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Structure of macrodomain walls in polytwinned magnets
K. D. Belashchenkoa) and V. P. Antropov
Ames Laboratory, Ames, Iowa 50011

We propose a microscopic approach to the studies of magnetic configurations in hard magnets which
may be conveniently used for nanoscale systems; the microstructure of the magnet is easily and
naturally included in the calculations. This approach is applied to find the structure of macrodomain
walls in polytwinned magnets of the CoPt family. Magnetostatic fields are small compared to the
anisotropy field in these magnets; direct simulation shows that in this case the macrodomain wall is
not continuous, but rather comprised of segments held together by relatively small magnetostatic
forces. This segmentation is expected to have a strong effect on magnetization processes. ©2002
American Institute of Physics.@DOI: 10.1063/1.1453323#

It is known that the hysteretic properties of a magnet are
sensitive to microstructure, because the domain wall~DW!
motion and domain nucleation are strongly affected by lattice
imperfections. The majority of hard magnets are based on
rare earth-transition metal alloys~Nd–Fe–B type and Sm-Co
type!,1,2 where microstructure is dominated by grain bound-
aries, sometimes with segregated intergranular phases. The
role of these defects was studied in a number of papers using
the finite-element version of the micromagnetic method.3,4

There is another group of intermetallic permanent mag-
nets with high uniaxial anisotropy in the tetragonal L10 phase
including CoPt, FePt, and FePd. Unlike other permanent
magnets, their microstructure is dominated not by grain
boundaries, but by twin boundaries and antiphase bound-
aries. Theoretical understanding of the hysteretic properties
of these magnets is rather poor.

In this article we study the structure of domain walls in
CoPt type magnets. Microstructures of these magnets typi-
cally exhibit polytwinning, i.e., the formation of regular ar-
rays~stacks! of ordered bands~c domains! separated by twin
boundaries.5–9 The tetragonal axesc in these domains~point-
ing along one of the three cubic axes of the parent fcc phase!
alternate regularly making 90° angles between the adjacent
domains. The kinetics of polytwinning was studied using
both the phenomenological8 and microscopical9 approaches,
and the main features of the experimentally observed micro-
structures are well reproduced in these theoretical studies.

The magnetic structure of polytwinned magnets was
studied for several decades using analytical micromagnetic
methods.5 Due to high magnetic anisotropy the DW widthd
is quite small~50–100 Å!, while the anisotropy fieldHa

52K/M ~K is the magnetocrystalline anisotropy constant,
andM is the saturation magnetization! significantly exceeds
the magnetostatic fieldsHm;4pM ~the magnetostatic pa-
rameterh52pM2/K is close to 0.1 in CoPt and FePt and
0.38 in FePd5!. Therefore, atd@d ~d being the thickness of
thec domain, usually at least 20 nm! each ordered twin may
be regarded as an individual magnetic domain~with intrinsic
90° DWs at the twin boundaries!. It is assumed that magne-
tization processes are associated with macrodomain walls
~MDW! crossing a large number of twins. Such MDWs were

observed experimentally,5,7 but their internal structure is
unknown.5 This structure is crucial for hysteretic properties,
and we will explore it using a microscopical approach which
is convenient at the relevant length scale of up to 100 nm,
and which is especially useful when realistic microstructures
must be incorporated in magnetic simulations.

We consider a magnetic alloy with the following classi-
cal Hamiltonian:

H5Hconf1(
i , j

ninj@2Ji j mimj1mi D̂ i j mj #

1(
i

ni@Ea~mi !2H0mi #, ~1!

where Hconf is the configurational part of the Hamiltonian
which is independent on the magnetic state;i and j run over
the lattice sites~and include the component index if there are
several magnetic components!; ni51 if site i is occupied by
a magnetic atom andni50 otherwise;mi is the ~classical!
magnetic moment of the atom at sitei ; Ji j , the Heisenberg
exchange parameter;H0 , the external magnetic field;
Ea(mi), the magnetocrystalline anisotropy~MCA! energy
equal to2bi(miei)

2 in the case of an easy-axis anisotropy
alongei ; and D̂ i j , the dipole–dipole interaction tensor. We
assume that the magnetic moments are rigid (umi u5m), and
the dynamics of the system is associated with their rotation.

