

University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Nebraska Beef Cattle Reports

Animal Science Department

January 1999

The Relationship of Beef Primal Cut Composition to Overall Carcass Composition

Dana Hanson University of Nebraska-Lincoln

Chris R. Calkins University of Nebraska-Lincoln, ccalkins1@unl.edu

Bucky Gwartney National Cattlemen's Beef Association, Englewood, Colorado

John Forrest Purdue University, West Lafayette, Indiana

Ron Lemenager Purdue University, West Lafayette, Indiana

Follow this and additional works at: https://digitalcommons.unl.edu/animalscinbcr

Part of the Animal Sciences Commons

Hanson, Dana; Calkins, Chris R.; Gwartney, Bucky; Forrest, John; and Lemenager, Ron, "The Relationship of Beef Primal Cut Composition to Overall Carcass Composition" (1999). *Nebraska Beef Cattle Reports*. 405. https://digitalcommons.unl.edu/animalscinbcr/405

This Article is brought to you for free and open access by the Animal Science Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Beef Cattle Reports by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

which could improve tenderness in prerigor muscle. Manipulation of glycolysis in pre-rigor muscles could be a feasible method to improve tenderness in lowvalue cuts by increasing pH and waterholding capacity, with no detriment to lean color.

¹Chris Calkins, professor; Nancy Jerez, graduate student, Animal Science, Lincoln; Jesús Velazco, professor, Instituto Tecnológico y Estudios Superiores de Monterrey, México.

The Relationship of Beef Primal Cut Composition to Overall Carcass Composition

Dana Hanson, Chris Calkins, Bucky Gwartney, John Forrest, and Ron Lemenager¹

Strong relationships exist between composition of individual beef primals and total carcass composition.

Summary

The amount of lean, subcutaneous fat, seam fat and bone of each of the four major primal cuts (round, rib, loin and chuck) were used in combination with yield grade to predict total side composition. The makeup of each primal is highly related to total carcass composition. The decision of which primal to fabricate depends on the sex of the animal and which component (lean, subcutaneous fat, seam fat or bone) is of greatest interest.

Introduction

The ability to identify composition of a beef carcass is a valuable research tool. Many research trials require accurate determination of beef carcass composition. Yet, total dissection of a carcass is costly and time consuming. The costly process of whole carcass analysis might be alleviated through physical separation of a specific primal cut. By dissecting a small portion of the carcass into lean, subcutaneous fat, seam fat and bone, it may be possible to estimate the proportion of these components for the whole carcass. In this study, the round, rib, loin and chuck were physically separated to determine which cut best represents the composition of the entire beef carcass.

Procedure

Right sides from steer (n=53) and heifer (n=38) carcasses varying widely in carcass weight (504-1,007 lb) and fat thickness (.10-1.13 inch) were evaluated. No discernible Brahman or dairy breeding was present in these cattle. Yield grade factors were measured and sides were separated into the primal round, loin, rib, chuck and remaining cuts. Each primal along with the remaining cuts was physically separated into lean, subcutaneous fat, seam fat and bone. Composition of each of the four major primals was used in combination with yield grade to predict side composition.

Statistical Analysis

Prediction equations were developed using lean, subcutaneous fat, seam fat and bone of each primal as a means

Table 1. Beef side lean, subcutaneous fat, seam fat and bone percentage for steers and heifers.

Sex class	Component	Mean value	SD	Minimum	Maximum
Steers	Lean	55.5	3.6	47.6	65.3
n = 53	Subcutaneous fat	9.0	2.2	3.5	13.1
	Seam fat	16.2	2.4	11.2	22.6
	Bone	16.5	1.6	13.0	20.3
Heifers	Lean	53.6	5.0	46.4	65.2
n = 38	Subcutaneous fat	10.1	3.3	2.9	14.9
	Seam fat	17.4	3.7	8.7	23.3
	Bone	15.4	2.7	11.9	23.6

Table 2. Percentage* of primal lean, subcutaneous fat, seam fat or bone for steers and heifers.

