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ABSTRACT
The possibility that organophosphate toxicity is due to inhibi-
tion of targets other than acetylcholinesterase (AChE, EC
3.1.1.7) was examined in AChE knockout mice. Mice (34–55
days old) were grouped for this study, after it was determined
that AChE, butyrylcholinesterase (BChE), and carboxylesterase
activities had reached stable values by this age. Mice with 0,
50, or 100% AChE activity were treated subcutaneously with
the nerve agent VX. The LD50 for VX was 10 to 12 �g/kg in
AChE�/�, 17 �g/kg in AChE�/�, and 24 �g/kg in AChE�/�
mice. The same cholinergic signs of toxicity were present in
AChE�/� mice as in wild-type mice, even though AChE�/�
mice have no AChE whose inhibition could lead to cholinergic

signs. Wild-type mice, but not AChE�/� mice, were protected
by pretreatment with atropine. Tissues were extracted from
VX-treated and untreated animals and tested for AChE, BChE,
and acylpeptide hydrolase activity. VX treatment inhibited 50%
of the AChE activity in brain and muscle of AChE�/� and �/�
mice, 50% of the BChE activity in all three AChE genotypes, but
did not significantly inhibit acylpeptide hydrolase activity. It was
concluded that the toxicity of VX must be attributed to inhibition
of nonacetylcholinesterase targets in the AChE�/� mouse.
Organophosphorus ester toxicity in wild-type mice is probably
due to inhibition or binding to several proteins, only one of
which is AChE.

The function of acetylcholinesterase is to terminate nerve
impulse transmission by hydrolyzing the neurotransmitter
acetylcholine. There is overwhelming consensus that acute
exposure to organophosphorus (OP) agents inhibits AChE
and that toxicity and lethality are due to inhibition of AChE.
AChE has such an important role that life without AChE was
predicted to be impossible. It was a surprise, therefore, to
find that AChE knockout mice live, move, and breathe (Xie et
al., 2000).

The 1996 Food Quality Protection Act requires the U.S.
Environmental Protection Agency to assess the potential risk
of cumulative exposure to related chemicals that share a
common mechanism of toxicity (http://www.epa.gov). OP pes-
ticides are considered to have a common mechanism of tox-
icity, because the initial step in a cascade of reactions is

inhibition of AChE (McDonough and Shih, 1997; Mileson et
al., 1998; Pope, 1999). However, evidence against a common
mechanism of toxicity is mounting. Lush et al. (1998) cloned
neuropathy target esterase, a protein that covalently binds
mipafox and diisopropylfluorophosphate (DFP). Mipafox and
DFP also inhibit AChE, but the degeneration of long axons
and paralysis are the consequence of binding to neuropathy
target esterase and not to AChE. Richards et al. (2000) found
that acylpeptide hydrolase in rat brain is inhibited by 6- to
10-fold lower doses of dichlorvos, chlorpyrifos methyl oxon,
and DFP than are required to inhibit AChE. Bomser and
Casida (2001) found that chlorpyrifos oxon covalently binds
to M2 muscarinic receptors at doses lower than required to
inhibit AChE. Carboxylesterase and butyrylcholinesterase
covalently bind OP at low doses, but inhibition is thought to
have no physiological consequences. The 38 currently ap-
proved pesticides vary 1000-fold in the dose that is acutely
toxic to rats (Pope, 1999). However, some of this variation can
be explained by the need to bioactivate the phosphorothio-
ates to oxons, the scavenging effect of carboxylesterase for
some but not all OP, and the variable rates of hydrolysis by
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paraoxonase (Sweeney and Maxwell, 1999). Toxicologists
have noted that each organophosphorus pesticide is associ-
ated with a unique set of neurotoxic symptoms (Moser, 1995;
Pope, 1999). The picture that is emerging is that a particular
OP may be binding to a set of proteins, and the set of proteins
differs for each OP.

The AChE knockout mouse provides a new tool for testing
the involvement of AChE in OP toxicity. Xie et al. (2000)
found that 12-day-old AChE�/� mice were more sensitive to
DFP than AChE�/� and AChE�/� mice, thus demonstrat-
ing that AChE was not the only physiologically important
target for DFP. In this report we were able to test older
animals, because we succeeded in extending the lifetime of
AChE�/� mice to young adulthood. The AChE�/� mice
were tested with the most potent organophosphorus ester
known, the nerve agent VX. The results support the conclu-
sion that OP toxicity is initiated not only by inhibition of
AChE but also by interaction with non-AChE targets.

