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Introduction 

Climate fluctuates at a range of timescales from orbital to 
seasonal, responding to a variety of climate drivers, including 
fluctuations in solar output (Clemens, 2005) and ocean–atmo-
sphere interactions (Stuiver et al., 1995; Hurrell, 1996; Bond et al., 
1999). In tropical South America, records of climate variability 
are sparse, especially in the Southern Hemisphere tropics, and 
thus the spatial patterns of climate change and the role of vari-
ous climate forcings at different temporal scales are still unclear. 
Existing continental records from tropical South America show 
variations in moisture availability at orbital scales, at least par-
tially related to changing insolation associated with the preces-

sional cycle (e.g., Martin et al., 1997; Seltzer et al., 2000; Haug et 
al., 2001; Wang et al., 2004). On the South American Altiplano, 
periods of high summertime insolation during the last 30,000 
years (such as the last glacial maximum and present) were rel-
atively wet, while ~30,000 cal. yr BP and the early to mid Holo-
cene (when insolation was low) were drier (Baker et al., 2001a, b; 
Fritz et al., 2004).

Higher-frequency variability is also evident in paleoclimatic 
records from the Altiplano and elsewhere in the tropical Andes 
(Thompson et al., 2006). For example, Abbott et al. (1997) showed 
that the level of Lake Titicaca fluctuated by tens of meters at cen-
tennial timescales during the last 3,500 yr. In the northern trop-
ical Andes, Polissar et al. (2006) correlated sedimentary records 
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Abstract
Precipitation on the South American Altiplano varies at a range of temporal scales. A long-term secular increase 
in moisture availability from the early/mid Holocene to the present, driven by increasing summer insolation re-
sulting from precessional changes in the Earth’s orbit, has been documented in earlier studies. However, higher 
frequency Holocene variability is not yet understood. Here we present high-resolution diatom assemblage data 
from two small Altiplano lakes, Lago Lagunillas and Lago Umayo, indicating changes in effective moisture in 
the southern tropical Andes at decadal, centennial and millennial timescales throughout the mid to late Holo-
cene. A strong millennial-scale component, similar in pacing to periods of increased ice-rafted debris flux in the 
North Atlantic, is observed in both lake records, which suggests that regional precipitation and North Atlan-
tic climate variability are coupled at these scales. The interpretation of the higher frequency variability is ham-
pered by the small number of high-resolution continental and marine records for comparison. 

Keywords: Altiplano, South America, Peru, Lake Titicaca, diatoms, tropical paleoclimate, hydrological variabil-
ity, millennial scale, Holocene
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of catchment erosion spanning the last 1500 yr with solar vari-
ation. But overall the spatial density of high-resolution records 
is low, thus it is unclear whether the observed patterns of late-
Holocene high-frequency variability are regionally coherent and 
whether or not these modes of variation extended to the early to 
mid Holocene when insolation forcing was different. 

During the instrumental period, ocean–atmosphere interac-
tions in both the Pacific (Vuille et al., 2000; Garreaud et al., 2003) 
and Atlantic (Hastenrath et al., 2004) are known to impact climate 
in the tropical Andes. Thus, ENSO variability and associated fluc-
tuations in tropical Pacific SSTs force inter-annual climate vari-
ation in the tropical Andes in both contemporary and paleocli-
matic records (Rodbell et al., 1999; Vuille et al., 2000; Moy et al., 
2002; Bradley et al., 2003). Baker et al. (2005) suggested that centen-
nial- to millennial-scale variations in Holocene lake level at Lake 
Titicaca are positively correlated with records of ice-rafted debris 
in the North Atlantic (Bond et al., 2001). This apparent correlation 
between changes in the hydrologic cycle of tropical South Amer-
ica and climate variation in the high latitudes of the North At-
lantic region may result from variations in the latitudinal gradi-
ents of tropical Atlantic SST (Baker et al., 2001a) associated with 
shifts in the mean position of the Atlantic Intertropical Conver-
gence Zone (ITCZ) (Nobre and Shukla, 1996; Peterson et al., 2000; 
Chiang, 2002; Vellinga and Wood, 2002). The common patterns of 
variation in the two regions also may be linked to responses to a 
common large-scale forcing, such as solar intensity. 

