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A recent report to Congress concerning water quality in the United States indi­
cated that 35</r. 45'/', and 44'/' of the assessed rivers and streams. lakes. and estuaries. 
respectively. were impaired by one or more pollutants (US Environmental Protection 
Agency, 1999). Nutrients. primarily nitrogen (N) and phosphorus (P), contributed to 
the impairment of 30'1, or 135,000 km of the nation's impaired rivers and streams. 
44'1r of the impaired lakes. and 2Ylr of the impaired estuaries. Excessive nutrient 
loads are implicated in the eutrophication of lakes and reservoirs in the United States 
and coastal ecosystems where N is most limiting to primary productivity (Vitousek 
et aI., 1997; Carpenter et al.. 1998). Efforts arc currently underway to establish Total 
Maximum Daily Load (TMDL) values for pollutants. including nutrients, of impaired 
water bodies as described under Section 303(d) of the Clean Water Act of 1972. 

Thc movement of N in the terrestrial environment is intimately related to the 
movement of water. Water in the form of precipitation. flowing across the soil sur­
face as runoff. and percolating through soil layers to ground water can all be sig­
nificant carriers of organic and inorganic N constituents. The relative importance 
of these transport mechanisms is a complex function of N sources and transforma­
tions. hydrologic processes. climate patterns. and land use. While some elements 
of the N cycle can be studied in the laboratory under controlled experimental con­
ditions. many can he studied in a meaningful way only in the natural and cultur­
ally affected environments of watershcds, By considering N transport over a range 
of spatial and temporal scales. it is possihle to improve our understanding of the 
factors affecting the fate of N in watersheds. including the effects of land use and 
N sources (point. nonpoint. agricultural. urban. organic. and inorganic). N trans­
formations (mineralization. nitrification. denitrification. and immobilization). and 
transport mechanisms (runofr. percolation to ground water. and ground water trans­
port), Knowledge of the variability in N transport in relation to these factors is criti­
cal to developing and implementing effective strategies for mitigating unacceptably 
high N inputs to receiving waters, 
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The strengths of watershed-scale evaluations include easily definable hydro­
logic boundaries, identification of N sources with respect to water now patterns, 
and a convenient, integral measure of water-quality response at a single point (the 
basin outlet). The objective of this chapter is to synthesize current understanding 
of the major processes and controls affecting N transport in watersheds. The scope 
is limited to technical issues of flow and chemistry of fixed (i.e., biologically reac­
tive) organic and inorganic N forms in watersheds. We begin with a background 
discussion of watershed hydrology (Section 1) and the effects of N on ecosystems 
and human health (Section 2). We then describe the major sources of reactive N to 
watersheds (Section 3), and summarize the principal terrestrial and aquatic proc­
esses affecting N transport (Section 4). Section 5 illustrates the effects of various 
natural and cultural properties of watersheds on the yield of N in surface waters (N 
yield is defined as the N mass observed at the outlet of a watershed expressed per 
unit of drainage area). We conclude with a discussion of the results of empirical 
modeling methods that have been used to separate the effects of N supply and loss 
processes and estimate the fate of N sources in watersheds. 

1. WATERSHED HYDROLOGY 

A watershed (catchment or drainage basin) is an area of land where all of the 
precipitation that faUs, less the water lost to evaporation and deep aquifer recharge, 
eventually flows to a single outlet. A watershed encompasses both surface and sub­
surface components of water drainage that contribute to stream discharge. On a glo­
bal perspective, watersheds vary dramatically in physical features including area, 
shape, drainage pattern, aspect, orientation, and elevation (Schumm, 1977; Black, 
1996). Geomorphic features of watersheds reflect the geologic formations and soils 
present and the erosive forces that have reshaped these materials. In regions with low 
relief and homogenous surficial materials such as areas of the Midwestern US, water­
sheds are often pear-shaped with a dendritic drainage pattern, as there is little differ­
ence in resistance to erosion to influence the headward cutting of stream channels 
(Black, 1996). Other, less random drainage patterns are the direct result of the vary­
ing erodibility of soil and rock. Structural differences in underlying formations can 
create well-defined, regular patterns as the channels develop following the path of 
least resistance to erosion. Slope aspect and watershed orientation (general direction 
of main stream channel) become important at higher altitudes and latitudes and espe­
cially with regard to snow hydrology. Tn the Northern Hemisphere, snowmelt will 
occur later on slopes with a north aspect in steep, east-west oriented watersheds as 
compared to slopes with a south aspect. Streamflow during snowmelt in watersheds 
that have a northern orientation may also be impeded by unmelted ice downstream. 

Several numerical parameters have been used to describe the physical charac­
teristics of watersheds. These include stream order, drainage density, and area and 
shape relations (Schumm, 1977; Linsley et aI., 1982; Moseley and McKerchar, 
1993). A classification of stream order was first proposed by Horton (1945) to 
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describe the amount of branching within a basin. A first-order stream is small with 
no tributaries, a second-order stream has only first-order tributaries, and a third­
order stream has tributaries of first- and second-order, etc. The order of a watershed 
is determined by the order of its principal stream. Drainage density refers to the 
total length of streams divided by the drainage area. A highly dissected basin will 
have a high drainage density and stream discharge that responds more quickly to 
precipitation events than less-dissected basins. A low drainage density may indicate 
erosion-resistant or highly permeable soils and low relief. Several area and shape 
relationships have been developed to create scales with which to compare water­
shed shapes with each other and with known shapes such as a circle or ellipse. 
Generally, ratios of basin parameters such as channel length, basin area, perimeter, 
and relief are calculated to provide indices, which are often dimensionless numbers, 
to allow relative comparison between watersheds. The numerical parameters used to 
describe the physical features of watersheds are in turn correlated with storm runoff, 
as measured by stormflow hydrographs. Functional relationships have been devel­
oped between runoff characteristics (e.g., time to initiation of runoff, time to peak 
flow, discharge at peak flow, total runoff volume, and time to recession) and storm 
characteristics and physical watershed features (Moseley and McKerchar, 1993). 

Streamflow or discharge is a composite of surface (overland flow) and subsur­
face (baseflow) contributions. On the surface, flow follows the topography, from high 
elevations to lower elevations along interconnected pathways that provide the steep­
est gradient down. In the subsurface, discharge to the surface may be concentrated at 
permeability contrasts such as soil and rock interfaces and through preferential flow 
paths such as macropores, worm and root channels, bedding planes, fractures, and 
caves. In the subsurface as on the surface, ground water flow is driven by hydrau­
lic gradients and the favored pathways are those that provide the least resistance to 
flow. Along all pathways, chemical interaction may occur between the water and 
solid, liquid, and gas components present in the water. The nature and extent of 
such interactions depend on the specific biogeochemical environment and residence 
time. Hydrologic and geochemical processes are rarely uniform over the area of a 
watershed. This is evidenced by numerous investigations of such features as variable 
source areas of runoff (Anderson and Burt, 1978; Bernier, 1985), riparian-zone proc­
esses (Hill, 1996; Cirmo and McDonnell, 1997; Devito et a!., 2000), and karst hydro­
geology (LeGrand and Stringfield, 1973; White, 1988). Riparian and karst settings 
are also notable in that they include frequent and significant interaction between sur­
face and subsurface water, often with important implications for N transport. 

2. NITROGEN IMPACTS ON WATER QUALITY 

Three well-documented water-quality concerns are related to loadings of N to 
surface and ground waters. The presence of high levels of nitrate (N03) in drinking 
water has been linked to two different human-health concerns. The risk of methemo­
globinemia in infants due to ingestion of high N03 drinking water is well understood 
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and recognized. An increased incidence of stomach cancer and nonHodgkin's lym­
phoma due to NO, intake is less certain (US Environmental Protection Agency, 
1976; Heathwaite et ai., 1993). Nonetheless, a drinking water standard of lOmg/L 
for NOTN, as established by the US Environmental Protection Agency, is now 
widely accepted. 

A second area of concern is the toxic effect of ammonia (NH3) on freshwa­
ter aquatic life (US Environmental Protection Agency, 1976). It has been known 
since the early 1900s that NH, is toxic to fish and that this etlect varies with water 
pH and temperature. A concentration of 0.02 mg/L as un-ionized NH, is the current 
standard for NH3 in freshwater for the United States. 

