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Abstract Iron chlorosis can limit crop yield, especially on calcareous soil. Typical

management for iron chlorosis includes the use of iron fertilizers or chlorosis tolerant

cultivars. Calcareous and non-calcareous soil can be interspersed within fields. If chlorosis-

prone areas within fields can be predicted accurately, site-specific use of iron fertilizers and

chlorosis-tolerant cultivars might be more profitable than uniform management. In this

study, the use of vegetation indices (VI) derived from aerial imagery, on-the-go measure-

ment of soil pH and apparent soil electrical conductivity (ECa) were evaluated for their

potential to delineate chlorosis management zones. The study was conducted at six sites in

2004 and 2005. There was a significant statistical relationship between grain yield and

selected properties at two sites (sites 1 (2005) and 3), moderate relationships at sites 2 and 4,

and weak relationships at site 5. For sites 1 (2005) and 3, and generally across all sites, yield

was predicted best with the combination of NDVI and deep ECa. These two properties were

used to delineate chlorosis management zones for all sites. Sites 1 and 3 showed a good

relationship between delineated zones and the selected properties, and would be good

candidates for site-specific chlorosis management. For site 5, differences in the properties

between mapped zones were small, and the zones had weak relationships to yield. This site

would be a poor candidate for site-specific chlorosis management. Based on this study, the
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delineation of chlorosis management zones from aerial imagery combined with soil ECa

appears to be a useful tool for the site-specific management of iron chlorosis.

Keywords Iron chlorosis � Soil pH � Management zone delineation

Introduction

Much of the soil used for crop production in the Great Plains is derived from calcareous

parent material, resulting in carbonate accumulations that can lead to iron chlorosis in

crops. Excess carbonates in calcareous soil can raise soil pH and inhibit plant availability

of micronutrients such as iron and manganese (Kaspar et al. 2004; Thomas 1996). Certain

crops, such as soybean, maize and grain sorghum are particularly susceptible to iron

chlorosis under such conditions. Soil composition, environmental factors, and plant iron

deficiency response mechanisms influence the incidence of iron chlorosis. However, the

key underlying cause of iron deficiency on calcareous soil is limited iron uptake and

subsequent translocation and utilization within plants because of the high bicarbonate ion

concentration in the soil (Godsey et al. 2003; Mengel 1994). The primary effects of

bicarbonate are the neutralization of the H+ ion in the rhizosphere, the reduction of plasma

membrane activity of roots and an increase in root internal pH (Loeppert et al. 1994). As

soil solution pH and concentration of bicarbonate increase, the solubility of iron decreases

even though total iron in the soil might be substantial. In many cases, chlorotic leaves may

have higher Fe concentrations than non-chlorotic leaves. This suggests that Fe uptake by

roots and translocation in the plant is not a primary issue, but rather the blocking of Fe3+

reduction in plant tissue (Mengel 1994; Wallace et al. 1976).

Iron chlorosis symptoms in the Great Plains are often associated with high calcium

carbonate levels or soil that is poorly drained due to clay accumulation, with elevated

soluble salts and perhaps high sodium saturation (Loeppert and Hallmark 1985; Franzen

and Richardson 2000; Penas and Wiese 1990). Often calcareous and noncalcareous soil is

interspersed on a landscape, making uniform iron fertilizer application uneconomic. Foliar

application of iron fertilizers can correct iron deficiencies, but multiple applications are

often necessary which limit the economic feasibility of this approach. The most effective

stable iron chelate, FeEDDHA (ferric ethylenediamine di(o-hydroxyphenylacetate) cur-

rently costs about $69 ha-1 for a single soil or foliar treatment to provide 4.5 kg Fe ha-1.

Godsey et al. (2003) observed that FeSO4 . 7H2O seed row application increased maize

yield on soil with a high pH. Goos and Johnson (2000) found that selecting tolerant

cultivars provided a greater increase in yield than either FeEDDHA foliar spray or seed

treatment of soybean planted in narrow-rows on calcareous soil. Lingenfelser et al. (2005)

compared the use of different rates of iron sulfate fertilizers placed with the seed, iron

foliar spray, iron chelate seed treatment, plant residue levels and a resistant genotype, and

concluded that the use of a resistant genotype appeared to be the most effective treatment

to reduce iron deficiency of soybean in Kansas. Many studies concur that the use of

chlorosis-tolerant varieties of both maize and soybean is the most practical approach of

avoiding iron deficiency on calcareous soil (Hansen et al. 2003; Imas 2000).