Additional high-resolution paleoclimate records from the trop-
ical Andes are needed to clarify patterns of paleoclimatic variabil-
ity in order to better evaluate the roles of Atlantic and Pacific SSTs 
and other potential sources of regional climate forcing (e.g., so-
lar variability). Here we present diatom abundance data from two 
lakes on the South American Altiplano that, in combination with 
previously published climate reconstructions from Lake Titicaca, 
are used to define patterns of hydrologic variation at multidecadal 
to millennial timescales throughout the Lake Titicaca drainage ba-
sin. These records address the geographic extent and temporal 
pacing of Holocene hydrologic variability on the Altiplano and 
are used to examine whether centennial- to millennial-scale cli-
mate variability evident in late-Holocene Altiplano climate recon-
structions (Abbot et al., 1997) is characteristic of the early and mid 
Holocene. We address some potential causes of the observed fluc-
tuations in effective moisture by examining frequencies of varia-
tion and their relationship with potential climate drivers. 

Climate setting 

The Altiplano of South America is a broad high-elevation pla-
teau (average elevation ~3000 m above sea level [m a.s.l.]) located 
in the central Andes between about 10° and 20°S. The plateau is 
bordered on the east and west by high-elevation (locally 6,000+ 
m a.s.l.) mountains. Modern Altiplano precipitation is distinctly 
seasonal, with ~85% of precipitation occurring during the aus-
tral summer (DJF) (Garreaud, 2000). Most of the moisture is ul-
timately derived from the tropical Atlantic and is transported to 
the Amazon basin by tropical easterlies, where it is recycled in in-
tense summer convection within the Amazon basin (Vimeaux et 
al., 2006) before being uplifted onto the Altiplano. This transport 
pathway is part of a continental-scale climate system referred to 
as the South American Summer Monsoon (SASM; Zhou and Lau, 
1998). Austral summer moisture convergence in the Amazon is 
determined by the strength of continental heating and by varia-
tion in moisture transport onto the continent by the trade winds. 
On the Altiplano at ~15°S, wet-season precipitation tends to occur 
as distinct events lasting from several days to over a week. Atmo-
spheric conditions during precipitation events are characterized 
by strong easterly upper-atmosphere flow, whereas dry periods 

within the wet season are characterized by an increased westerly 
component (Garreaud 1999, 2000). 

On inter-annual timescales, increased upper-level wester-
lies and increased subsidence over the Altiplano and central 
Amazon tend to cause drier conditions to prevail during El 
Niñnos, whereas La Niña years tend to be wetter (Aceituno, 
1988; Lenters and Cook, 1997; Zhou and Lau, 2001). How-
ever, the strength of this correlation is weak, and both wet and 
dry years can respectively occur during El Niño and La Niña 
events (Vuille et al., 2000). 

Study sites and methods 

Lago Lagunillas and Lago Umayo are located west of Lake 
Titicaca on the high-elevation Altiplano (Figure 1). Lago Umayo 
(15.44°S, 70.10°W, ~3,880 m a.s.l.) is located approximately 17 
km from the western edge of Puno Bay, Lake Titicaca. The deep 
basin (>30 m) is at the centre of the lake, with a broad shallow 
flat shelf at the margin that is heavily populated with aquatic 
macrophytes. Lago Lagunillas (15.44°S, 70.44°W, ~4,220 m a.s.l.) 
is located approximately 60 km west of Lago Umayo. Modern 
Lagos Umayo and Lagunillas have dammed outlets and active 
outflow, but both may have been closed-basin lakes at times in 
the past. Lago Umayo is slightly more alkaline and saline than 
Lago Lagunillas. 

Overlapping sediment cores were taken in 2001 using a Rus-
sian peat corer. The cores were sampled continuously at 1 cm 
resolution for diatoms, pollen and stable isotopes. Here, we re-
port on the diatom record from both lakes; the pollen and isoto-
pic results will be the subject of future papers. 

Sediments for diatom analysis were prepared for the entire 
length of each core sequence following standard methodology 
(Battarbee, 1986). A weighed aliquot of sediment was chemically 
digested with cold HCl and hydrogen peroxide to remove, re-
spectively, carbonate and organic material. Microspheres were 
added to the residual material to estimate diatom abundance 
(valves per gram sediment weight). Cleaned material was set-
tled onto cover slips, dried and mounted using Zrax, a high re-
fractive-index diatom mounting material (RI > 1.70). At least 300 
valves were counted per slide. 