The third and perhaps most significant water-quality concern with respect to 
N is the overenrichment or eutrophication of surface waters. Eutrophication and 
its attendant problems of algal blooms, subsequent low dissolved-oxygen con­
centrations, and fish kills have been described in an extensive body of literature. 
Overabundance of P is the most common cause of eutrophication in freshwaters, 
although exceptions are known (Hecky and Kilham, 1988; Correll, 1998). In coastal 
marine waters, either N or P and possibly other nutrients, such as silicon, may be 
limiting, whereas in the open ocean, N is generally considered the key nutrient con­
trolling primary production (Correll, 1998; Burkart and James, 1999; Council for 
Agricultural Science and Technology, 1999). Overenrichment of N has been impli­
cated in the development of anoxic and hypoxic zones in shallow coastal waters 
in Europe, North America, and Asia. Excessive phytoplankton production in these 
areas leads to oxygen depletion when the organic residues decompose, often with 
devastating effects on local fisheries. 

3. NITROGEN SOURCES TO WATERSHEDS 

The inputs of biologically available forms of N to terrestrial and aquatic fresh­
water ecosystems have increased globally by more than a factor of two over the past 
two centuries as cultural activities that fix N have rapidly expanded. Nitrogen tixa­
tion refers to the conversion of dinitrogen gas (N2) to NH3 either naturally via N­
fixing plants (legumes), or through cultural processes such as the manufacture of N 
fertilizer and combustion of fossil fuels. Fertilizer application, cultivation of legumi­
nous crops, and fossil fuel combustion represent 57%, 29%, and 14% of the cultur­
ally derived N, respectively (Galloway et al., 1995; Vitousek et ai., 1997). Cultural 
inputs are unevenly distributed around the world, with the highest concentrations in 
areas of intensive agriculture and industrial processing (Matthews, 1994). The larg­
est increases have occurred in the latter half of the 20th century as the industrial 
production of N for use as fertilizer increased many fold. More than 50% of all the 
industrially fixed N applied as fertilizer through 1990 was used during the decade of 
1980-1990 (Vitousek et ai., 1997). In the United States, fertilizer use has increased 
by a factor of about 12 since the 1950s, with much of the increase occurring prior to 
1980 (Goolsby et ai., 1999). Natural sources of N, principally biological fixation by 
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noncultivated leguminous plants and lightning fixation, represent 64-93% (90-140Tg 
N) of the total culturally fixed N at the global scale (Galloway et aI., 1995: Vitousek 
et aI., 1997), but vary geographically with vegetation and land use. Natural sources 
of N are typically small « 10%) in relation to cultural sources in many developed 
regions of the world, such as in the United States (Jordan and Weller, 1996). 

The agricultural food chain is the principal pathway for culturally derived N to 
enter the terrestrial and aquatic ecosystems of developed watersheds. More than 90% 
of the culturally derived N in the United States enters croplands and pastures through 
fertilizer application, crop fixation, and atmospheric deposition on agricultural lands 
(Jordan and Weller, 1996). Nearly 50% of the N applied in fertilizer is recycled in 
food and feed products (Keeney, 1982: Howarth et aI., 1996) that are consumed by 
livestock and humans. Livestock consume the vast majority of the N in harvested 
crops and forages, most of which is excreted in feces and urine; 10-40% of the N in 
animal manures is volatilized (Terman, 1979), and much of that subsequently enters 
nearby watersheds in NH3 deposition from the atmosphere (Howarth et a!., 1996). 
Manure that is applied to cultivated or pasture lands enters watersheds in organic-N, 
NOrN, or NH3-N, (Haynes and Williams, 1993; Jordan and Weller, 1996; Kellogg 
et a!., 2000). Less than 15% of the N consumed by livestock is subsequently ingested 
by humans in meat, eggs, and milk (Jordan and Weller, 1996). Much of the N in 
human wastes is recycled into the hydrosphere through on-site septic systems or is 
discharged to streams and rivers in the effluent of wastewater treatment plants. 

In addition to animal manures and human wastes, which largely involve the 
terrestrial recycling of culturally derived N, mineralized organic N (i.e., N that is 
biologically converted from organic to inorganic forms) in soil is potentially an 
important recycled N source to watersheds and aquatic ecosystems (Burkart and 
James, 1999; Goolsby et aI., 1999). Organic N deposits in soils reflect the recent 
and long-term accumulation of N from fertilizers and biologically fixed N, immo­
bilized by soil microbes and plant residues. Although N mineralization occurs 
naturally, cultivation may initially expose the soil to much higher rates of miner­
alization that are equivalent to or even greater than annual N fertilizer application 
rates (Burkart and James, 1999). On lands that have been cultivated over extended 
periods, the mineralization of N in soil organic matter may approach equilibrium 
with agricultural inputs (Paul et aI., 1997). 

Despite the extensive terrestrial cycling of N in soils, vegetation, livestock, and 
humans, estimates of N transfers and the net releases of N to watersheds by major 
cultural activities have been the focus of intensive research and are now known for 
many areas of the United States (Howarth et aI., 1996; Jordan and Weller, 1996; 
Burkart and James, 1999; Goolsby et aI., 1999; US Environmental Protection 
Agency, 1999; Kellogg et aI., 2000). Estimates of N transfers often require assum­
ing average values for N concentrations in organic materials and rate constants for 
N transformations, the use of state or county level census data, and extrapolation 
from field-scale measurements. Recent estimates of cultural inputs of fixed N to 
major regional watersheds of the United States (Jordan and Weller, 1996; Figure I) 
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Mississippi 

Figure I. Water-resources regions of the conterminous United States. (Modified 
from Seaber et al. (1987)) 

are presented in Table I. Table I separately reports "newly" fixed N inputs, reflect­
ing in situ fixation by crops and the initial terrestrial application of N (fertilizer and 
N03 deposition in precipitation), and the releases of previously fixed (terrestrially 
recycled) N in livestock manure and human wastes. Also reported are estimates of 
net food and feed transfers by region, which are included in the releases of recycled 
N in livestock manure and human wastes. Fertilizer typically contributes about 50% 
of the "newly" fixed N inputs in the watersheds (sum of fertilizer, crop fixation, 
and deposition) with the highest contributions in the highly agricultural California 
region and lowest in the highly populated northeast region. Crop fixation accounts 
for a third or more of the total inputs of newly fixed N, with some of the highest 
contributions occurring in the Northeast, Upper Mississippi, and Missouri regions. 

Atmospheric deposition of NO, is much lower than agricultural inputs, typi­
cally contributing from 10% to about 20% of the total inputs in most regions. The 
highest atmospheric contributions (32%) are found in the Northeast region, where 
deposition rates are high and fertilizer inputs are among the lowest. The inclusion 
of additional oxidized N compounds (NOy , including wet and dry deposition) could 
be expected to increase the estimates o( deposition inputs in Table I by as much 
as a factor of 2 (Howarth et aI., 1996). Approximately 20% of the total inputs of 
culturally derived N are transported in agricultural products nationwide in food 
and feed imports (Table I). In most regions, exports of N in agricultural products 
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nearly balance the imports of N in these products. The major exceptions include the 
Northeast, where imports represent nearly 50% of the newly fixed N inputs, and the 
Upper Mississippi region, where 51 % of the newly fixed N inputs are transported 
to other regions of the country. The large imports of food and feed in the Northeast 
can account for the unusually large N releases in livestock manures and munici­
pal/industrial wastes in this region. Nitrogen inputs from municipal and industrial 
wastes are also relatively high in the Great Lakes, Ohio-Tennessee, and California 
regions. The Ohio-Tennessee, Arkansas-Red-White, Texas, and Colorado regions 
show the largest releases of N in livestock manures in comparison to the newly 
fixed N input to these regions. 

4. NITROGEN CYCLING AND LOSSES IN TERRESTRIAL AND 
AQUATIC ECOSYSTEMS 

Biologically available forms of N are highly mobile in the environment, and 
are subject to extensive biogeochemical cycling in terrestrial and aquatic ecosys­
tems (Vitousek et aI., 1997). Nitrogen cycling in terrestrial and aquatic ecosystems 
involves an intricate array of biogeochemical processes that can vary spatially and 
temporally in the environment in both rate and direction. Individual processes and 
the entire N cycle for selected systems have been the subject of numerous studies, 
many of which have been summarized in comprehensive review articles and mon­
ographs including Keeney (1973, 1983), Stevenson (1982, 1994), Floate (1987), 
Russelle (1992), Powlson (1993), and Vitousek et al. (1997). Discussion here will 
be limited to a brief description of principal N transformations affecting N transport 
from watersheds. 

