings for comparison, rather than a large suite of systems. Two lakes 
are often as different as a lake and an estuary, so there is a problem in that per
spective. Yet there are also opposing perspectives that come from viewing the same 
information. Cloern (2001) cites the results of Meeuwig, 1999; (see also Meeuwig 
et aI., 1998) as a part of case for freshwater/marine differences that limit utility of 
the most simple limnological models, whereas Meeuwig's data are used by Smith 
(2006) to conclude there are fundamental similarities in freshwater and marine 
autotrophic responses to nutrients. Guildford and Hecky (2000) suggest there is a 
similarity of marine and freshwater plankton growth, where differences may relate 
to local stoichiometric conditions more than an underlying fundamental freshwater/ 
marine difference. 

There are a number of issues that perpetuate an apparent dichotomy in view as 
to the similarity/dissimilarity of freshwater and estuarine responses. First, it's hard 
for many to think of response as "similar" when one class of systems is more gener
ally based on P and one more generally based on N. Second, coastal marine inspec
tions have not always included estuarine residence times and their impact on simple 
input-response predictions, which is necessary to be consistent with the early and 
successful limnological models (Dillon and Rigler, 1974~ Vollenweider, 1976; 
see also Section 4.2). These models, although still simple, may edge into Cloern'S 
(2001) description of a more complex, "present" conceptual model because they 
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have physical modifiers of response embedded within them. Third, it has always 
been true that the simplest freshwater empirical models work generally, but fail 
to be highly predictive in site-specific cases (see Section 4). Fourth, because of 
those limits to predictability, and as a parallel to the evolving model of complexity 
for coastal marine eutrophication (Cloern, 2001), there has also been an evolving 
model for freshwater eutrophication. The limnological model concept and evolution 
is summarized by Schindler (2006). Over the decades, additional modifying factors 
and interacting stressors in lake settings have been examined, including: the sig
nificance of internal loading (especially in shallow systems with nutrients stored in 
sediments), food-web structure and trophic cascades, interacting stressors, stoichio
metric issues, history, biogeography and related biogeochemistry, climate, etc. In 
the past few decades, perhaps we have lived through a pendulum swing. We have 
changed the level of confidence desired for prediction, and/or the precise time and 
space objectives. Read a recent perspective of Schindler (2006) on predicting nutri
ent-related responses across different trophic structures: 

"Overall there are enough differences in the responses of biomanipulated 
lakes to suggest that the result will depend greatly on the complexities of the 
individual lake communities." 

Contrast that with a very recent estuarine view: 

"One could make a statement that sufficient data are now available to initiate 
a more comprehensive, comparative synthesis of estuarine primary produc
tion (both pelagic and benthic) that considers a wider selection of independent 
variables and uses dimensional scaling to the extent needed to ensure adequate 
comparability among different estuarine locations. In short, estuarine ecologists 
need to take a lesson from the limnologists who began doing that some 30 years 
ago (e.g., Vollenweider, 1976) and developed tools useful for both scientific 
understanding and for lake management" (Boynton and Kemp, in press)(See 
Figures 7 and 10 for an attempt at a primitive scaling for some factors.) 

If one were to compare these admittedly select snippets of comments with fresh
water and marine eutrophication scientists' statements in the late 1970s, one could get 
the impression that the implied predictive capability relating to enrichment in lakes 
versus estuaries has almost gone topsy-turvy over three decades. The truth is, both 
fields have long appreciated the diversity of systems and complexity in responses, but 
have been somewhat independently pushing the limits to predictability. 

In the past half decade or so, there has been ever growing evidence that factors 
like estuarine morphology, water residence times, water column stratification/mix
ing, turbidity and light, and nutrient stoichiometry all can influence the expression 
of responses to nutrient loading. It would be hard to capture all the new efforts and 
emerging ideas on other factors that modify responses, particularly as more systems 
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are being studied outside the traditional north temperate areas of study. Suffice to say 
that research to extend effects ofN to secondary production, and to higher trophic lev
els including fish, and to relate these with habitat degradation, are now more vibrant 
research areas (cf. Section 5). Papers on these topics include several in Rabalais and 
Nixon (2002). For example, Deegan (2002) and Breitburg (2002) provide views on 
the interaction of nutrients with habitat and DO, as they may affect fish. Reports have 
detailed changes in benthos or other secondary consumer and substantiated these 
changes as a very connected response to N enrichment (Nixon and Buckley, 2002; 
Tewfik et al., 2005; Boynton and Kemp, in press). These efforts provide data that 
may ultimately clarify the conceptual image and stages of Caddy's (1993) fisheries 
perspective (presented in Section 5 and Figure 11). 

A landscape perspective, and the role of watersheds in driving progressive 
increases in N loading and effects to shallow coastal systems continue to become 
more explicitly recognized. Some significant papers on this subject relate directly to 
DO, but also to seagrasses (e.g., Bowen and Valiela, 2001; Martinetto et aI., 2006; 
Turner and Rabalais, 2003). For example, Hauxwell et ai. (2003) use historical con
ditions to link watersheds and Zostera decline. They report loading thresholds that 
are very low, but still consistent with previous work summarized in Section 4.4 and 
Figure 10. 