Core chronologies were constructed using respectively 10 
and 12 accelerator mass spectrometry 14C dates from Lago 
Umayo and Lago Lagunillas (Table 1; Figure 2). 14C dates were 
calibrated using CALIB 5.0.2 (Stuiver et al., 2005) using the Ho-
locene Southern Hemisphere calibration set of McCormac et al. 
(2004). The age–depth relationship for each lake was constructed 
by fitting a fifth-order (for Umayo) and a fourth-order (for La-
gunillas) polynomial through the calibrated ages. Two samples 
from Lago Lagunillas were measured in duplicate; in these cases, 
the average 14C age was used in the calibration and age-model 
construction. In Lago Umayo, the sediment–water interface was 
collected at a core depth of ~57–59 cm. In Lago Lagunillas, loose 
unconsolidated material near the sediment–water interface was 
not captured. Consequently, the youngest sediments in Lago La-
gunillas (which begin at a core depth of approximately 78 cm) 
were 14C dated to ~1,800 cal. yr BP. The apparent age-reversal 
observed in the upper 10 cm of core recovered from Lago Lagu-
nillas is likely due to disturbance within the upper sediment as a 
result of coring. The average age of the three 14C dates in the up-
per 10 cm of sediment provides a good estimate of the age of the 
uppermost core sediment. 

To estimate the temporal pacing of inferred lake-level oscil-
lations observed in the diatom assemblages, we performed mul-
titaper method spectral analysis (Mann and Lees, 1996) on spe-
cific diatom taxa from both Lago Umayo and Lago Lagunillas. 
Prior to spectral analysis, records were re-sampled to create uni-
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formly spaced time series and normalized to unit variance us-
ing the program Analyseries (Paillard et al., 1996). The resam-
pled time series have a uniform spacing of 19.98 years in Lago 
Lagunillas and a uniform spacing of 9.99 years in Lago Umayo, 
allowing for resolution of periodic signals with periods of ~40 
and ~20 years, respectively. 

Results 

Lago Umayo

The long-term trend in the diatom flora of Lago Umayo is 
characterized by a general decrease of benthic and saline dia-

Figure 1. (A) Location of Lake Titicaca and study sites, Peru-Bolivia. (B) Lago Umayo, Peru. (C) Lago Lagunillas, Peru. 

Table 1. Radiocarbon ages of total organic matter from Lago Umayo and Lago Lagunillas 

Lake                   Depth (cm)                      Age                   Error                     Laboratory                                    δ13C                           Cal. yr BP 
                                                                (14C yr BP)                ±                            number                                                             (median probability) 

Umayo  57–59  >Mod   OS-43257  -18.1  0 
Umayo  128.5–131  2690  30  OS-43258  -24.5  2757 
Umayo  204–206  3470  30  OS-43259  -25.3  3665 
Umayo  249–251.5  3700  30  OS-43260  -24.6  3961 
Umayo  351–353  4170  25  OS-43261  -26  4641 
Umayo  430.5–433.5  4710  40  OS-42946  -20.43  5403 
Umayo  501–504  5190  55  OS-43266  -22.6  5873 
Umayo  545.5–548  5260  35  OS-43262  -22.6  5962 
Umayo  634–636.5  5600  45  OS-43263  -20.9  6344 
Umayo  676.5–679.5  5640  35  OS-43264  -23.6  6362 

Lagunillas  75–78  1970  35  OS-43054  -18.08  1860 
Lagunillas  76–78  1860  25  OS-43256  -9.06  1743 
Lagunillas  83–86  1870  30  OS-43055  -15.53  1755 
Lagunillas  212.5  3060  30  OS-52698  -9.42  3206 
Lagunillas  302–304.5  3830  45  OS-42945  -10.7  4147 
Lagunillas  399.5–402.5  4930  45  OS-43056  -13.2  5616 
Lagunillas  406.5–409.5  5080  40  OS-43057  -12.32  5780 
Lagunillas  491.5a  5350  30  OS-52699  -14.67  6080 
Lagunillas  491.5b  5470  35  OS-52277  -14.47  6230 
Lagunillas  589–592  5740  30  OS-43254  -13.1  6465 
Lagunillas  594–597.5  5980  30  OS-43253  -13.8  6745 
Lagunillas  638–640  7010  40  OS-43255  -16.5  7784 
Lagunillas  738a  7240  40  OS-52700  -18.42  7997 
Lagunillas  738b  7260  40  OS-52278  -18.41  8014 