Immobilization is the assimilation of inorganic N by plants and microorgan­
isms to form organic N compounds whereas mineralization is the decomposition of 
organic N to ammonium (NH4)' Nitrification is the microbial oxidation of NH4 to 
nitrite (N02) and NO] whereas, conversely, denitrification is the reduction of N03 
to N02, nitrous oxide (N20), and dinitrogen gas (N2)' Nitrification is important 
from an N transport perspective in that it involves the transformation of a relatively 
immobile species (NH4) to a highly mobile one (N03). Lastly, N fixation is the con­
version of N2 to NH], either naturally via N-fixing plants (legumes), or through cul­
tural processes via the manufacture of N fertilizer. 

Nitrogen cycling dynamics and pathways differ within and between terrestrial, 
freshwater, and marine ecosystems. Nonetheless, some similarities persist and often 
dominate N dynamics in the environment. Since most agriculturally productive 
soil environments have extended periods of aerobic conditions, mineralization of 
organic N to form NH4 is generally followed by nitrification. Thus, in many terres­
trial settings with significant N present, N as NO] is commonly found at relatively 
high concentrations even though it is also the form of N preferred for uptake by 
many plants. Since N03 is also highly mobile in the hydrosphere, it is often the 
dominant form of N in freshwater systems. Denitrification of NO] occurs under 
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anaerobic conditions such as are found in flooded soils, riparian areas, and in the 
sediment of streams, lakes, and reservoirs. From a watershed perspective, the domi­
nant processes of the N cycle vary not only by location, but also seasonally at the 
same location. 

Nitrogen from natural and cultural sources is removed from runoff and subsur­
face flows in the terrestrial and aquatic ecosystems of watersheds by many bioge­
ochemical processes. Denitrification permanently removes N from watersheds by 
converting N to less reactive gaseous forms (NO, N20, or N2) that escape to the 
atmosphere. Other means of N removal in watersheds, including the uptake of N 
by vegetation, burial of organic matter on the landscape, and storage of N on flood­
plains and in reservoirs and ground water, represent temporary storage sites for N 
over time scales ranging from fractions of a day to decades. Over long periods, 
these storage sites are likely to gradually release un-denitrified N to streams and 
rivers. Variability in the reported quantities of N removed in watersheds may in part 
reflect variations in the temporal and spatial scales over which these loss processes 
operate in both terrestrial and aquatic ecosystems (Seitzinger, 1988; Correll et aI., 
1992; Hill, 1996; Harvey and Wagner, 2000). However, most multi-year stud­
ies report the loss of large fractions of the N inputs to watersheds for a range of 
spatial scales, based on comparisons of inputs with the N yields from watersheds 
in streams and rivers (Galloway et aI., 1995; Puckett, 1995; Howarth et aI., 1996; 
Jordan and Weller, 1996; Vitousek et aI., 1997; Goolsby et aI., 1999). In large North 
American and European watersheds (basin sizes from 340,000 to 3.2 millionkm2), 
comparisons of total inputs of N with stream yield indicate that 65-90% of the 
inputs (mean = 75%) are removed by terrestrial and aquatic processes (Howarth 
et aI., 1996). Similar losses of N have also been observed in small watersheds of 
mixed land use (Jaworski et aI., 1992; Jaworski et a!., 1997) and in small, forested 
and agricultural catchments (Howarth et aI., 1996). Because forest ecosystems are 
N limited, forested watersheds are capable of storing considerable quantities of N in 
biomass and soils. However, large variations have been observed in the percentage 
of loss, ranging from a few percent to more than 100 percent of N inputs (Johnson, 
1992). This wide range may be explained by variations in the biological demand 
for N, which can fluctuate in response to such factors as N depositional history, 
forest successional stage, and species composition (Johnson, 1992; Stoddard, 1994; 
Howarth et aI., 1996; Williams et aI., 1996) as well as the effects of temperature on 
nitrification and other N transformations (Murdoch et aI., 1998). 

Many natural and cultural properties of watersheds may explain spatial and 
temporal variations in the rates of denitrification, nitrification, mineralization, and 
N storage and their effects on N transport in streams. These include factors such as 
land use, climate (precipitation and evaporation), the oxygen and carbon content 
of soils and stream sediments, and stream morphology (channel density, channel 
size, and water travel time). Watershed properties that affect the quantity, velocity, 
and direction of water movement along surface and subsurface flow paths (climate 
and geology) may have an especially important influence on N transport. Certain 
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flow paths are more likely to remove N from the flow stream than others, such as 
in stream riparian and hyporheic zones where biochemical conditions may enhance 
denitrification. The effects of these various watershed characteristics on stream N 
yield are discussed in the following section. 

5. EFFECT OF WATERSHED CHARACTERISTICS ON 
N TRANSPORT IN STREAMS 

The reported N yield from watersheds (in units of kg/km2/year) throughout the 
world is highly variable, spanning more than four orders of magnitude (Beaulac 
and Reckhow, 1982; Meybeck, 1982; Smith et aI., 1997; Caraco and Cole, 1999), 
and may be explained by a variety of watershed characteristics affecting the sup­
ply and removal of N in terrestrial and aquatic systems. In this section, we discuss 
the effects of many of the principal watershed properties on spatial variations in 
N yield, including stream discharge, climate, geology, soil properties, land surface 
topography, stream morphology, natural and cultural sources, and land use. 

5.1. Stream Discharge 
The relation between stream N yield and discharge (the net quantity of water 

made available to streams via precipitation minus evaporation) illustrates the aggre­
gate effects of surface and subsurface characteristics of watersheds. Streams in 
watersheds in more humid areas generally transport larger amounts of N and water 
per unit of drainage area than those in more arid regions. The mean annual yield of 
N in streams is nearly proportional to the mean annual stream discharge for water­
sheds around the globe (Caraco and Cole, 1999). For developed watersheds in the 
United States with a range of cultural N sources (Figure 2), stream discharge and 
total N yield span nearly four orders of magnitude and display a strong positive 
relation (R2 = 0.74) - the exponent on discharge is slightly less than one (0.86). 
Similar rates of N yield per unit discharge have been observed in developed and 
undeveloped watersheds of the world (Caraco and Cole, 1999) and for relatively 
undeveloped watersheds in the United States (R.A. Smith, written communica­
tion). The slope of many of the observed relations generally spans a rather narrow 
range, with exponents from 0.80 to 0.87. Undeveloped tropical watersheds in South 
America with lower atmospheric N inputs (Lewis et aI., 1999) also show similar to 
somewhat lower exponents for N03 (0.80) and total N (0.63). The intercept of the 
yield-discharge relations differs depending upon the magnitude of cultural inputs of 
N to the watersheds and units of discharge in the log linear model. 

At individual stream locations, N yield also varies considerably in response to 
storms as well as seasonal and annual fluctuations in precipitation and streamflow. 
These responses have been extensively documented in the literature (Beaulac and 
Reckhow, 1982; Mueller et aI., 1995; Alexander et aI., 1996; Goolsby et aI., 1999; 
US Geological Survey, 1999). Although larger spatial than temporal variability in 
N yield is generally observed (Beaulac and Reckhow, 1982), temporal changes in 
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Figure 2. Relation of stream yield of total N to stream discharge for developed 
watersheds of the United States. 

N yield at individual sites have important implications for the management of 
sources. A recent study isolated the effects of year-to-year variations in stream­
flow on NO, yield at 104 monitoring locations along the East and Gulf coasts of 
the United States (Alexander et aI., 1996). Although the mean annual N03 yield 
at all sites varied by as much as two orders of magnitude in response to year-to­
year fluctuations in flow, variations at most sites ranged from 20% to 40% of the 
mean N03 yield. The change in N03 yield in response to annual streamflow vari­
ations was nearly linear and proportional in most watersheds (i.e., a 1 % change in 
flow corresponded to nearly equivalent percentage change in N03 yield), although 
many streams displayed nonlinear responses. The variance in N03 yield at the sites 
(expressed as a percentage of the mean yield) was negatively correlated with the 
mean annual streamflow and nonurban land use of the watersheds; the largest vari­
ability in yield was observed in watersheds with arid conditions and large diffuse 
sources of N. 