Sex class		Lean		Subcutan	Subcutaneous fat		Seam fat		Bone	
	Primal	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.	
Steers,	Round	62.18	3.23	11.43	2.93	8.27	1.42	17.60	1.72	
n=53	Loin	59.34	4.29	10.84	3.55	11.49	1.99	17.92	2.31	
	Rib	51.51	4.14	10.14	2.95	17.52	3.36	20.40	2.57	
	Chuck	62.01	3.01	4.38	1.55	16.05	2.91	17.36	1.71	
Heifers,	Round	63.14	3.45	11.20	3.53	8.24	1.61	16.60	2.10	
n=38	Loin	58.47	5.03	12.10	5.41	12.22	2.92	16.68	3.60	
	Rib	50.27	5.71	10.60	3.88	18.84	4.80	19.76	3.57	
	Chuck	60.42	3.97	5.05	2.02	17.65	4.09	16.54	2.68	

*The difference between 100 percent and the sum of the components reflects moisture and cutting loss for each primal.

Table 3. Coefficients of determination of lean, subcutaneous fat, seam fat and bone for steer and heifer carcasses

Sex class	Primal	Lean,%	Subcutaneous fat,%	Seam fat,%	Bone,%
Steers,	Round	77.3	81.0	70.6	76.0
n=53	Loin	85.6	89.5	84.6	73.8
	Rib	80.8	71.7	80.0	55.0
	Chuck	82.1	72.2	91.5	81.6
Heifer,	Round	90.0	88.1	86.1	88.8
n=38	Loin	85.3	88.7	89.7	87.2
	Rib	91.6	88.9	92.6	90.6
	Chuck	91.5	90.0	93.3	86.3

to determine their relationships to the entire carcass. Coefficients of determinations (CD) obtained through regression analysis were used to identify amount of variation in carcass composition explained by the individual primal. The closer the CD is to 100, the better the relationship.

Results

Carcasses of both sex classes in this study were widely variable in weight and composition. Steer carcasses ranged in weight from 554 to 936 pounds and in lean percentage from 47.6 to 65.3. Heifer carcasses ranged from 504 to 1,007 pounds and 46.4 to 65.2 percent lean (Table 1).

Composition of the individual primals revealed the lowest proportion of lean and the highest proportion of the seam fat and bone in the rib, the lowest subcutaneous fat percentage in the chuck and the lowest seam fat percentage in the round (Table 2). The non-uniform distribution of these tissues across the primal cuts formed the basis for this research to determine which primal best represented total carcass composition.

Prediction of carcass lean

Table 3 shows the prediction of percentage lean in the beef carcass side. Composition of the loin explains the most variation (CD= 85.6) in carcass lean for steers. In heifers, the rib had the highest CD (91.6 percent) for overall carcass lean. Except for the steer rounds, each of the primals explained at least 82.5 percent of the variation in carcass lean.

Prediction of carcass subcutaneous fat

The round, rib, loin and chuck explained 80.3 percent, 70.5 percent, 89.5 percent and 71.8 percent, respectively, of the variation for subcutaneous fat in the steer population (Table 3). Coefficients of determination for the heifer population ranged from 88.1 to 90.0 percent, with the chuck having the highest relationship to total subcutaneous fat in a carcass.

Prediction of carcass seam fat

The chuck explained the most variation for both steers and heifers, 91.5 versus 93.3 percent, respectively (Table 3). The large proportion of seam fat in the primal chuck compared to other primals probably contributes to the high relationship.

Prediction of carcass bone

Table 3 shows the relationship of primal composition to total bone content in the carcass. In this study, the steer chuck explained 81.6 percent of the variation. For the heifer population, the rib explained the most variation (90.6 percent). Relationships to bone were generally lower than other carcass components.