Calibrated ages calculated from Stuiver et al. (2005) and McCormac et al. (2004). 
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tom abundance from the mid Holocene to the present (Figure 3). 
The oldest sediments (6,500–5,500 cal. yr BP) were dominated by 
Denticula keutzingii, Gomphonema pumilum, and smaller propor-
tions of cymbelloid and Cocconeis species. Denticula keutzingii is 
common in Altiplano lakes and appears to reflect increased sa-
linity and/or benthic habitat. Gomphonema, cymbelloid, and Coc-
coneis are cosmopolitan diatoms found in waters with widely 
varying chemistries; however, these diatoms are obligate ben-
thic species that grow on aquatic macrophytes and other sub-
strates. Higher abundance of benthic species implies lowered 
lake level (increased benthic diatom habitat area), as a result of 
reduced precipitation. 

A major change in the diatom assemblage occurred at approx-
imately 5,500 cal. yr BP, with the first appearance of Cyclotella 
stelligeroides, a planktic, mesoeutrophic species that grows in the 
nearshore areas of Lake Titicaca (Tapia et al., 2003) and in smaller 
moderately shallow freshwater lakes on the Altiplano. The ap-
pearance of C. stelligeroides was accompanied by a rapid decrease 
in the abundance of saline diatoms, indicating that Lago Umayo 
waters became significantly more dilute at this time. This freshen-
ing trend continued with the appearance at 3,800 cal. yr BP of Cy-
clostephanos andinus, a large oligosaline centric diatom. The abun-
dance of C. andinus fluctuated but generally increased throughout 
the remainder of the record (3,800 cal. yr BP–present), reaching a 
maximum in the youngest sediment sample). 

The stratigraphy of Lago Umayo is dominated by discon-
tinuously laminated carbonates and massive silty and organic-
rich carbonates prior to ~4,000 cal. yr BP. After ~4,000 cal. yr BP, 
sediment from the lake is almost uniformly dark green silts and 
clays with only a trace carbonate component. This stratigraphy 
conforms to a trend of increasing moisture availability that be-
gan in the mid Holocene and has continued to the present. The 
abundance of carbonates prior to ~4,000 cal. yr BP is interpreted 
as resulting from increased local aridity and evaporative enrich-
ment of Lago Umayo waters, resulting in increased carbonate 
deposition. Higher lake levels, and more dilute waters, during 
the last 4,000 years have made conditions within the lake unfa-
vorable for carbonate deposition. 

In addition to the general freshening trend throughout the 
length of the record, the diatom abundances vary at decadal to 
millennial timescales (Figure 3). Decadal-scale fluctuations are 
most prominent in the oldest part of the record, where sam-
pling frequency was approximately six years. Sample spacing 

increases in younger sediments, which prohibits resolution of 
decadal-scale fluctuations. Where resolved, decadal-scale fluc-
tuations are superimposed upon centennial-scale variations, 
which are observed throughout the entire record. An example 
of centennial-scale variability is evident in the C. stelligeroides re-
cord between 5,500 and 4,500 cal. yr BP. These pulses likely re-
flect fluctuations in lake level driven by regional precipitation 
changes. Variability at similar frequencies is observed in the re-
cord of each individual diatom taxon. Millennial-scale variabil-
ity is muted but is best observed in the abundance of saline di-
atoms. Fluctuations in saline diatom abundance are forced by 
regional precipitation change. 