5.2. Climate 
Climate explains much of the variability in stream N yield-discharge relations 

for watersheds. Climate influences the distribution and composition of vegetation 
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and soils, which affect the supply of organic and inorganic N forms to watersheds 
(Beaulac and Reckhow, 1982; Downing et a!., 1999). The productivity of natural and 
cultivated vegetation tends to be higher in wetter, more temperate climates, and ferti­
lizer-intensive crops are also generally grown in these areas. The rates of water move­
ment over the land surface, through the subsurface, and in stream channels also govern 
N residence times and loss in watersheds. Water transport may affect the rates of bio­
geochemical processing of N by controlling the contact and exchange of N-enriched 
water with sites suitable for denitrification, such as anoxic soils, benthic stream sedi­
ments, channel hyporheic and riparian zones, wetlands, and aquifers (Harvey et aI., 
1996; Hill, 1996). Water travel time, which is strongly correlated with discharge, has 
been found to be an important predictor of N loss in streams and reservoirs (Kelly 
et a!., 1987; Howarth et aI., 1996; Alexander et aI., 2000a). Nitrogen losses in streams 
are also correlated with stream discharge (expressed per unit of drainage area), based 
on observations in large watersheds in Germany (Behrendt, 1996). 

Changes in global climate that may occur in response to recent and anticipated 
rises in atmospheric levels of CO2 and other greenhouse gases will potentially affect 
stream N yield through changes in precipitation and ambient temperatures and their 
corresponding effects on such factors as stream discharge, biological activity, and 
land use (Murdoch et a!., 2000). Although most general circulation climate models 
are generally in agreement that temperatures and precipitation will rise over glo­
bal scales, regional variations are expected to be large (Gleick and Adams, 2000). 
For example, recent predictions of precipitation through 2030 from two climate 
models of North America (Gleick and Adams, 2000) indicate large regional differ­
ences in the magnitude and even the direction of changes in precipitation, empha­
sizing the large uncertainty in current predictive models. Nevertheless, the predicted 
climate-related changes in precipitation or temperature are far reaching and could be 
expected to have notable effects on nutrient cycling in the terrestrial and aquatic eco­
systems of watersheds, the nature of which are discussed in many recent reviews and 
analyses (Moore et aI., 1997; Mulholland et aI., 1997; Schindler, 1997; Gleick and 
Adams, 2000; Murdoch et aI., 2000). Stream discharge is one of the major watershed 
properties likely to be affected by global warming, and is generally more sensitive 
to changes in precipitation than to temperature-induced changes in evapotranspira­
tion (Wolock and McCabe, 1999). Changes in discharge would affect the quantity 
and rates of water movement along surface and subsurface flow paths that control 
the rates of N removal. Both spatial and temporal N yield-discharge relations (e.g., 
Figure 2; Alexander et a!., 1996) suggest that the long-term changes in N yield could 
be expected to be nearly proportional to the changes in stream discharge, although 
climate-related changes in land use and the rates of biochemical processing of N 
may cause more nonlinear, short-term responses in yield. Changes in temperature 
may also be expected to affect terrestrial and aquatic rates of productivity and N 
uptake (Mulholland et aI., 1997; Murdoch et aI., 1998; Murdoch et aI., 2000), and 
could change the density of microbial communities in soils and stream sediments, 
which govern the rates of nitrification and denitrification (Murdoch et aI., 2000). 
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Moreover, shifts in land use in response to changing precipitation and temperature, 
such as changes in the location of row-crop agriculture and reservoir construction, 
are additional factors that could affect N yield from watersheds (Murdoch et al., 
2000). 

5.3. Physiography and Subsurface Hydrology 
Variability in N yield (both explained and unexplained by stream discharge) is 

related to various physiographic features of watersheds that govern the residence 
times of water and N, including soil properties, geology, and landscape topogra­
phy (Beaulac and Reckhow, 1982). Many of these features control streamflow in 
watersheds according to the concept of variable source areas (Beven and Kirkby, 
1979; Wolock, 1993). Such features have been cited as important factors affecting 
ground- and surface-water interactions and N yield in streams at local and regional 
spatial scales (Bohlke and Denver, 1995; Winter et a!., 1998). Variable-source-area 
models such as TOPMODEL (Beven and Kirkby, 1979; Wolock, 1993) stress the 
importance of slope, relief, soil permeability, soil moisture content, and depth to 
the water table, in defining water infiltration and overland flow. According to these 
models, overland flow typically occurs where the subsurface movement of water is 
impeded, such as in low-lying areas and soils of low permeability. 

The effects of soil permeability on water and N flow in unsaturated soils have 
been clearly demonstrated by Iysimeter studies in small agricultural watersheds 
(Howarth et a!., 1996). Rates of N leaching in sandy soils have been reported to be 2 
or more times than those in loam or clay soils (Sogbedji et al., 2000). In large water­
sheds with high cultural N inputs, studies have found that permeable soils and rocks 
result in low N03 yield in streams (US Geological Survey, 1999). For example, a 
relatively low N03 yield was observed in the Lost River in Indiana, where the shal­
low permeable karst bedrock rapidly diverted N into the subsurface (US Geological 
Survey, 1999). Low N yields in the Prairie and Shell Creeks in Nebraska were 
explained by a relatively flat terrain and sandy/silty soils that rapidly transport N into 
the shallow ground water system (US Geological Survey, 1999). 

These results are consistent with those from empirical models of stream moni­
toring data over regional scales (Mueller et a!., 1997; Smith et al., 1997). These 
studies show an inverse relation between mean annual N yields in streams and soil 
permeability. Tile drainage systems, which have been used extensively on poorly 
drained croplands in the mid-continent region of the United States (Mueller et al., 
1997; Goolsby et a!., 1999; Skaggs and van Schilfgaarde, 1999), generally reduce 
the travel times of N to streams and rivers (Kladivko et al., 1991). Artificial drain­
age of otherwise poorly drained crop or grazing land by surface channels or subsur­
face drains can exacerbate N transport from the soil root zone and expedite delivery 
to surface-water bodies and/or shallow aquifers (Durieux et al., 1995; de Vos et al., 
2000). Land drainage networks effectively bypass the natural filtering effects of 
wetlands and riparian areas and provide direct conduits of surface runoff to streams 
and lakes. Conversely, any N that is diverted to the subsurface in response to the 
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hydrogeologic properties of watersheds has the potential to be denitrified (Hill, 1996). 
Subsurface N may also re-appear later in the baseflow of streams. For example, 
ground waters contribute nearly 50% of the N flux to streams in the Chesapeake 
Bay watershed; these streams include waters with residence times of 10-20 years 
(Michel, 1992; Bohlke and Denver, 1995; Focazio et aI., 1998). In a study of 27 
watersheds in the Chesapeake Bay Watershed, Jordan et al. (1997) found that N03 
concentration increased with increasing proportion of baseflow to streamflow, sug­
gesting that NO, transport was promoted by ground water flow in these areas. 

One of the most dynamic responses of watersheds to precipitation and runoff 
occurs in stream riparian areas and especially in wetlands (Lowrance et aI., 1984), 
where soils rapidly saturate to become the initial sites for overland flow (this is 
ref1ected by variable-source-area models of flow generation). The storage and 
gradual release of water in riparian areas also control baseflow during the recession 
of peak tlows and over more extended periods (Lowrance et aI., 1985). Riparian 
areas have been shown to significantly reduce the quantities of N (more than 80%) 
transported from upland areas to streams in overland flow and ground waters 
(Peterjohn and Correll, 1984; Correll et aI., 1992; Lowrance, 1992); however, the 
quantities of N removed are highly variable (Hill, 1996). The age of forests, the 
types of vegetation and soils, and the geology in riparian areas contribute to this 
variability. Riparian areas that most effectively remove N have permeable surface 
soils and shallow impermeable layers that produce shallow subsurface ground water 
flows with long residence times and extensive contact with roots and soils (Hill, 
1996). The removal of N in ground water via denitrification is also controlled by 
biogeochemical properties of aquifers (e.g., flow paths, organic carbon and oxy­
gen supply, and density of denitrifying bacteria) that are independent of riparian 
locations, soils, or other land surface characteristics (Postma et aI., 1991; Korom, 
1992; Bohlke and Denver, 1995; Hill, 1996). Thus, N may be removed in the sub­
surface by processes that are not readily predicted from land use or other mapped 
surface features. Moreover, the effect of riparian areas on N transport is uncertain 
because most studies that report decreases in N03 concentration do not report water 
discharge. 