Materials and Methods
Mice. Animal studies have been carried out in accordance with

the Guide for the Care and Use of Laboratory Animals as adopted by
the National Institutes of Health. The AChE knockout colony is
maintained at the University of Nebraska Medical Center (Omaha,
NE) by breeding heterozygotes (Xie et al., 2000). The genetic back-
ground of the animals is strain 129Sv. Mice of both sexes were
treated with VX. The VX-treated mice included 21 wild-type mice
ranging in age from 35 to 55 days (average age 48 � 10.5 days), 18
heterozygous mice ranging in age from 35 to 52 days (average 44.6 �
7.8 days), and 16 nullizygous mice ranging in age from 34 to 53 days
(average 44.4 � 7.9 days). Weights ranged from 17 to 22 g for
AChE�/� mice, 14 to 24 g for AChE�/� mice, and 11 to 16 g for
AChE�/� mice. The untreated control group had eight AChE�/�,
six AChE�/�, and six AChE�/� mice in the same age and weight
range.

In our first article on the AChE knockout mouse (Xie et al., 2000)
the average life span of AChE�/� mice was 14 days. Since then,
their life span has been extended to an average of 60 to 80 days by
feeding the dams a high-fat diet during the nursing period, and by
feeding the pups liquid Ensure Fiber with FOS, Vanilla Flavor (Ross
Products Division Abbott Laboratories, Columbus, OH) after wean-
ing. Our oldest AChE�/� mouse is 354 days old as of July 6, 2001.

Transportation of Mice. Three of 19 nullizygous mice did not
survive the trip from Omaha to Baltimore, an overnight trip by air
with the services of Bax Gobal (1-800-CALL-BAX, Irvine, CA). In
contrast, all wild-type and heterozygous mice survived. Housing
during the trip consisted of a plastic box divided into four sections
with plastic dividers. Air intake was filtered through Hepa filters
located on the sides and cover. These boxes are rodent shipping boxes
sold by Taconic Farms (Germantown, NY). A mouse house, consist-
ing of a plastic pipette box top with a side hole for a door, was fixed
in place with duct tape in each of the four sections. The mouse house
helped the AChE�/� mice to stay warm during the trip. Another
reason for the mouse house was to minimize stress for the AChE�/�
mice, by giving them a place to hide. When the box was opened, all
AChE�/� mice were in their houses. Food for the trip for nullizy-
gotes consisted of Ensure Fiber with FOS solidified with gelatin,
whereas food for AChE�/� and AChE�/� animals was standard
mouse food pellets. Liquid was available as Napa Nectar, a sweet
gelatinous commercial preparation.

VX. The nerve agent VX (O-ethyl S-[2-(diisopropylamino)ethyl]
methylphosphonothioate) (mol. wt. � 267.36) was obtained from the
Edgewood Chemical Biological Center (Aberdeen Proving Ground,
MD). VX was determined by gas chromatography to be greater than
98% pure. VX was dissolved in saline and injected subcutaneously in

the back of the neck in a volume of 20 �l or less. Mice were observed
up to 20 h. VX was chosen for this study because VX is known to
inhibit AChE and BChE, but to react poorly with carboxylesterase
(Maxwell et al., 1994). Rodents have 100 times more carboxylester-
ase in their body than cholinesterases (Maxwell et al., 1987a). The
nerve agents sarin and soman react with carboxylesterase and must
therefore be given in high doses to inactivate carboxylesterase in
plasma before toxic signs are seen (Boskovic, 1979; Gupta and Det-
tbarn, 1987; Maxwell et al., 1987a,b; Grubic et al., 1988). VX was
expected to discriminate better among the three AChE genotypes
than sarin or soman.

Tissue Extraction. Blood, brain, lungs, liver, intestine, heart,
and quadriceps muscle were collected at time of death or 3 to 20 h
after treatment with VX. Serum was separated from other blood
components by centrifugation. Tissues and sera were stored frozen.
Tissues were weighed and then homogenized in 10 volumes of 50 mM
potassium phosphate, pH 7.4, containing 0.5% Tween 20, in a Tis-
sumizer (Tekmar, Cincinnati, OH) for 10 s. The suspension was
centrifuged in a microfuge for 10 min, and the supernatant was
saved for enzyme activity assays. The extraction buffer contained
Tween 20 rather than Triton X-100 because mouse BChE activity
was inhibited up to 95% by 0.5% Triton X-100, but was not inhibited
by 0.5% Tween 20 (Li et al., 2000).

Enzyme Activity Assays in Tissue Extracts. AChE and BChE
activity was measured by the method of Ellman (1961) at 25°C, in a
Gilford spectrophotometer interfaced to MacLab 200 (ADInstru-
ments Pty Ltd., Castle Hill, Australia) and a Macintosh computer.
Samples were preincubated with 5,5-dithio-bis (2-nitrobenzoic acid)
in 0.1 M potassium phosphate buffer, pH 7.0, to react free sulfhydryl
groups before addition of substrate. AChE activity was measured
with 1 mM acetylthiocholine after inhibiting BChE activity with 0.1
mM tetraisopropyl pyrophosphoramide (liver required 1 mM for
complete BChE inhibition). BChE activity was measured with 1 mM
butyrylthiocholine.