Lago Lagunillas 

The Lago Lagunillas diatom record also indicates low lake 
level and saline conditions during the early to mid Holocene, 
followed by a gradual increase in lake level. Near-modern lake 
levels and salinities appear to have been established at approxi-
mately 4,500 cal. yr BP (Figure 4). Pseudostaurosira zeilleri, a small 
benthic diatom indicative of elevated salinity or high conductiv-
ity, dominated the flora in the oldest sediments. Denticula keutz-
ingii also was abundant in this portion of the record. Saline di-
atoms decreased from >80% of the record at 8,200 cal. yr BP to 
~0% at 4,500 cal. yr BP. From 4,500 cal. yr BP to the present, the 
abundance of saline diatoms was generally less than 10%. Cen-
tric diatoms first appear in Lago Lagunillas at 5,700 cal. yr BP as 
a sudden peak in C. stelligeroides, followed by the appearance of 
C. andinus about 3,800 cal. yr BP. The timing of this freshening is 
similar to the initial freshening pulse observed in Lago Umayo 
(at ~5,500 cal. yr BP). Lake level fluctuated from 4,500 yr BP to 
the present, but lake levels were above the outlet, so salinity 
never rose to significant levels. 

The timings of sedimentological changes in Lago Lagunillas 
are similar to those observed in Lago Umayo. Organic-rich silts 
dominate from approximately ~5,500 cal. yr BP to the present, 
with the exception of three periods, from 4,700 to 4,200 cal. yr 
BP, 3,000 to 3,200 cal. yr BP and 2,000 to 1,450 cal. yr BP, when 
sediments became carbonate rich. Prior to ~5,500 cal. yr BP, sed-
iment was comprised of carbonate and carbonate-rich diato-
mite. As in Lago Umayo, the abundance of carbonate-rich sed-
iments is interpreted as reflecting lower precipitation input and 
increased evaporation, which led to evaporative enrichment of 

Figure 2. Age–depth relationships for Lago Lagunillas (A) and Lago Umayo (B). Calibrated dates are median probability ages. 
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Lago Lagunillas waters and increased carbonate precipitation 
and/or preservation. 

In addition to decadal- to centennial-scale fluctuations, dis-
tinct millennial-scale oscillations are apparent in several of the 
diatom taxa. These fluctuations are most prominent in the re-
cords of C. placentula, G. pumilum, Nitzschia perminuta + fonticola, 
Pseudostaurosira construens v. venter and C. andinus. Millennial-
scale fluctuations in benthic diatoms relative to planktic species 
represent major fluctuations in lake level and salinity and hence 
moisture availability. The millennial-scale fluctuations persist 
throughout the duration of the record. 

Pacing of wet–dry fluctuations on the Altiplano 

Time-series analysis of diatom relative abundance in each of 
the lakes shows statistically significant (>99% confidence in-
terval) millennial, centennial, and multidecadal-band peaks in 
both lakes (Figure 5). While periodicities are given for individ-
ual spectral peaks in Figure 5, the millennial-scale signal is often 
a wide band encompassing a considerable frequency range. The 
presence of shared spectral peaks in both lake records suggests 
that a regional forcing was responsible for observed variations 
in diatom assemblages. 

Figure 3. Relative diatom abundance from Lago Umayo, Peru. The curve for saline diatoms sums the abundance of major salinity-tolerant taxa, in-
cluding Anomoensis sphaerophora, Cymbella pusilla, Navicula veneta, Craticula pampeana, Craticula halophila, Nitzschia dissipata v. media, Pseudostaurosira 
zeilleri, Staurosira construens fo. subsalina, Denticula elegans, and Denticula keutzingii. A general stratigraphic column is included, illustrating down-
core changes in sedimentology. 
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Discussion

Understanding the patterns of past precipitation variability in 
the tropical Andes at multidecadal to millennial scales, and the 
forcing mechanisms that govern this variation, is a key element 
in understanding the phasing and integration of global climate 
signals. Variability of precipitation on the Altiplano, whether of 

natural or anthropogenic origin, is of vital importance for mod-
ern agriculturalists, pastoralists and city dwellers that face in-
creasing threats from global climate change (Bradley et al., 2006). 
The similarity in the pattern and phasing of hydrologic changes 
in Lago Lagunillas and Lago Umayo indicates that these records 
reflect large spatial-scale climate fluctuations. Thus, changes in 
diatom assemblages, interpreted as changing lake level or salin-