Another type of ground water flow path involves the disrupted drainage patterns 
characteristic of karst terrain. Karst terrain includes distinctive features such as sink­
holes, caves, and springs that develop when soluble rock, often carbonates, occur 
near the surface. Approximately 15% of the continental United States has karst 
features, including parts of the Appalachian Mountains, interior lowlands and pla­
teaus in Kentucky, Indiana, and Tennessee, the coastal plain of Florida and Georgia, 
the Edwards Plateau of Texas, and the Ozark Highlands (Davies and LeGrand, 
1972). Karst features allow for rapid conveyance of water from the surface to the 
aquifer and often within the fractured aquifer itself (LeGrand and Stringfield, 1973; 
White, 1988). The potentially short water residence time in karst aquifers may limit 
the opportunity for biogeochemical transformations of N constituents. Owing to 
the potential for capture of runoff in karst terrain, land-use practices aflecting 
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N distribution and runoff on the soil surface may directly affect N transport to shal­
low aquifers. 

Brahana et al. (l999a) and Sauer et al. (l999a) describe the development of 
a research watershed (Savoy Experimental Watershed) in karst terrain within the 
Ozark Highland region of northwestern Arkansas. One subbasin of this watershed 
has physiographic features (mantled karst, ridge, and valley topography) and land 
use (hardwood forest and pasture) typical of the Ozark Highlands. Two continu­
ously flowing springs (Copperhead and Langle) discharge on opposing sides of the 
watershed outlet, which drains directly into the Illinois River. Dye-tracing stud­
ies have demonstrated that both springs capture runoff via conduits in limestone 
beneath porous gravel in the valley floor during storm events and rapidly trans­
mit the intercepted water to the springs and, from there, overland to the Illinois 
River (Sauer et aI., 1998; Brahana et al., 1999b). Figure 3 presents discharge, total 
Kjeldahl N (TKN) concentration, and NOo-N concentration for Copperhead Spring 
during two events over a 20-day interval in 1999. Nitrate was the dominant N spe­
cies in the spring flow throughout the measurement interval, as concentrations of 
TKN and NHrN (data not shown) were less than 0.1 mglL. Temporal variations in 
NOrN concentration are typical of runoff events (higher concentrations early with 
gradual decrease) indicating again that spring flow during storm events is domi­
nated by captured runoff. 
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Table 2 lists NOrN concentrations in samples taken during base flow con­
ditions for a 2-year period from Copperhead and Langle Springs, a shallow seep 
discharging in the valley slope above the soil/rock interface, and the Illinois River. 
Water from the seep represents intert10w at the bottom of the root zone, which under 
nonstorm flow conditions is diluted by ground water already in the shallow karst 
aquifer. The higher NOrN concentrations for Copperhead Spring reflect the more 
intensely managed grazing lands within its recharge area. Discharge from Langle 
Spring had lower NOrN concentrations than the Illinois River for all sample dates 
except two whereas, conversely, Copperhead Spring's discharge has higher NOrN 
concentrations for all sample dates except one. These data illustrate the potential 
interaction between surface and subsurface water in karst settings and the subse­
quent implications for N transport. Runoff from upland areas t10ws into the valley 
but a portion is captured by the springs, mixed with ground water, and discharged 
from the springs to the lllinois River. 

Table 2. 
Nitrate-N concentrations in samples taken during base t10w conditions 
over 2 years at four locations in the Savoy Experimental Watershed. 

Shallow seep Copperhead Langle Spring Illinois River 
Date (mg/L) Spring (mg/L) (mg/L) (mg/L) 

02-01-98 2.9 3.4 l.2 2.3 
05-22-98 2.0 3.2 0.8 1.1 
05-28-98 1.5 0.8 0.4 0.6 
06-04-98 4.7 7.6 2.2 2.8 
06-11-98 4.7 8.4 2.1 3.0 
06-25-98 4.9 9.2 1.2 2.5 
09-09-98 6.0 12.4 8.8 3.1 
12-08-98 4.8 6.2 2.1 3.3 
01-14-99 5.8 6.0 3.3 4.3 
04-29-99 2.1 1.6 0.4 l.8 
07-27-99 7.0 10.3 3.5 4.1 
09-24-99 3.9 7.5 3.2 2.8 

Mean 4.2 6.1 2.6 2.7 
Maximum 7.0 12.4 8.8 4.3 
Minimum 1.5 0.8 0.4 0.6 

Water-quality research in karst settings in other locations in the United States 
has found correlations with land use and has documented interactions between flow 
dynamics and N losses. Nitrate concentrations measured in several springs of a karst 
region in West Virginia were found to have a strong linear correlation (R2 = 0.96) 
with percent agricultural land use in the spring basins (Boyer and Pasquarell, 1995). 
Kalkhoff (1995) found subbasins of Roberts Creek in northeastern Iowa with karst 
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hydrology generally lost water and had lower N03 concentrations in streamflow as 
compared to those subbasins underlain with till and shale materials. Seepage from 
the stream to ground water in the karst subbasins of Roberts Creek reduced discharge 
and flow velocity in the stream thereby causing increased residence time of the water. 

5.4. Stream Channels and Reservoirs 
The effects of stream channels and their riparian areas on N yield from moder­

ate- to large-sized watersheds (>200km2 in size) have been observed in empiri­
cal models relating mean annual N yield to point and ditfuse sources and various 
descriptors of stream hydrography (Omernik et aI., 1981; Osborne and Wiley, 1988; 
Smith et aI., 1997; Tufford et aI., 1998). Several studies (Omernik et aI., 1981; 
Osborne and Wiley, 1988; Tufford et aI., 1998) accounted for the effects of chan­
nels and riparian areas on N yield by developing measures of the proximity of N 
sources to stream channels. The researchers reported higher accuracy for models 
with greater weights assigned to sources in the riparian areas of streams than to 
sources located outside of these areas. 

A study of N transport in rivers of the United States used a mechanistic model 
structure (Smith et aI., J 997) to empirically estimate the attenuation of N sources 
from upstream watersheds as a function of the physical properties of the watersheds 
(soils, temperature, and drainage density) and stream channels (water time of travel 
and channel size). Estimates of in-stream N loss were inversely related to stream 
channel size and ranged from 0.45 per day of water travel time in small streams 
to 0.005 per day in large rivers (Figure 4). When stream channel depth was used 
as an explanatory factor, these estimates were found to generally agree with those 
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from mass balance and experimental studies that are available for selected North 
American and European streams (Alexander et al., 2000a). The inverse relation 
between N loss and channel depth may be explained by the effect of channel size 
(depth and water volume) on particulate N settling times and denitrification (Kelly 
et al., 1987; Rutherford et al., 1987; Harvey et al., 1996; Howarth et al., 1996; 
Alexander et al., 2000a). The natural rates of N loss via denitrification and settling 
are generally expected to be smaller in deeper channels where stream waters have 
less contact with the benthic sediment. Larger variability is observed in the rates of 
N loss in shallow streams, which likely indicates variability in the stream condi­
tions responsible for N removal. These conditions include the hyporheic exchange 
of waters, organic and oxygen content of sediment, density of de nitrifying popula­
tions, and water column N03 concentrations. These results suggest that the prox­
imity of N sources to large streams and rivers, as measured by water travel times 
in small tributaries, has a major effect on the downstream transport of N. Sources 
entering large streams and their nearby tributaries may be transported over very 
long distances in watersheds (Alexander et al., 2000a). 

The physical and hydraulic properties of lakes (e.g., water residence time and 
depth) are also related to the observed rates of N loss in North America and Europe 
(Kelly et al., 1987; Howarth et al., 1996; Windolf et al., 1996; Seitzinger et al., 
unpublished data) and in New Zealand (McBride et al., 2000). Rates of N loss varied 
over a wide range from less than 10% to about 90% in these studies, and declined 
with increases in measures of the rates of water transport through reservoirs (i.e., 
the ratio of mean depth to water residence time - water displacement (Kelly et al., 
1987; Howarth et al., 1996) and the ratio of reservoir discharge to surface area­
areal hydraulic load (McBride et al., 2000». These lake properties affect the contact 
and exchange of water with the benthic sediment, which influences the rates of par­
ticulate N settling and denitrification (Kelly et al., 1987; Windolf et al., 1996). This 
implies that the mechanisms for the net removal of N are generally consistent with 
those in streams (Howarth et al., 1996; Seitzinger et al., unpublished data). 