Acylpeptide hydrolase activity was measured in a SpectraMax 190
microtiter plate reader (Molecular Devices, Sunnyvale, CA).
N-Acetyl-L-alanine p-nitroanilide (Sigma Chemical, St. Louis, MO)
was dissolved in 0.1 M Bis-Tris, pH 7.4, to make a 4 mM solution.
The pH dropped to 7.3 and had to be adjusted back up to pH 7.4 to get
the compound completely into solution. The rate of hydrolysis of 4
mM N-acetyl-L-alanine p-nitroanilide was measured at 405 nm (Sca-
loni et al., 1994) at 25°C. Each 200 �l of assay solution contained 5
�l of tissue extract. Absorbance was read every 5 min up to 40 min.
Micromoles of substrate hydrolyzed per minute were calculated from
the slope of the line by using the extinction coefficient of 7530 M�1

cm�1 at 405 nm.
Units of activity for AChE, BChE, and acylpeptide hydrolase are

defined as micromoles of substrate hydrolyzed per minute. Units of
activity were calculated per gram wet weight of tissue. Tissue ex-
tracts from the 55 treated and 20 untreated mice were assayed in
duplicate for AChE and BChE activity, and in triplicate for acylpep-
tide hydrolase activity for a total of 3450 assays.

Carboxylesterase Activity in Mouse Serum. Carboxylesterase
activity was assayed in serum from mice of various ages by measur-
ing hydrolysis of �-naphthyl acetate (Yang and Dettbarn, 1998). The
�-naphthyl acetate was dissolved in ethanol to make a 0.02 M stock
solution, which was stored frozen. Mouse serum contains four ester-
ases that hydrolyze �-naphthyl acetate. To inhibit AChE and BChE,
the mouse serum was preincubated with 10 �M eserine. To inhibit
paraoxonase, the mouse serum was preincubated with 12.5 mM
EDTA. A 2-ml reaction contained 1.83 ml of 0.1 M potassium phos-
phate, pH 7.0, 0.05 ml of 0.5 M EDTA, 0.02 ml of 1 mM eserine, and
5 �l of mouse serum. After a preincubation period of 20 min to allow
complete inhibition, 0.01 ml of 0.02 M �-naphthyl acetate was added.
Change in absorbance at 321 nm was recorded on MacLab interfaced
to a Gilford spectrophotometer. Units of activity, defined as micro-
moles of substrate hydrolyzed per minute, were calculated from the
extinction coefficient of 2200 M�1 cm�1 for �-naphthol at pH 7.0. The
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spontaneous rate of hydrolysis was subtracted from the observed
rates.

Temperature. Surface body temperature was measured with a
digital thermometer, Thermalert model TH-5, and a surface Micro-
probe MT-D, type T thermocouple (Physitemp Instruments, Clifton,
NJ).

Grip Strength. The inverted screen test was used to measure
grip strength. A mouse was placed on top of the screen. The screen
was rotated 180° so the mouse was upside down, and the time until
the mouse fell off or climbed to the top was measured.

Statistical Analysis. The up and down method of Bruce (1987)
was used for toxicity assays to minimize the number of animals.
LD50 values in Table 1 were estimated using a probit regression
analysis in SPSS (SPSS, Inc., Chicago, IL). An analysis of covariance
was also used to compare the estimated probit regression lines from
each group to determine equal slopes and intercepts. Tissue enzyme
levels in Table 2 were tested for statistical significance by multivar-
iate analysis of variance in the Excel program of Microsoft Office 98.
The Bonferroni correction (p � 0.025) was applied to adjust for
multiple comparisons.

Results
Detoxifying Enzyme Levels as a Function of Age

The levels of AChE, BChE, and carboxylesterase activities
were measured in mouse sera as a function of age. These
enzymes are scavengers of organophosphorus nerve agents.
It was important to determine when these enzymes reached
stable activity values so that animals could be grouped by
age. Figure 1A shows that AChE activity in serum of
AChE�/� and AChE�/� mice was low (0.1 and 0.04 U/ml) 5
days before birth but increased during the postnatal period,
reaching a plateau value by postnatal day 8 to 12. The time
to reach the plateau value was similar in AChE�/� and
AChE�/� mice. The plateau value for AChE�/� mice was
0.6 U/ml, and for AChE�/� mice was 0.3 U/ml. Thus,
AChE�/� mice have about 50% of the AChE activity of
wild-type mice. Nullizygous mice had no AChE activity at
any time. There was no sex difference in the levels of AChE
activity (Fig. 1B), not even in mature mice at 1 year of age.