The inhomogeneous and nonequilibrium states of the
system may be described by the free energy

F5^H1T ln P&, ~2!

whereT is temperature, andP is the distribution function.
The full canonic statistical ensemble may not be used to
describe the states with broken symmetry. For example, ifH0

is zero,H is invariant in respect to inversion of all spins,
mi→2mi , and all averages Trmi P0 over the distribution
function P05exp@b(F2H)# are zero. For inhomogeneous
magnetic states with a fixed atomic configuration, let us in-
troduce the ‘‘generalized Gibbs distribution’’P5exp@b(F̃
2Heff)# as it was done10 for Hconf. In the theory of second-
order phase transitions the effective HamiltonianHeff is a
functional of the macroscopic order parameter field;11 in the
micromagnetic approach12 this is the field of magnetizationa!Electronic mail: kdbel@ameslab.gov
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M (r ). In our microscopic caseHeff contains some effective
parameters depending on the environment, i.e., on the aver-
age values ofmi and, if necessary, of their powers and corr-
elators. In the simplest mean-field approximation~MFA!
which will be used in this article, in equilibrium these pa-
rameters are the mean fieldsH i5H01( j (Ji j 2D̂ i j )njmj

wheremj5^mi& are the local magnetizations. Specifically, in
this approximation we have

Heff5(
i

ni@2H imi1Ea~mi !#, ~3!

and the free energy

F5^H2Heff&2T ln Tr exp~2bHeff!. ~4!

The microstructure is defined by the set ofni . For the
studies of simple configurations~e.g. for an ideal poly-
twinned stack with no defects, see below! this set may be
prepared by hand. More realistic configurations may be ob-
tained in microscopic simulations based on the master equa-
tion approach,9,10,13 where the configurational states of the
alloy are described in terms of ensemble-averaged site occu-
pations, or concentrationsci5^ni&. Such configurations may
be easily used in magnetic simulations, and in MFA we ob-
tain

F52EJ,DD2T(
i

ci ln E dm̂ i exp@b~H imi2Ea~mi !#,

~5!

whereEJ,DD5(cicjmi(2Ji j 1D̂ i j )mj is the total exchange
and dipole–dipole energy, andni are replaced byci in H i . It
is convenient to treat the contribution of the anisotropy en-
ergy perturbatively, sinceEa(m)!T.

Let us emphasize that the above form ofP is a reduced
Gibbs distribution. The effective Hamiltonian contains effec-
tive parameters depending on the averages over dynamical
variables, while the Gibbs distribution contains the Hamil-
tonian with actual interaction parameters. In particular, the
generalized Gibbs distribution with the effective Hamiltonian
and proper boundary conditions may describe inhomoge-
neous equilibrium states~e.g., the domain walls!, while the
standard Gibbs distribution may not.

In cases when MFA is inadequate~e.g., in frustrated an-
tiferromagnets! one can use other statistical methods to cal-
culateF, e.g., the cluster variation method14 or the cluster
field method15 ~although this will considerably complicate
the calculations in the inhomogeneous case!.

If magnetizationM (r ) slowly varies in space and is con-
stant in magnitude, Eq.~5! reduces to the micromagnetic free
energy12 ~see also Ref. 16!. In this case all choices ofJi j and
bi are equivalent if they produce the same macroscopic prop-
ertiesC ~exchange constant! and K. In principle, the prob-
lem on the microstructural length scale may be addressed
using micromagnetic methods with singularities ofC andK
at the twin boundaries~and defects, if present!. However, for
the studied magnets whered is quite small and the charac-
teristic microstructural length scales are of the order of 10
nm, the continuous approximation has little computational
advantage, which is offset by the need for cumbersome treat-

ment of defects. It is easier and more natural to use the same
microscopic approach for such simulations, where no special
treatment is required for defects.

The method described above allows one to quickly find
equilibrium configurations for simulation boxes with up to
;106 atoms. We used rectangular simulation boxes with pe-
riodic boundary conditions. The long-range dipole–dipole
fields are computed using the Fourier transforms, and the
demagnetizing effects associated with the surface of the
sample are neglected.

We now explore the properties of MDWs in polytwinned
magnets using the approach described above. It is convenient
to use the body-centered tetragonal~bct! representation of
the fcc lattice~with c/a5& and c equal to the fcc lattice
parameter!. The equilibrium MDWs of two characteristic ori-
entations, normal to (110̄) and ~001! planes, are shown in
Fig. 1 for the CoPt model. Infinite stack ofc domains is
assumed with ideal twin boundaries lying in the~110! planes.
The c domains have the same thicknessd564abct.17 nm
and are fully ordered~all ci are either 1 or 0!. The easy axis
ei points along the local direction of the tetragonal axis, and
bi5b. For simplicity, only the transition-metal atoms are
assumed to have the magnetic moment. Room temperature
T50.4Tc is assumed~for CoPtTc5720 K), and the values
of b andm are chosen so that MFA gives experimental room-
temperature values ofK54.93107 erg/cm3 and h50.082
for CoPt.5 The parametersJi j for nearest and next-nearest
neighbors were chosen asJ2 /J152/3, J3 /J151/6; such
choice makes the exchange constantC isotropic.