5_5_ Cultural Sources and Land use 
Human sources of N (fossil fuel combustion, fertilizer, human wastes, and live­

stock manures) and land use are known to have a major effect on N yield in sur­
face waters (Beaulac and Reckhow, 1982; Peierls et al., 1991; Howarth et al., 1996; 
Vitousek et al., 1997; Carpenter et al., 1998; Seitzinger and Kroeze, 1998; Caraco and 
Cole, 1999; McFarland and Hauck, 1999; Amheimer and Liden, 2000; Castillo et aI., 
2000). Variability in N yield may be caused by spatial variations in the intensity and 
timing of N inputs to watersheds as well as differences in land management activities. 
Nitrogen concentration in streams and rivers of the United States have risen two- to 
lO-fold since the early part of the 20th century because of increased cultural inputs of 
N, and similar increases have been noted in European rivers and lakes (Howarth et aI., 
1996; Vitousek et al., 1997). The N yield of streams in relatively undisturbed water­
sheds of the North Atlantic region (Howarth et al., 1996) has been recently estimated 
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to range from 0.8 to 2.3 kg/ha/year. A study of background concentrations and yield 
from 66 relatively undeveloped, forest, grass, and range land watersheds in the conter­
minous United States (sizes range from 6 to 2,700km2) over the period 1976-1997 
(Clarke et a!., 2000) indicates a range in the yield of total N that is similar to that 
reported by Howarth et a!. (1996) (Table 3). Yield typically ranged from about 0.5 
to 2.1 kg/ha/year (based on interquartile range of mean annual yields). Yields larger 
than 2.1 kg/ha/year and as high as 8.4 kg/ha/year were observed in the eastern United 
States, where the rates of atmospheric deposition are highest (up to 4kg/ha/year wet 
N03). The yield of total N, N03, and NH3 all increase with stream discharge (ranging 
from <1 to about 160cm/year) and atmospheric deposition. 

Comparisons of N yields from relatively undeveloped watersheds with those 
from developed watersheds in North America reveal significant differences that 
can be traced to human activities. For example, N yield is frequently reported to be 
more than a factor of two higher in agricultural and urban watersheds in comparison 
to less-developed watersheds, including those predominantly in forest and rangeland 
(Beaulac and Reckhow, 1982; Mueller et aI., 1995; US Geological Survey, 1999). 
Historical data from two US Geological Survey (USGS) water-quality monitoring 
networks illustrate these effects. These data provide a geographically representative 
description of N conditions in streams and rivers of the conterminous United States 
(Smith et a!., 1993). The networks include 506 sites in the National Stream Quality 
Accounting Network (NASQAN) for the period 1975-1992 (Alexander et aI., 1998) 

Table 3. 
Stream yields of N (kg/ha/year) in 66 undeveloped watersheds of the United States. 
(Nitrate-nitrite and ammonia are dissolved.) 

Percentiles -
Percentiles Fraction of Total N 

Metric Min. 25th 50th 75th Max. 25th 50th 75th 

TN <0.01 0.49 0.86 2.07 8.38 
Ni trate-ni trite <0.01 0.11 0.24 0.52 5.83 0.14 0.27 0.55 
Ammonia <0.01 0.04 0.08 0.12 0.33 0.05 0.08 0.11 
Organic <0.01 0.16 0.33 1.07 5.07 0.32 0.60 0.75 
Runoff (cm/year) 0.1 22.0 34.1 58.4 163.1 

Data from Clarke et al. (2000). 

and 185 sites in the National Water-Quality Assessment Program (NAWQA) net­
work for the period 1993-1995. The yield of total N was consistently 3-4 times 
higher in developed watersheds than in undeveloped watersheds (Tables 3 and 4). 
The median N yield for the developed watersheds (3.3 kg/ha/year) was 3.8 times 
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Table 4. 
Stream yields of N (kg/ha/year) in 691 developed watersheds of the United States. 
[Nitrate-nitrite and ammonia are dissolved. The stations are located in developed 
watersheds representing a wide range of land cover types: 191 are predominantly 
agricultural, 34 are primarily urban, and 455 are classified as containing a mixture 
of land-cover types. Watersheds in the National Stream Quality Accounting 
Network range in drainage basin size from about 15 to 2.9 million km2 with 
a median size of II ,000km2 (interquartile range from 3,100 to 37,000km2

). 

Watersheds in the National Water Quality Assessment Program are typically smaller 
in size, ranging from about 15 to 220,000km2 with a median size of 1,300km2; 

interquartile range from 150 to 6,400km2]. 

Percentiles -
Percentiles fraction of total N 

Metric Min. 25th 50th 75th Max. 25th 50th 75th 

TN <0.01 1.05 3.28 7.36 81.08 
Nitrate-nitrite <0.01 0.22 1.06 3.33 79.02 0.25 OAO 0.60 
Ammonia <0.01 0.05 0.16 0.38 7.84 0.04 0.06 0.08 
Organic <0.01 0.50 1.51 2.88 58.02 0.33 0.52 0.70 
Drainage area 13 1,585 7,268 28,381 2,953,895 

(km2) 
Runoff 0.03 6.8 27.7 49.2 598.3 

(em/year -1) 

higher than the median yield for undeveloped watersheds (0.86 kg/ha/year). Some 
of the highest yields in both developed and undeveloped watersheds occur in the 
eastern United States, where atmospheric deposition is high. Smaller differences 
are observed between the stream N conditions in developed and undeveloped water­
sheds of the western United States than in other regions because of the relatively 
small inputs of cultural sources of N and more arid conditions in these western 
regions (Table I; Clarke et aI., 2000). 

On the basis of USGS data, the median N yield in predominantly agricultural 
basins (5.9 kg/ha/year; n = 191) and urban watersheds (6.0 kg/ha/year; n = 34) was 
more than twice as large as the median N yield in watersheds of mixed land use 
(2.7kg/ha/year; n = 455). 

Moreover, the median yield from agricultural and urban watersheds was more 
than six times the median N yield in relatively undeveloped watersheds (0.9kg/haJ 
year; Table 3). Figure 5 illustrates the relation between agricultural land area and N 
yield. An increase in agricultural land area from a few percent to nearly 100 percent 
corresponded to more than a fivefold increase in stream yields. For watersheds with 
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Figure 5. Relation of stream yield of total N to the percentage of basin area in agri­
culture for developed watersheds of the United States. The fitted line is obtained 
from a LOWESS smoothing technique (Cleveland, 1979). The LOWESS line dis­
plays the central tendency of the data, and provides an approximate description of 
the univariate relation. A more complex multivariate relation would be required to 
accurately predict stream N yield as a function of agricultural intensity. 

similar percentages of agricultural land, agricultural management practices also 
can have a major effect on N transport. The addition of fertilizers and organic mat­
ter (manure and biosolids) to grassland ecosystems, which are naturally N limited, 
improves their utility for the grazing of livestock, but contributes to large watershed 
yields of N. Timmons and Holt (1977) showed that annual stream N yield from 
ungrazed native little bluestem prairie (Andropogon scoparius Michx.) was only 
O.Skg/ha. By contrast, N yield from two grazed rangeland watersheds in Central 
Oklahoma ranged from 1.7 to 5.2kg/ha/year (Olness et aI., 1980). Higher N yield 
from grazed watersheds is often due to grazing animal urine, which is known to 
increase both runoff losses of Nand N03 leaching (Schepers and Francis, 1982; 
Stout et aI., 1997; Sauer et aI., 1999b). Annual N yield of 2-9 kg/ha/year has been 
observed where fertilizer or manure N additions were made to improve forage 
production on grazing lands (Kilmer et a!., 1974; McLeod and Hegg, 1984; Nelson 
et a!., 1996). Nitrate is typically the dominant form of N transported from grazing 
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lands, often with significant concentrations in both runoff and ground water flow 
(Sharpley and Syers, 1981; Owens et a!., 1983; Cuttle et a!., 1992), however, there 
is a considerable range in N yields because of the effects of other N sources as well 
as differences in the rates of N processing in watersheds related to many of the fac­
tors discussed previously (Beaulac and Reckhow, 1982). 