Figure 2A shows that BChE activity in serum was 0.2 U/ml
5 days before birth and that BChE activity increased every
day during the nursing period, reaching a plateau value of
about 1.5 U/ml by postnatal day 21, the day of weaning. The
BChE activity levels were similar in mice of all three geno-
types and were unaffected by the absence of AChE. There
were no sex differences in BChE activity for animals up to 55

days of age. However, female wild-type mice achieved a 2-fold
higher BChE activity in serum by 1 year of age (Fig. 2B)
compared with male wild-type mice.

Carboxylesterase activity in serum (Fig. 3) followed a pat-
tern similar to that of BChE in Fig. 2A, in that activity was
low but detectable 5 days before birth (0.4 U/ml) and in-
creased to a plateau value of 15 to 20 U/ml by postnatal day
30. Neither AChE genotype nor sex influenced carboxylester-
ase activity.

It was concluded that AChE, BChE, and carboxylesterase
enzyme levels had reached stable values by postnatal day 30,
justifying the grouping of animals age 34 to 55 days. AChE
genotype had no effect on BChE or carboxylesterase activity
levels or on pattern of expression during postnatal develop-
ment. This had been a matter of concern because AChE is
thought to have a role in development (Layer and Willbold,
1995; Greenfield, 1998). Paraoxonase, an enzyme that hydro-
lyzes organophosphorus esters, reaches a plateau value on
postnatal day 20 in mice (Li et al., 1997).

LD50 Values for VX

The nerve agent VX was injected subcutaneously into 55
mice of various AChE genotypes. Significant differences be-
tween dose-response curves were observed. The LD50 value
for AChE�/� mice was 24 �g/kg (confidence interval 18–25).
The LD50 for AChE�/� mice was 17 �g/kg (confidence inter-
val 15–20). The LD50 for AChE�/� mice was 10 to 12 �g/kg
(Table 1). This result shows that mice with 100% of the
normal AChE activity (AChE�/� mice) were better protected
from VX than were mice with 50% of the normal AChE
activity (AChE�/� mice) and were much better protected
than mice with zero AChE activity (AChE�/� mice).

Toxic Signs

Mice were observed for signs of toxicity to see whether the
absence of AChE revealed a novel response to VX in
AChE�/� mice.

Temperature and Vasodilation. For AChE�/� and �/�
mice, surface body temperature briefly rose about 1°, at 2 to
3 min after injection of VX (Fig. 4). The increase in body
temperature was followed by reddening of the paws, snout,
and inner ears, suggesting vasodilation. The reddening of the
extremities disappeared after about 2 h. Animals that sur-
vived VX were observed to lose body temperature. At 8 min
after injection of VX, surface body temperature had started to
drop, decreasing to a low of 30°C in survivors 1 to 6 h after VX
treatment. After 20 h, body temperature had returned to a
normal 36–37°C. A hypothermic state of nearly 24-h dura-
tion is a characteristic feature of OP intoxication that has
been documented for DFP and chlorpyrifos (Gordon and
Grantham, 1999). The temperature response of AChE�/�
mice was different. After VX treatment, the temperature
dropped to a low of 33°C at about 1 h, and returned to normal
within 2 h. The more rapid return of normal body tempera-
ture in AChE�/� mice probably reflects a decrease in M2
muscarinic receptor levels. Studies in M2 muscarinic recep-
tor knockout mice have shown that in the absence of M2
receptors the mouse does not respond to drugs expected to
decrease body temperature (Gomeza et al., 1999).

Motor Activity and Grip Strength. Another sign of tox-
icity was immobility. Mice stopped walking and remained
fixed in one spot, sitting hunched with eyes open. As time

TABLE 1
Response of three AChE genotypes to VX injected subcutaneously
LD50 values were 24 �g/kg for AChE�/�, 17 �g/kg for AChE�/�, and 10 to 12 �g/kg
for AChE�/� mice.

Dose of VX
AChE�/� AChE�/� AChE�/�

Dead Live Dead Live Dead Live

�/kg

25 7 1
24 1 1 1
22 4 3
20 2 2
18 2 2 1
16 1 1 4
14 1 1 4 1 2
12 1 3 2
10 2 3
8 2
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progressed mice assumed a flattened posture with head ex-
tended and hind legs protruding; this posture reflected weak-
ening of muscles. Most �/� and �/� mice did not lose the
ability to grip a screen, although some did lose the ability to
climb to the top of an inverted screen. Twenty hours later,
survivors appeared healthy: they were active and eating,
posture had returned to normal, and they were able to pass
the inverted screen test. Nullizygotes never passed the in-
verted screen test because they are devoid of grip strength
even before VX treatment.