Figure 4. Relative diatom abundance from Lago Lagunillas, Peru. The curve for saline diatoms sums the abundance of major salinity-tolerant taxa, 
including Anomoensis sphaerophora, Cymbella pusilla, Navicula veneta, Craticula pampeana, Craticula halophila, Nitzschia dissipata v. media, Pseudostau-
rosira zeilleri, Staurosira construens fo. subsalina, and Denticula keutzingii. A general stratigraphic column is also included, illustrating down-core 
changes in sedimentology. 
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ity, occur nearly simultaneously in both lakes (Figure 6A) de-
spite somewhat different limnological characteristics and mor-
phometry, and hence different sensitivities and response times. 
Both records display a sharp increase in lake level at ~5,500 cal. 
yr BP and a steady freshening thereafter, as saline diatoms de-
crease to background levels by about 4,000 cal. yr BP. Superim-
posed upon this trend is common variability at multidecadal to 
millennial scales. The pacing and direction of this variation at 
centennial to millennial scales is similar to the lake-level fluctu-
ations observed in Lake Titicaca (Figure 6C), particularly from 
8,000 to 4,000 cal. yr BP. This similar pacing corroborates the no-
tion that all these records are broadly representative of climate 
variation in the northern Altiplano. The correlation between the 
Lago Lagunillas and Umayo records at high frequencies also 
supports the overall robustness of our age models. 

There is some evidence that solar variation may have played 
a role in forcing precipitation variability on the Altiplano, based 
on the correspondence of Umayo and Lagunillas spectral peaks 
(Figure 5) with periods previously inferred for solar variabil-
ity. Specifically, the 200–210 yr peak in the diatom flora from 

Lago Lagunillas is similar to the de Vries solar cycle, observed 
in several records in the Pacific Basin (Evans et al., 2001; Hu et 
al., 2003) and in other records of solar variability (Wagner et al., 
2001). However, the statistical significance of this peak is weak 
in Lago Umayo. The ~350 yr peak in Lago Lagunillas is simi-
lar to observed changes in the rate of 10Be production and varia-
tions in tree ring width (Clemens, 2005), although its significance 
is slightly lower than the 99% threshold in Lago Umayo. Thus, if 
solar variability is important in forcing Holocene climate, its role 
in this region seems to be of secondary importance. 

An increase in ENSO frequency (to modern levels) in the mid 
to late Holocene has been inferred from the sediment record of 
the Andean Laguna Pallacacocha, Ecuador (Rodbell et al., 1999; 
Moy et al., 2002). The resolution of our study does not allow us 
to resolve variation in the ENSO band; however, there is no ob-
vious correspondence between the fluctuations in Lago Umayo 
and Lagunillas and variation in the Ecuadoran record smoothed 
to the same temporal resolution (Figure 6B). In fact, it is not clear 
what changes in precipitation would be expected on the Alti-
plano given an increase in ENSO frequency or amplitude. For 

Figure 5. Multitaper method (MTM) spectral analysis power spectra from selected diatom assemblages in Lago Lagunillas (A and B) and Lago 
Umayo (C). Peaks that plot above the 99% confidence interval (grey line) are labeled by periodicity. Grey shaded regions marked by an S indicate 
periodicities of observed solar variability (Clemens, 2005). Shaded region marked by PDO indicates range of observed variability for the Pacific 
Decadal Oscillation (Minobe, 1997). 
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Figure 6. (A) Saline diatoms from Lago Umayo and Cocconeis placentula from Lago Lagunillas. (B) Comparison of the 10-point running aver-
age reflectance data from Laguna Pallcacocha (Moy et al., 2002) and the detrended record of Cocconeis placentula from Lago Lagunillas. (C) Cocco-
neis placentula (a benthic lake-level indicator) versus δ13Corg from Lake Titicaca, which is a proxy for lake level (Baker et al., 2005). In (C), both re-
cords have been detrended. (D) Hematite stained grain (HSG) record from the North Atlantic (Bond et al., 2001) compared with the filtered record 
of Cocconeis placentula from Lago Lagunillas. Note that the y-axis for the diatom record is reversed, so that periods of low benthic diatom abun-
dance (high lake level and wet conditions on the Altiplano) correspond to cold and wet conditions in the North Atlantic.
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example, if an increased frequency of dry years (El Niño) is ac-
companied by increased frequency of wet years (La Niña), the 
long-term effect on Altiplano lake level is likely to be negligible. 