Although N yield from forested watersheds can be low, watersheds disturbed 
by activities such as logging or development can be a significant source of N03 
(Hallberg and Keeney, 1993). The high demand for NOrN by vegetation can result 
in a greater proportion of N yield in the organic form. Timmons et a!. (\ 977) mea­
sured nutrient transport from an aspen-birch (Populus tremuloides Michx., and 
Betula papyri/era Marsh.) forest and found 80% of the total N load in runoff (1.25 
of 1.56kg/ha/year) was organic N. An average of 67% of the N yield in runoff from 
upland pasture and forest sites in a grazed watershed in the Ozark Highlands was in 
the organic form (Sauer et a!., 2000). Organic N transported to surface-water bodies 
is subject to further transformations (mineralization, nitrification, and denitrifica­
tion) in aquatic or benthic environments. 

The amount and timing of N loads in streams also have been correlated with 
row-crop acreage and N management practices. Schilling and Libra (2000) moni­
tored N03-N concentrations in 15 Iowa watersheds with row crops covering 
24-87% of the watersheds area. Average annual NOrN concentrations were 
directly related (P < 0.0003) to row-crop area. Linear regression showed that an 
estimate of average annual NOrN concentration in surface water could be obtained 
by multiplying a watershed's row-crop percentage by 0.1. Nitrate-N concentra­
tions in streams in 10 states of the upper-midwestern United States were positively 
correlated with streamflow, upstream areas of corn (Zea mays L.), and N fertilizer 
application rates (Mueller et a!., 1997). Others (Becher et a!., 2000, David and 
Gentry, 2000) also have found correlations between N fertilizer use and N yield 
in agricultural watersheds of the Midwest United States Figure 6 shows seasonal 
changes in average NOrN concentrations in stream water for a 202 km2 agricultural 
watershed in central Iowa (T.J. Sauer, unpublished data). Nitrate-N values in Figure 
6 are daily means of stream-water samples collected from 13 locations on each 
date. Ammonia-N concentrations in samples collected on these dates were insig­
nificant « 1 mg/L). All samples except those on days 152, 166, and 194 were col­
lected during baseflow conditions with stream discharge less than 150 Lis. Samples 
on days 152, 166, and 194 were collected as stream discharge was decreasing fol­
lowing runoff events. 

This watershed (Tipton Creek) typifies the intense row-crop management of 
the upper-Midwest United States, with 84% of the area being in corn or soybean 
(Glycine max Merr.) production. The increase in N03-N concentration in stream­
flow during late spring/early summer in cropped watersheds like Tipton Creek 
has been attributed to nitrification of N in fertilizers and animal manures (Becher 
et a!., 2000; Castillo et a!., 2000). In this instance, fertilizer and/or manure would 
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Figure 6. Mean NOrN concentration from 13 sampling sites along Tipton Creek in 
central Iowa during 2000. Error bars represent I standard deviation from the mean. 

typically be applied to fields sometime between days lOa and 140 to provide nutri­
ents for corn during the growing season. Another process that may contribute to the 
trends observed in Figure 6 is mineralization of organic N after tillage and as the 
soil warms in spring. 

5,6, Watershed Size 
Much of the research on the fate of N in watersheds has focused on small catch­

ments (Sharpley and Syers, 1981; Johnson, 1992; Hill, 1996; Pionke et aI., 1996), 
where the natural and cultural influences on stream N yield are more spatially uni­
form, and N sources, transformations, and hydrologic t10w paths are more readily 
discerned. Considerable variability has been observed in N yields from these catch­
ments because of the wide range of sampled watershed properties (Beaulac and 
Reckhow, 1982; Johnson, 1992; Hill, 1996). Relatively little information, however, 
has emerged about how N yields vary with watershed size. At progressively larger 
spatial scales, stream yields reflect the effects of an increasingly complex range of 
N sources and biogeochemical processes. This makes it difficult to quantify how 
the effect of any individual factor changes with watershed size. 

A few studies (Alexander et aI., 2000a,b; Seitzinger et aI., unpublished data) 
have used empirical data from a range of watershed sizes to quantify the effects 
of in-stream N removal processes (denitrification and N storage) on the transport 
ofN through drainage networks. As water is carried downstream, N is continually 
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removed from the water column through contact with the benthic sediment. 
Although the rate of N removal per unit of water travel time declines significantly 
with increases in channel size (Alexander et al., 2000a; see Section 6.4), the fraction 
of N inputs to streams that is removed generally increases with cumulative water 
travel time in streams, which is positively correlated with drainage basin size 
(Alexander et al., 2000b). Figure 7 illustrates this concept on the basis of a study 
of 40 coastal watersheds in the United States in which the SPARROW model was 
used (Smith et al., 1997; Alexander et al., 2000b). Nitrogen loss, expressed as a per­
centage of the N delivered to streams, ranged from negligible quantities to 90% or 
more, and monotonically increased with the mean travel time of water in streams of 
the watersheds. Travel times can be as much as 24 days in several large, arid water­
sheds in Texas. Nitrogen losses of less than 10% were estimated for the smaller 
watersheds with less than about 2-3 days of mean water travel time. More than 
50% of the N delivered to streams was removed in watersheds having mean water 
travel times greater than about 7 days. The estimates of N loss in Figure 7 reflect 
the cumulative removal of N over the range of stream sizes in these watersheds. 
Much lower N losses are expected for similar water travel times in large rivers, 
such as the Mississippi and its major tributaries, for which low first-order N loss 
rates have been estimated (Alexander et al. 2000a; Figure 4). 

80 • • 

• 

<IJ.l!l 60 <IJ :::J 
o 0. - c c .- • • 
OJ E • Oltll • g ~ 

40 ·c U5 • • ••• • 
Eo • • 

• • tIl_ • OJ C • ;:; OJ 
<r ~ • • c OJ 20 • -.e, • • • • • 

• .. 
• 

0 -
0 5 10 15 20 25 

Mean water time of travel (day) 

Figure 7. Relation of in-stream total N loss to the water time of travel in coastal 
watersheds of the United States. (Model predictions from Alexander et al., 2000b.) 
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Changes in the intensity of land use with watershed size also have discernable 
effects on stream N yields. Nitrogen yields are typically higher in small, upland 
watersheds that are intensively managed than in larger, heterogeneous watersheds. 
In two large US river basins (Figure 8), stream N yields are as much as 2-10 or 
more times higher in smaller tributary watersheds, many with predominantly agri­
cultural and urban land use, than observed at downstream locations on the main­
stem of the two rivers. Two of the main stem sites located in the upper reaches of 
the South Platte River show the effects of urban sources. These land-use patterns 
reinforce the effects of in-stream N removal processes on stream N yields. In some 
watersheds, increases in the intensity of cultural N sources in lower reaches can 
cause stream N yield to increase in a downstream direction. For example, Castillo 
et al. (2000) found that N03 concentrations in the River Raisin in Michigan 
increased from the headwaters to the river mouth and were strongly correlated 
with the ratio of agricultural to forest land upstream. In such cases, the intensity of 
land use has a predominant effect on stream N yield, and overcomes the effects of 
in-stream loss processes. 
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Figure 8. Relation of stream yield of total N to the drainage area for developed 
watersheds of the United States. 
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5.7. Nitrogen Forms in Streams 
The quantities of stream N in the forms of N03, NH3, and organic N differ with 

the magnitude of cultural inputs of N and other watershed characteristics. Based on 
estimates of N yield from relatively undeveloped watersheds in the United States 
(Clarke et aI., 2000; Table 3) organic N typically accounts for more than 60% of 
the N. Other studies have also noted the predominance of organic N in the streams 
draining relatively undisturbed forests (Vitousek et aI., 1997). However, the organic 
N content of streams in minimally developed watersheds display considerable spa· 
tial variability (Table 3), and large organic fractions are not uncommon in more 
developed watersheds (Table 4). In undeveloped watersheds, the highest organic 
N fractions (>70%) were observed in the southeastern and Texas coastal plains 
and the southern central portion of the United States, whereas the lowest organic· 
N fractions «50%) were observed in forested and rangeland watersheds of the 
Appalachians and arid areas of the northern central portion of the United States 
(Clarke et aI., 2000). Nitrate represents a majority of the remaining N in undevel· 
oped watersheds, typically representing at least a quarter of the total N (Table 3). 
Ammonia is typically less than 8% of the total. 