Pulsating Paws. VX treatment caused the paws of �/�
and �/� mice to pulsate in a manner similar to the pulsating
seen in the paws of untreated �/� mice. This characteristic
motion was seen when mice were held by the scruff of the
neck. All four paws moved in unison in a steady pulsating
outward and inward motion.

Tremor. Whole body tremors were a sign of toxicity, but
body tremors did not inevitably lead to death. All animals
that died, regardless of genotype, had clonic convulsions; that
is, whole body tremors, followed by a tonic convulsion in
which all limbs were extended. Tonic convulsions were in-
variably followed by death. Nullizygotes have a persistent
whole body tremor, without ever having been treated with
OP, and this tremor is compatible with life.

Eyes. Pinpoint pupils were seen in wild-type mice 10 to 30
min after VX injection. Untreated adult nullizygotes always
have pinpoint pupils. VX treatment did not change the pin-
point pupils in �/� mice.

Hair. Piloerection was not seen after VX treatment.
Salivation, Lacrimation, Urination, and Defecation.

OP intoxication in humans leads to characteristic signs of
toxicity summarized by the mnemonic, sludge: salivation,
lacrimation, urination, defecation, gastroenteritis, and eme-
sis. For rodents the mnemonic is salivation, lacrimation,
urination, and defecation because rodents do not vomit and
their gastric symptoms are difficult to detect. VX treatment
of mice caused salivation, lacrimation, and urination but only

at lethal doses; salivation, lacrimation, and urination were
followed within minutes by tonic convulsions and death. All
mice that survived had excessive salivation within 1 h of VX
treatment. A white mucus was observed in the eyes of sur-
vivors 2 to 18 h after VX treatment. At 20 h eyes were no
longer covered with mucus. Excessive urination and defeca-
tion were not observed in survivors. Excessive defecation was
not observed at any dose of VX.

Toxic Signs in Knockout Mouse

The untreated knockout mouse has several behaviors that
make it look like a VX-treated mouse, even when the knock-
out mouse has not been exposed to VX or to any OP. Pulsat-
ing paws, pinpoint pupils, body tremors, a film of white
mucus on the eyes when it is handled, and lack of grip
strength are characteristic of the untreated nullizygote. The
toxic signs in the �/� mice after treatment with VX were
similar to those in the �/� and �/� mice and included loss of
motor activity, flattened posture, peripheral vasodilation,
and hypothermia. Whole body tremors, although always
present in AChE�/� mice, became more pronounced after
VX treatment. Lethal doses of VX caused salivation, mucus
in the eyes, heaving, agonized breathing, urination, and tonic
convulsions in the last minutes of life.

The VX-treated AChE�/� mice showed no novel signs of
toxicity that were not also manifest in the AChE�/� and
�/� mice. This is important because the AChE�/� mouse
does not have AChE, which means inhibition of an alterna-
tive target produced the same symptoms attributed to inhi-
bition of AChE. A notable difference in response to VX was
the more rapid return of normal body temperature in the
AChE�/� mouse (Fig. 3).

Time to Death

Death occurred within 7 to 22 min after injection of VX.
Time to death was independent of AChE genotype and dose
of VX (range 10–25 �g/kg) and probably reflects the time it

TABLE 2
AChE, BChE, and acylpeptide hydrolase activity in tissues of VX-treated mice
Units of enzyme activity are micromoles of substrate hydrolyzed per minute per gram wet weight of tissue. The standard deviations were 3 to 30% of the average values
shown.