Decadal variability in regions that are strongly influenced by 
the Pacific is commonly attributed to variations in the strength 
and sign of the Pacific Decadal Oscillation (PDO; Minobe, 1997; 
Mantua et al., 1997) or other decadal-scale variability in the Pa-
cific Basin (e.g., Frauenfeld et al., 2005). The multidecadal varia-
tion at periodicities of 44–77 yr in both Lago Lagunillas and Lago 
Umayo is consistent with these observed modes of Pacific vari-
ability. While currently there are no climate records that demon-
strate a strong PDO influence in the tropical Andes, the known 
Pacific influence on modern Altiplano precipitation (Vuille et al., 
2000; Garreaud et al., 2003), suggests that there is a potential for 
PDO-scale Pacific ocean–atmosphere dynamics to influence hy-
drologic variability in the Lake Titicaca region. However, sim-
ilar spectral peaks are evident in proxy and model reconstruc-
tions of North Atlantic SSTs (Delworth and Mann, 2000); thus, 
it is difficult to identify the forcing of multidecadal variability in 
the tropical Andes from spectral data alone. 

Multidecadal- to millennial-scale changes in tropical Atlan-
tic SSTs also may have played a role in producing the varia-
tion observed in our records. Both the Lago Lagunillas and Lago 
Umayo records show significant (99%) variation at millennial 
frequencies (1,000–1,700 yr) that are characteristic of North At-
lantic variability (Bond et al., 2001). To evaluate how North At-
lantic SST variation is related to precipitation on the Altiplano, 
we compared the North Atlantic HSG record (Bond et al., 2001) 
with a filtered record from Lago Lagunillas of the abundance of 
Cocconeis placentula (Figure 6D), a benthic diatom that reflects 
lake-level change. This comparison demonstrates a correspon-
dence between wet conditions on the Altiplano (low Cocconeis), 
and cool conditions associated with the ice-rafted debris record 
from the North Atlantic, similar to the relationship observed 
for Lake Titicaca lake level (Baker et al., 2005). This correlation, 
which appears particularly robust from 8,000 to 4,000 cal. yr BP, 
argues for a significant role for Atlantic SST variability in driv-
ing millennial-scale precipitation fluctuations on the Altiplano. 

In the instrumental record, tropical North Atlantic SST and 
Altiplano precipitation during the austral summer wet season 
are correlated: anomalous southward shifts of the ITCZ in the 
Atlantic, hence cold SST anomalies in the tropical North Atlan-
tic, are associated with anomalously wet conditions on the Alti-
plano (Hastenrath et al., 2004). The characteristic period of the 
tropical Atlantic meridional SST gradient, driven mostly by SST 
variations in the tropical South Atlantic, is 12 to 13 years (Mehta, 
1998). We believe that an analogous relationship exists on longer 
timescales, such as those described in the present study. Thus, 
persistent anomalies in the mean annual latitude of the western 
Atlantic ITCZ appear to correlate with the oxygen isotopic com-
position of ice in the Qualcaya ice cap (Peterson and Haug, 2006) 
and with our evidence for increased (or decreased) lake levels 
on the Altiplano. 

Conclusions 

Patterns of lake-level variation inferred from the diatom stra-
tigraphy of Lagos Umayo and Lagunillas are similar to those 
observed previously from Lake Titicaca (Baker et al., 2001a, b, 
2005), supporting the position that the inferred precipitation 
charges are coherent over large regions. Superimposed upon a 
secular increase in moisture beginning ~5,500 yr BP is periodic 
variability at multidecadal to millennial scales, which is char-
acteristic of both the mid and late Holocene and is coherent in 
both lakes at multiple temporal scales. In both sites, strong peri-

odicity in the millennial band, similar to the pacing of the North 
Atlantic HSG record (1,000–1,700 yr), suggests a relationship be-
tween North Atlantic temperatures and precipitation variation 
on the Altiplano. Both lakes also show strong variation at mul-
tidecadal to centennial scales at frequencies that are character-
istic of variation in Atlantic and Pacific SSTs, as well as solar 
activity. Thus, it is difficult to attribute these patterns of high-
frequency change to a particular forcing. As a result, unraveling 
the relative importance of various drivers on tropical moisture 
budgets at decadal to centennial scales awaits the generation of 
additional high-resolution records and modeling studies that 
address the dynamic controls of tropical climate variation at ap-
propriate spatial and temporal scales. 
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