Larger quantities of NOrN are generally transported from developed water· 
sheds (Tables 3 and 4). Nitrate-N represents 40% of all N forms in developed 
watersheds as compared to 27% in undeveloped basins, based on the median of all 
stations. In developed watersheds, the organic-N fraction is typically about 50% of 
all N forms and NH3 is less than 6%. 

The quantities of N03-N tnmsported by streams in relatively developed water­
sheds generally increase with total N yield (Figure 9), providing evidence that large 
cultural inputs of N are associated with larger fractions of N03-N in streams. Greater 
fractions of N03-N in stream N yield are also found in highly agricultural water­
sheds (median = 60-80% in watersheds with >75% agricultural land use) in com­
parison to watersheds with little agriculture (median = 30-40% N03 in watersheds 
with <25% agricultural land use). Because NH3 constitutes a relatively small frac­
tion (median = 6%) of the total N yield, organic forms of N generally decline with 
increases in the total N yield in streams (Figure 9). The increase in N03-N in rivers in 
response to increases in human activities has been previously observed in coastal riv­
ers in the eastern United States (Jaworski et aI., 1997) and in the largest rivers of the 
world (Peierls et aI., 1991; Caraco and Cole, 1999). The availability of NOrN can be 
explained by the inorganic form of many of the cultural sources of N that are supplied 
to anhydrous ammonia, which are rapidly oxidized to N03-N. Large variability is typi­
cally observed in N forms across similarly sized watersheds. Large watersheds allow 
greater mixing of waters from a variety of sources, including less-developed catch­
ments that are more enriched in organic-No However, in many of the largest US riv­
ers (e.g., Susquehanna, Potomac, Delaware, Ohio, and Mississippi) with high cultural 
inputs of N, N03-N represents significantly more than half of the total N (Goolsby 
et aI., 1999). In the largest rivers of the world (Caraco and Cole, 1999), the propor­
tions of organic Nand N03-N were found to be roughly equivalent. More complex 
multivariate relations would be required to accurately predict N forms in streams. 
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Figure 9. Percentage of N03-N and organic N in the stream yield of total N from 
developed watersheds of the United States as a function of total N yield. The fit­
ted line is obtained from a LOWESS smoothing technique (Cleveland, 1979). The 
LOWESS line displays the central tendency of the data, and provides an approxi­
mate description of the univariate relation. 
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6. SOURCE CONTRIBUTIONS TO STREAM YIELD 

A longstanding problem in quantifying the relative importance of specific natu­
ral and cultural sources of N to the stream yield from watersheds has centered on 
understanding the effects of land use, climate, and the biogeochemical processing 
of N in terrestrial and aquatic ecosystems over a range of spatial scales. At larger 
spatial scales, source inputs have commonly been used to characterize source con­
tributions to streams (Jaworski et a!., 1992; Puckett, 1995), but these methods do 
not account for the appreciable differences that exist in the rates of N processing 
and transport in watersheds as reflected in measurements of stream yield (Beaulac 
and Reckhow, 1982). A variety of watershed models have been used to resolve the 
interactions between N supply and loss processes. At large watershed scales, where 
the applicability and reliability of fine-scale deterministic models is more uncertain 
(Rastetter et a!., 1992), empirical models that are calibrated to stream measurements 
of N have frequently been used to quantify N sources and losses in watersheds. 
Examples include spatial regression models of stream N yield on population density 
(Peierls et a!., 1991), net anthropogenic sources (Howarth et a!., 1996), atmospheric 
deposition (Howarth et a!., 1996; Jaworski et a!., 1997), and models containing a 
range of explanatory variables describing both N sources and watershed characteris­
tics (Lystrom et a!., 1978; Omernik et a!., 1981; Osborne and Wiley, 1988; Mueller 
et a!., 1997; Smith et a!., 1997; Tufford et a!., 1998; Goolsby et a!., 1999). 

Estimates of the sources of N in streams of the major water-resources regions 
of the United States (Smith and Alexander, 2000), based on the application of the 
SPARROW model (Smith et a!., 1997; Alexander et a!., 2000a,b), are illustrated in 
Table 5. This model provides separate quantification of a range of major N sources 
and accounts for the terrestrial and aquatic losses of N as a function of watershed 
properties. Details of the model structure and calibration to N measurements from 
400 stream monitoring sites are given in Smith et a!. (1997), and discussions of 
the model verification are given in Alexander et a!. (2000a,b), National Research 
Council (2000), and Stacy et a!. (2000). The major N sources in streams as defined 
by the model include agricultural diffuse sources (fertilizer and livestock manures), 
atmospheric deposition, municipal and industrial point sources, and other sources 
associated with nonagricultural lands. In addition to applied fertilizers, the fertilizer 
source may also include inputs of fixed N in leguminous crop residues and other 
mineralized soil N from cultivated lands (Alexander et a!., 2000b). Atmospheric 
sources include wet deposition of inorganic N03-N as well as additional N con­
tributions from wet organic and dry inorganic N (Alexander et a!., 2000a,b). 
Nonagricultural runoff includes the remaining sources of N (i.e., not quantified by 
point sources and other diffuse model terms), delivered to streams in the overland 
flow and ground water from urban, forested, wetlands, and barren lands. The runoff 
from forested lands may include N supplied from natural fixation. 

The sources of N to stream yield vary greatly among the regions (Table 5), and 
show a general correspondence to the inputs of newly fixed and recycled N inputs as 
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described in Table I. Estimates of N loss in watersheds, based on the median stream 
yield (Table 5) and the total net N input to the regions (Table 1), range from 62% 
to 89% of the net inputs of N (median = 76%). Agricultural sources (fertilizer and 
livestock manures) are the largest contributors to stream yield in most of the regions, 
representing more than 40% in the Ohio-Tennessee, Southeast -Gulf, Upper and 
Lower Mississippi, Souris-Red-Rainy, Missouri, Arkansas-Red, and Texas regions. 
Livestock manures contribute large quantities of N in watersheds in the Ohio­
Tennessee, Upper Mississippi, Missouri, Arkansas-Red, and Texas regions (Table 
5); these contributions are consistent with the estimated large inputs of N in livestock 
manures in these regions in relation to the total net inputs of N (newly fixed N plus 
net food/feed imports) as reported in Table 1. Atmospheric N contributes more than 
a quarter of the stream yield in most of the watersheds in the Northeast region, and 
is a dominant source in watersheds of the Great Lakes and Ohio-Tennessee region. 
Nonagricultural diffuse sources contribute a majority of the N to the stream yields 
in the Colorado, Great Basin, and Pacific Northwest regions, where cultural inputs 
of N are generally low. Nonagricultural diffuse contributions are also important in 
the Northeast and Southeast-Gulf, where watersheds generally receive large natu­
ral sources of organic N from forest vegetation. Point sources, generally among the 
smallest contributors in most watersheds, are the highest in the densely populated 
Northeast, Ohio-Tennessee, and Great Lakes regions; this is generally consistent 
with estimates of the inputs to watersheds in these regions from municipal and indus­
trial wastewater treatment plants (Table I). These results are also consistent with 
other studies of moderate to large watersheds, which find municipal and industrial 
point sources to be a relatively small source of N to streams (Puckett 1995; Howarth 
et aI., 1996; Goolsby et aI., 1999). However, in small, highly urbanized watersheds, 
municipal and industrial wastewaters frequently account for significantly larger 
shares of the N in streams (US Geological Survey, 1999; Alexander et al. 2000b). 

7. SUMMARY 

Stream N yields have been assessed in watersheds through detailed process­
oriented studies at the local scale and over larger, regional scales using statistical 
techniques. These approaches have been applied to natural and culturally affected 
environments in watersheds to elucidate the hydrologic and biogeochemical factors 
that affect N transport. The biogeochemical processing of N has been studied over 
a range of spatial and temporal scales in watersheds to enable the interpretation 
of data trends and development of conceptual and numerical models of N yield. 
Surface and subsurface hydrology, climate, physiography, and basin size all affect 
the partitioning of precipitation between infiltration and runoff and subsequent 
water flow paths. Natural and cultural sources of N and their subsequent transfor­
mations influence the amount and mobility of N constituents in soil, plant materials, 
and water. Watersheds represent a physical coupling of the hydrologic and source 
components in a continuous, dynamic system. Management of land resources based 
on principles derived from watershed-scale studies is a key component of ongoing 
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efforts to improve the efficiency of N use and limit adverse water-quality impacts 
from excessive N loadings to surface, subsurface, and marine waters. 
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