Genotype Tissue Control
AChE

Control
BChE

Control
Acylpeptide Hydrolase

VX Live VX Dead VX Live VX Dead VX Live VX Dead

�/� Brain 1.71 1.04a 0.86a 0.13 0.09a 0.05a 0.0046 0.0047 0.0047
�/� Brain 0.91 0.50a 0.53a 0.11 0.09 0.05a 0.0052 0.0046 0.0054
�/� Brain 0 0 0 0.10 0.09 0.05a 0.0051 0.0045 0.0045
�/� Muscle 0.28 0.20 0.15a 0.26 0.19 0.14 0.0047 0.0052 0.0047
�/� Muscle 0.22 0.13a 0.11a 0.25 0.15a 0.11a 0.0074 0.0052a 0.0054
�/� Muscle 0 0 0 0.27 0.19 0.11a 0.0055 0.0050 0.0053
�/� Liver 0.06 0.06 0.01a 5.36 5.3 3.10a 0.0184 0.0172 0.0188
�/� Liver 0.06 0.06 0.05 3.93 4.25 2.64 0.0224 0.0172a 0.0192
�/� Liver 0 0 0 3.69 4.08 4.15 0.0207 0.0185 0.0203
�/� Intestine 0.21 0.20 0.20 5.97 3.13 5.08 0.0148 0.0089a 0.0106
�/� Intestine 0.15 0.11 0.14 4.37 3.92 3.77 0.0149 0.0119 0.0122
�/� Intestine 0 0 0 7.95 7.52 6.28 0.0154 0.0180 0.0132
�/� Lungs 0.20 0.20 0.13 0.79 0.51a 0.41a 0.0116 0.0097 0.0112
�/� Lungs 0.14 0.10a 0.10 0.55 0.41 0.38a 0.0139 0.0118 0.0113
�/� Lungs 0 0 0 0.65 0.44a 0.44a 0.0114 0.0110 0.0117
�/� Heart 0.14 0.11 0.12 0.81 0.63 0.46a 0.0089 0.0073 0.0098
�/� Heart 0.08 0.09 0.07 0.61 0.50 0.37a 0.0104 0.0094 0.0107
�/� Heart 0 0 0 0.60 0.44a 0.41 0.0103 0.0085a 0.0087
�/� Serum 0.54 0.35a 0.31a 2.79 1.95a 1.64 N.D. N.D. N.D.
�/� Serum 0.28 0.17a 0.21 1.75 1.61 1.14a N.D. N.D. N.D.
�/� Serum 0 0 0 1.88 1.63 1.48 N.D. N.D. N.D.

N.D., not determined.
a Significantly different from control p � 0.025 by analysis of variance with Bonferroni’s correction to adjust for multiple comparisons.
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takes VX to travel from the subcutaneous site of injection on
the back of the neck to the brain, muscles, and other organs.
Nullizygotes did not die in a shorter time. Mice were consid-
ered to have survived VX if they were alive 3 to 20 h after
receiving VX.

Enzyme Inhibition

Tissues were extracted from VX-treated and untreated
animals and tested for AChE, BChE, and acylpeptide hydro-
lase activity. Carboxylesterase activity was not tested be-
cause VX does not inhibit carboxylesterase (Maxwell et al.,
1994). The results are shown in Table 2.

AChE. In untreated mice, levels of AChE activity were
highest in brain, followed by serum, muscle, intestine, lungs,
heart, and liver. These results confirm the tissue distribution
results reported by Li et al. (2000). AChE activity in brain
was inhibited about 50% in VX-treated mice in the genotypes
AChE�/� and �/�. Fifty percent inhibition of AChE activity
in brain was associated with death or serious signs of toxic-
ity. Untreated AChE�/� brain had only 50% of the AChE
activity present in wild-type brain, but this 50% level caused

no signs of toxicity in the absence of VX. The AChE�/� mice
have no AChE activity, and therefore no AChE inhibition by
VX.

Fig. 1. AChE activity in untreated mice as a function of mouse age and
AChE genotype. A, mouse blood was collected from AChE�/�, �/�, and
�/� mice starting on embryonic day 16 (�5 on graph). Serum was
separated from other blood components by centrifugation and tested for
AChE activity. There were 190 animals in the AChE�/� group, 198 in
the AChE�/� group, and 61 in the AChE�/� group. AChE activity was
independent of sex; therefore, male and female data were pooled. B,
serum from 280 AChE�/� mice, ranging in age from �5 to postnatal day
370, was assayed for AChE activity. No sex differences in AChE activity
were found.

Fig. 2. BChE activity in untreated mice as a function of mouse age and
AChE genotype. A, BChE activity in serum of AChE�/�, �/�, and �/�
mice, from embryonic day 16 (�5 on graph) to postnatal day 53 was
independent of AChE genotype. No sex differences in BChE activity were
present in this young age group. B, serum from wild-type mice was
assayed for BChE activity. BChE activity remained constant from post-
natal day 21 to 370 in male mice, but doubled during this time in female
mice.

Fig. 3. Carboxylesterase activity in untreated mice as a function of mouse
age and AChE genotype.
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AChE activity in muscle and serum was also inhibited by
VX. However, AChE in liver, intestine, lungs, and heart was
inconsistently inhibited. AChE activity in animals that died
from VX treatment tended to be lower than AChE activity in
animals that survived VX treatment, but this was not a
consistent pattern.

BChE. Levels of BChE activity were highest in intestine
and liver, followed by serum, heart, lung, muscle, and brain.
BChE activity was higher than AChE activity in all tissues
except brain and muscle. As previously reported by Li et al.
(2000), BChE activity was independent of AChE genotype.
BChE activity in brain and muscle was inhibited about 50%
in animals that died from VX treatment. BChE in serum was
inhibited 30 to 40% in mice that died from VX. BChE inhi-
bition was more consistent than AChE inhibition, because all
tissues with the exception of liver showed BChE inhibition.
Animals that died from VX showed slightly more BChE in-
hibition than animals that survived VX. Studies in VX-
treated humans (Sidell and Groff, 1974) and VX-treated rats
(Gupta et al., 1991) have shown preferential inhibition of
AChE.