Each primal cut has a high relationship to overall composition. From this data, the best primal cut to predict composition depends on sex class and which component of composition is of greatest importance. Excluding bone, the loin provided the highest or second highest CD for lean or fat content of steer carcasses compared to other primals. The steer chuck appears more useful than the

(Continued on next page)

Table 4. Prediction of percentage lean, subcutaneous fat, seam fat and bone in the round, rib, loin and chuck of steers

		Predicted carcass component	Regression equation						
Sex class	Primal		Intercept	Yield grade	Primal lean	Primal subcutaneous	Primal seam fat	Primal bone	- RMSE ^a
Steers	Round	Lean	.8816	-1.9877	.8336	.2685	.0336	.2975	1.78
n=53		Subcutaneous fat	51.9917	.3039	5018	.0202	2585	5965	1.00
		Seam fat	3.7809	1.1239	.0500	.2961	.5943	1259	1.38
		Bone	8.7883	3657	0138	0804	0607	.6304	.80
	Rib	Lean	51.6425	-1.5541	.2913	3347	1619	0185	1.64
		Subcutaneous fat	50.6758	.4562	5051	0431	3551	5066	1.23
	Seam fat	8.1480	.4288	0588	.2582	.3939	.0174	1.13	
		Bone	18.9098	0179	0359	1845	1318	.2010	1.10
	Loin	Lean	52.64	-1.3339	.2672	3072	3662	0872	1.42
		Subcutaneous fat	32.3041	.0465	3172	.2788	2911	2402	.75
		Seam fat	34.5775	.6547	2803	0274	.2248	3620	1.00
		Bone	-5.5360	2064	.1905	0204	.2069	.5140	.84
	Chuck	Lean	40.28	-1.3691	.4757	4994	2510	2336	1.58
		Subcutaneous fat	19.4160	.2617	1717	.7606	0160	2084	1.21
		Seam fat	-7.3973	.1579	.1120	.5907	.7205	.1201	.74
		Bone	35.0262	.2015	2505	5249	3812	.2811	.70

^aRMSE = Root mean square error.

Table 5. Prediction of percentage lean, subcutaneous fat, seam fat and bone in the round, rib, loin and chuck of heifers.

		Predicted carcass component	Regression equation						
Sex class	Primal		Intercept	Yield grade	Primal lean	Primal subcutaneous	Primal seam fat	Primal bone	RMSE ^a
Heifers	Round	Lean	70.74	-1.4402	.0761	6495	-1.0144	0861	1.70
n=38		Subcutaneous fat	49.7642	.5636	4229	.0159	1045	8506	1.22
		Seam fat	51.13	.6132	4255	1134	.5455	7330	1.48
		Bone	-20.7482	2818	.2533	.1577	.0553	1.1334	.96
	Rib	Lean	36.45	3805	.5291	2061	2376	0903	1.56
		Subcutaneous fat	47.4341	.00541	4893	.1358	2939	4402	1.18
		Seam fat	53.0677	3950	5715	1255	.0697	2854	1.08
		Bone	-3.3666	.2683	.2023	0072	0513	.4432	.88
	Loin	Lean	-37.50	-1.6391	1.0822	.7297	.4773	1.1084	2.07
		Subcutaneous fat	46.5016	.1385	4263	0225	2178	5419	1.19
		Seam fat	72.1757	.4427	6267	4682	.0149	8439	1.27
		Bone	-21.7126	.1164	.3588	.2300	.0853	.7147	1.03
	Chuck	Lean	24.36	-1.7572	.5623	4857	0400	.2495	1.57
		Subcutaneous fat	-26.6074	.4765	.2859	1.2058	.5134	.1636	1.12
		Seam fat	63.4228	.5043	5950	0486	0516	6369	1.03
		Bone	25.4192	.0290	1207	4339	3443	.3283	1.06

^aRMSE = Root mean square error.

round or rib, except for seam fat. Less labor would be required to physically separate the loin than the chuck, but the cost of the primal would be greater. For heifers, the chuck (excluding prediction for bone content) and the rib had the highest CD for composition, although all the primals gave high relationships and differences in predictive accuracy may not be meaningful or significant. Ultimately, which primal to physically separate hinges upon resources available and information needed. Prediction equations may provide important information to researchers with neither the time nor the resources to conduct total carcass physical separation (Tables 4, 5).

¹Dana Hanson, graduate student. Chris Calkins, professor, Animal Science, Lincoln; Bucky Gwartney, National Cattlemen's Beef Association, Englewood, Colorado; John Forrest and Ron Lemenager, professors, Animal Science, Purdue University, West Lafayette, Indiana.