The MDWs of both orientations shown in Fig. 1 have a
peculiar feature: the DW segments located in adjacentc do-
mains are displaced in respect to each other. The reasons for
this displacement may be understood from Fig. 2 where the
structure of an intersection of a DW with a twin boundary is
shown at atomic resolution. The displacement leads to the
increase inEDD due to the appearance of magnetically
charged segments of 90° DWs at the twin boundaries~cen-
tral part of Fig. 2!, but due to the small value ofh this
increase is unimportant at the length scale ofd. From the
other hand, the displacement lowers the exchange energy at
intersections because magnetization within each DW seg-
ment ~shown by arrows at margins of Fig. 2! becomes par-
allel to that in the adjacentc domain. The total exchange
energy is lowest when the displacements alternate regularly
in the stack~otherwise the magnetization would have to re-
verse within the DW segments!; the dipole–dipole energy is
also lower for alternating displacements because the mag-
netic charges at the twin-boundary 90° DWs in this case
alternate in sign, and the MDW as a whole is magnetically
uncharged and does not generate a long-range magnetic field.
An important property of MDWs shown in Fig. 1 is that their
segments are coupled only by magnetostatic forces which are
relatively weak (h!1).

The orientation of the DW segments within the
c-domains in the (11̄0) oriented MDW is determined by two
parameters: the anisotropy of the exchange constantAC

5Cx /Cz and the parameterj5hd/d. If j!1, the DW ori-
entation is completely determined byAC . The surface ten-
sion of a DW is lowest when the DW aligns normal to the

8475J. Appl. Phys., Vol. 91, No. 10, 15 May 2002 K. D. Belashchenko and V. P. Antropov

Downloaded 27 Aug 2007 to 129.93.17.223. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



direction in whichC is lowest. The DW orientation is deter-
mined by competition of the surface tension and the total
DW area. Similar considerations apply to an antiphase
boundary in the polytwinned structure.17 If j@1, the DW
aligns parallel to the tetragonal axis minimizing the dipole
energy, andAC is irrelevant. The former case is typical for
CoPt and FePt at early stages of annealing, while FePd is
typically in the intermediatej*1 region from the very onset
of polytwinning. The (11̄0) MDW shown in Figs. 1~a! and
1~b! is in the crossover region withj;0.2 andAC51.

In conclusion, we found the equilibrium structure of
macrodomain walls in an ideal polytwinned magnet using a
microscopic approach with the MFA expression for the inho-
mogeneous free energy~5!. This structure turns out to be
rather unusual, with separate domain wall segments coupled
by magnetostatic forces. The resulting peculiarities of the
hysteretic phenomena will be discussed elsewhere.18

The authors are grateful to H. Kronmu¨ller, R. Skomski,
and V. G. Vaks for useful discussions. This work was carried

out at the Ames Laboratory, which is operated for the U.S.
Department of Energy by Iowa State University under Con-
tract No. W-7405-82. This work was supported by the Direc-
tor for Energy Research, Office of Basic Energy Sciences of
the U.S. Department of Energy.
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FIG. 1. Macrodomain walls in an idealXY stack withd564abct oriented

normal to:~a!,~b! (11̄0); ~c!,~d! ~001!. Twin boundaries are vertical at edges
and in the middle; axes at the top are shown for frames~a!,~b!. Panels
~a!,~c!: magnetizationM (r ); ~b!,~d!: dipole fields. Vectors are shown for
unit cells on a square grid with a four-cell edge. The length of a stick~up to
the center of the circle! is proportional to the vector projection onto the
graph plane; the diameter of a full~open! circle, to the positive~negative!
out-of-plane component. Small points at the end of long sticks show their
direction. The simulation boxes had 512312831 and 512312832 bct

cells for (11̄0) and~001! MDWs, respectively. Regions far from the MDW
at top and bottom were removed to conserve space.

FIG. 2. Area of an intersection of MDW with a twin boundary. Arrows show
mi for sites occupied by magnetic atoms. Points show the positions of non-
magnetic atoms. Two adjacent atomic layers of the bct lattice are projected
onto the plane of the graph. Arrows at margins show the approximate posi-
tions of DW segments at each side of the vertical twin boundary.
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