Acylpeptide Hydrolase. Acylpeptide hydrolase was of
interest because Richards et al. (2000) found that acylpeptide
hydrolase was inhibited by doses of dichlorvos, chlorpyrifos
methyl oxon, and diisopropylfluorophosphate that did not
inhibit AChE. It was unknown whether acylpeptide hydro-
lase would be preferentially inhibited by VX. Acylpeptide
hydrolase levels were highest in liver, intestine, lungs, and
heart, followed by muscle and brain. Acylpeptide hydrolase
activity was independent of AChE genotype. VX treatment
inhibited acylpeptide hydrolase activity 0 to 40%, but incon-
sistently. For example, the liver of AChE�/� mice showed
23% inhibition in VX survivors but only 15% inhibition in VX
lethalities, whereas liver from AChE�/� mice was inhibited
7% in survivors and not at all in VX lethalities. Inhibition of
acylpeptide hydrolase was less pronounced than inhibition of
AChE and BChE.

Could inhibition of acylpeptide hydrolase account for the
sensitivity of AChE�/� mice to VX? The results in Table 2
indicate that acylpeptide hydrolase was slightly inhibited in
mice of all three AChE genotypes, with no preference for
inhibition in the AChE�/� mouse. It is concluded that

acylpeptide hydrolase is not a major target of VX and that
inhibition of acylpeptide hydrolase does not explain the su-
persensitivity of AChE�/� mice to VX.

Atropine

Atropine protects from nerve agent toxicity by blocking
overstimulation of muscarinic acetylcholine receptors. To de-
termine the mechanism of action of VX in AChE�/� mice, we
pretreated mice with atropine. If VX were acting through
muscarinic receptors, either by directly binding to the recep-
tor (Silveira et al., 1990; Rocha et al., 1999) or by causing an
increase in acetylcholine levels then pretreatment with atro-
pine should protect the AChE�/� mouse from VX. Two wild-
type and three AChE�/� mice were pretreated with 12
mg/kg atropine. The wild-type mice challenged with 30 �g/kg
VX survived, but the AChE�/� mice challenged with 20, 18,
and 16 �g/kg VX died. Thus, atropine did not protect
AChE�/� mice from VX lethality.

The time interval between pretreatment with atropine and
injection of VX was 40 min. To determine whether death of
the AChE�/� mice was the result of atropine or VX intoxi-
cation five AChE�/� mice were treated with 12 mg/kg atro-
pine alone. None of the mice died, although they became
hyperactive for 3 h. Wild-type mice showed no effects from 12
mg/kg atropine alone.

Discussion
Nonacetylcholinesterase Targets of VX. The present

results show that mice with no AChE in any tissue are more
sensitive to VX than mice that have AChE (Table 3). Het-
erozygous mice are intermediate in sensitivity to VX and
have about 50% of the normal AChE activity in all tissues.
Previous results (Xie et al., 2000) have shown that AChE�/�
mice are supersensitive to the organophosphate DFP. Be-
cause AChE�/� mice have no AChE, the toxicity of VX and
DFP must be attributed to inhibition of nonacetylcholinest-
erase targets.

AChE�/� mice are not normal. Their body weight is low.
They live an average of 60 to 80 days. Their muscles have
poor grip strength, and their tremor suggests the presence of
excess acetylcholine. It could be argued that their fragile
status sensitizes AChE�/� mice to toxicants in general and
that their increased sensitivity to VX and DFP is not special.

In this regard, the intermediate sensitivity of AChE�/�
mice to VX is important, because AChE�/� mice are pheno-
typically normal. They have normal body weight, life span,
reproductive abilities, and grip strength. They do not appear
to have excess acetylcholine, because they have no body
tremor. Yet they are more sensitive to VX than are wild-type
mice. The finding that healthy AChE�/� mice have interme-
diate sensitivity to VX indicates that the level of AChE is the
important factor in determining the degree to which a mouse

Fig. 4. Surface body temperature after treatment with VX. Body temper-
ature in nullizygous mice (AChE�/�) did not drop as far and recovered
faster than temperature in AChE�/� and �/� mice.

TABLE 3
Supersensitivity of AChE knockout mice to VX and DFP
DFP results are from Xie et al. (2000).

AChE Genotype AChE Activity VX LD50 DFP

�g/kg 2.5 mg/kg i.p.