Landscape changes often bring a host of other, co-occurring stressors into 
clearer view, so studies in this area force multi-stressor concepts of understanding 
how humans can change the coastal zone. Interacting stressors also include climate 
change (Cloern, 2001; see also Schindler, 2001). Oviatt's (2004) studies on coastal 
food web and fisheries changes during decades of climate warming should serve to 
remind us: it is daunting to unravel a singular effect of a decade or so of increas
ing nutrients against other synergistic or antagonistic long-term trends. The interac
tion of climate, nutrients, primary producers, and enrichment symptoms has been 
reported (e.g., Paerl, 2006; Paerl et aI., 2006) in studies examining large storms and 
unmistakable (not at all subtle) hydrological forcing events that deliver nutrients 
in huge pulses. Storms also alter mixing and stratification dynamics in estuaries, 
fundamentally altering the time and space scales of overenrichment symptoms. 
A number of studies have recognized interactions with river flow, nutrients, and 
hypoxic volume over historical time (e.g., Turner and Rabalais, 2003; Hagy et aI., 
2004; Kemp et aI., 2005). Fittingly, with Boynton and Kemp's notion of "hyperac
tivity," the study of multiple-stressor interactions, which were once part of Cloern's 
(2001 ) "future" conceptual model of eutrophication, has already edged well within 
the present area of active research. 

6.3. A Widening of Perspective in Considering Nitrogen Enrichment Effects 
Recent worldwide trends and some newer research findings seem to be acting 

to seriously broaden thinking about how we should study and evaluate the responses 
and consequences of coastal marine nutrient enrichment. In general, this is consist
ent with a course that Cloern (2001) suggested. 
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A major contributor to this broadening, I believe, is the continuing confirmation 
of connectedness between human activities at landscape and regional levels, result
ant nutrient loading, and cumulative-scale effects. The link between landscape-level 
properties and N effects has been confirmed and sometimes quantified through new 
isotopic indicators, in different regions, and with respect to different effects (e.g., 
Meeuwig et aI., 2000; Bowen and Valiela, 2001; Valeila and Bowen, 2002; Hauxwell 
et aI., 2003; Kauppila et aI., 2003; Martinetto et aI., 2006). In the coastal freshwaters 
of the Great Lakes Basin, linkage between watershedslbasins and their coastal habi
tat/ecosystem condition is a similarly active research area (e.g., Danz et aI., 2007). 
Moreover, the recognition that connectedness can occur on very large watershed 
scales is notable (e.g., Turner and Rabalais, 2003). An important recognition of Smith 
et al. (2003) is that both human population and runoff are important to describing 
and forecasting coastal loading increases. Human activities alter the landscape and 
through this, and in other ways, impact hydrologic cycles and thus runoff. 

The connectedness notion, and also some documentation of the history of 
enrichment over long time frames (e.g., Kemp et aI., 2005), opens up the scale to be 
examined in both time and space. All acting together, it forces us all to get up out 
of the water and see the estuary as within an airshed-Iandscape-hydroscape, which 
is a view that brings interacting factors such as hydrology, climate, and so on a bit 
more easily into focus. That opening up of scale, along with a recognized reality of 
continued human population growth, seems to have engendered a qualitatively new 
perspective. The questions previously being asked - What might be "undesired" 
in the "local effects" sense (e.g., HABs, SAY, DO, food-web change), how do we 
quantify those, and how do we curtail them? - can shift to: What "trade-offs" we 
are willing to accept on broader scales? 

The emerging new frame includes a perspective of terrestrial benefits that may 
outweigh their costs in downstream systems. With it comes a stronger recognition 
of coastal waters as part of larger and more coupled systems. Scientists are thrust 
into considering: Do we know all these linkages well enough to be confident in 
the "trade-offs" that might be evaluated? A variety of economic and societal issues 
thus have been entering into this kind of picture (see Boesch, 2002; Doering, 2002; 
Hoagland et aI., 2002). Consistent with this larger perspective, the beneficial effects 
of fertilization (e.g., increased fisheries yield; see Caddy, 1993; Nixon and Buckley, 
2002) that might occur at different scales come better into view even though 
this has, of course, always been a prime management issue. "Over" -enrichment 
(Rabalais and Nixon, 2002) too, is hardly a new thought, but an apt term. It makes 
clear that the focus is on acceptable and unacceptable effects and the thresholds 
between them. But scientists now more actively recognize that the "system" to be 
examined in this context is not restricted to narrowly defined boundaries of the 
water and sediments within the coastal marine system. A fascinating time - some 
old themes and challenges writ ever larger and ever more complex. 

I believe the startlingly rapid broadening in perspective is one that is much 
needed scientifically, and is appropriate to a management context. But I have to admit 
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that I want to hold on to my naivete. We could too easily be shifting from a view that 
humans live fully within the ecosystem and almost spiritually value its condition, to 
a view that humans live distinctly outside the ecosystem. And in the new perspective 
one could develop a hubris that we really have an ability to decide how best to engi
neer its services for our use. 
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