AChE�/� 100% 24 All lived (n � 8)
AChE�/� 50% 17 7 died, 8 lived
AChE�/� 0% 10–12 All died (n � 3)
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will be sensitive to VX. The more AChE a mouse carries, the
less sensitive it is. Thus, the supersensitivity of the
AChE�/� mouse is not simply a consequence of its overall
fragile status, but is due to the absence of AChE.

The observation that the more AChE activity a mouse
carries the less sensitive it is toward VX suggests that AChE
protects other targets of VX against inhibition. In this sense,
AChE appears to act as a scavenger of VX.

Is BChE a Physiologically Important Target of VX?
BChE has long been considered a nonfunctional, vestigial
cousin to AChE. This is largely based on two findings. First,
people lacking BChE show no adverse symptoms. Second,
measurements of BChE in tissues of normal animals indi-
cated that the BChE level was low relative to AChE level.
Recently, improved assay procedures have demonstrated
that the BChE level in all tissues of the mouse (except for
brain and muscle) is actually higher than the AChE level (Li
et al., 2000). A wild-type mouse has 10 times more BChE
than AChE in its body (Table 4). This has encouraged us to
suggest that BChE may have a physiological role in mice.
One possibility is that BChE may function as a backup for
AChE in neurotransmission. BChE is located in the synapse
of the neuromuscular junction, although at lower levels than
AChE (Silver, 1963; Chapron et al., 1997). In the brain,
BChE is found in glia cells and axons of white matter,
whereas AChE is found in cholinergic synapses (Friede,
1967; Graybiel and Ragsdale, 1982). These locations make it
possible for BChE to participate in acetylcholine hydrolysis.

If BChE serves as a backup for AChE in the synapse of the
AChE�/� mouse then VX toxicity could arise from inhibition of
BChE. This would make BChE the critical alternate target for
VX. In wild-type and heterozygous mice, VX was equally effec-
tive at inhibiting AChE and BChE. Fifty percent of each en-
zyme was inhibited under the conditions of our experiments.

A test for a possible role for BChE in neurotransmission
was the experiment in which mice were treated with atropine
and VX. Atropine binds to the muscarinic receptors and
reduces the sensitivity of the postsynaptic membrane to stim-
ulation by excess acetylcholine. It was expected that atropine
would protect AChE�/� mice from VX toxicity if the toxicity
were initiated by excess acetylcholine. The excess acetylcho-
line would have come from inhibition of BChE. This is similar
to the way in which atropine protects synaptic transmission
against AChE inhibition in the wild-type mouse.

We found that atropine did not protect AChE�/� mice
against VX toxicity, suggesting that excess acetylcholine

might not have accumulated in AChE�/� synapses. This
suggests, but does not prove, that BChE does not function as
a backup for AChE. We did notice that body tremor in the
AChE�/� mice intensified after VX treatment, which is con-
sistent with the accumulation of excess acetylcholine in VX-
treated AChE�/� mice. However, the tremor could have
been mediated by some other mechanism. An alternative
interpretation for the lack of protection by atropine is that
muscarinic receptors in the AChE�/� mouse may have be-
come desensitized to excess acetylcholine. Thus, our results
do not provide a definitive answer to the question of whether
BChE is a physiologically important target of VX. If BChE is
not the critical alternate target for VX then the VX toxicity in
the AChE�/� mouse is mediated by some as yet unidentified
target, a target that is not sensitive to atropine intervention.

Additional Targets. Our findings strengthen the obser-
vations of others that OP have sites of action in addition to
AChE (Moser, 1995; Pope, 1999). Acetylcholinesterase is def-
initely a target of VX and other OP, but it is not the only
physiologically important target. The list of nonacetylcho-
linesterase targets for OP includes muscarinic receptors (Sil-
veira et al., 1990; Jett et al., 1991; Ward and Mundy, 1996;
Rocha et al., 1999; Bomser and Casida, 2001), adenylyl cy-
clase (Huff et al., 1994; Song et al., 1997; Auman et al., 2000),
acylpeptide hydrolase (Richards et al., 2000), and neuropathy
target esterase (Lush et al., 1998).

Another argument in support of noncholinesterase targets
is the observation that at low doses, each OP has different
behavioral effects. For example, fenthion decreased motor
activity but did not alter the tail-pinch response, whereas
parathion did not lower activity but did decrease the tail-
pinch response (Moser, 1995).

Hypothesis. It is our hypothesis that unknown OP targets
exist. Inhibition of these unknown targets allows entry into
the multireceptor pathway described by McDonough and
Shih (1997), wherein overstimulation of glutamate receptors
leads to convulsions, respiratory arrest, and cardiac collapse.
Anaphylactic shock caused by massive histamine release
may be another mechanism of OP toxicity (Cowan et al.,
1996). Identification of these putative unknown targets may
lead to new strategies for treating OP toxicity and may ex-
plain chronic illnesses attributed to low-dose exposure.
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