When calcareous and non-calcareous soils are interspersed in a landscape, uniform

treatments with soil or foliar application of iron fertilizers or the planting of chlorosis-

resistant cultivars might not be the most profitable approach. It will depend on the relative

ratio of chlorosis-prone areas in the field to the rest of the field. With the advent of
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site-specific crop management technologies, targeted chlorosis management is now possible

and might result in increased profitability, provided that chlorosis-prone areas within a field

are relatively stable and predictable. Technology now exists for on-the-go measurement of

soil pH and apparent electrical conductivity (ECa) at a high spatial density (Adamchuk et al.

2007), which might be useful for delineating the areas of fields most prone to iron chlorosis.

Soil ECa is also a potential tool for assessing soil properties related to iron chlorosis, such as

salinity, texture, and moisture (Hartsock et al. 2000; Williams and Hoey 1987). On-the-go

measurement of soil pH can provide accurate maps of areas within fields with elevated pH,

and in particular areas that might have free carbonates in the root zone.

Chlorosis can be identified by leaf color, therefore remote sensing of the growing crop

may be used to detect its presence in a crop. Remote sensing methods for growing crops

are based on reflectance measurements that indicate the photosynthetic activity of vege-

tation. Vegetation indices (VI) calculated from high resolution natural color and near-

infrared (NIR) aerial photographs might be useful for detecting chlorosis and delineating

chlorosis-prone areas within a field. The normalized difference vegetation index (NDVI)

(Rouse et al. 1974) is the most widely used index to examine the accumulation of green

biomass as well as photosynthetically active radiation, and it has been related to certain

vegetation signatures and conditions (Adams et al. 2000; Bastiaanssen et al. 2000; Tucker

1979). The green normalized difference vegetation index (GNDVI), described by Gitelson

and Merzylak (1996), substitutes reflectance in green wavelengths for red in the NDVI

equation. Research with crops that have a large biomass such as maize has shown that

GNDVI is more strongly associated with variability in leaf chlorophyll, nitrogen content

and grain yield than NDVI (Shanahan et al. 2001).

Since leaf iron concentration is strongly correlated with leaf chlorophyll content and

leaf reflectance (Mariotti et al. 1996), aerial imagery, vegetation indices, soil information

and the farmer’s experience might be of value in delineating chlorosis management zones.

In zones prone to iron chlorosis the use of seed-applied iron fertilizer, chlorosis-tolerant

cultivars, or foliar application of iron fertilizer might be profitable, whereas their use over

the entire field might not be so.

The objectives of this study are to investigate the potential use of information at a high

spatial density (aerial imagery, on-the-go pH and ECa) to delineate iron chlorosis man-

agement zones for crops such as soybean and maize that are sensitive to iron chlorosis

stress. These spatial data layers were chosen as they are also related to crop yield potential

(Dobermann and Ping 2004; Fraisse et al. 2001; Johnson et al. 2003).

Materials and methods

Site description

The study was conducted in 2004 and 2005 on five fields in central and western Nebraska

(Fig. 1). All sites were irrigated; sites 1, 2 and 5 were furrow-irrigated, and sites 3 and 4

were irrigated with center-pivot sprinkler systems. Site 1 was used in both 2004 and 2005.

Table 1 gives the field size and soil taxonomic descriptions of soil series present at each

site. At all sites, cooperating farmers planted part or all of the field to a maize hybrid

considered to have good yield potential, but is susceptible to iron chlorosis—P34N42

(Pioneer Hi-Bred International, Johnston, IA, USA). In addition, site 1 was also planted to

soybean in 2005—a crop that is more sensitive to iron chlorosis than maize.
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Soil measurements

Soil surface pH and ECa were measured in April 2004 and April 2005 using a Veris Mobile

Sensor Platform equipped with Veris� EC Surveyor
TM

3150, and the Soil pH Manager
TM

(Veris Technologies, Salina, Kansas, USA1). Measurements were made at a density of

approximately 7–12 samples ha-1 for pH and 106–190 measurements ha-1 for ECa. Soil

pH samples were taken at 10–12 s intervals on an approximate swath-width of 15–20 m,

resulting in samples being typically 20–25 m apart. Soil ECa was measured to a depth of

approximately 30 cm for shallow ECa (ECas), and about 90 cm for deep ECa (ECad). Soil

samples for pH were taken at a fixed depth of 5–10 cm. The data were georeferenced with

a DGPS (Differential Geographic Positioning System) receiver (GPS 16 HVS, Garmin

International, Inc., Olathe, Kansas, USA) with WAAS (Wide Area Augmentation System)

differential correction and stored in a data logger.

Aerial imagery

Natural color and near-infrared aerial photographs, which were georeferenced and ortho-

rectified to remove topographic distortion, were provided by Cornerstone Mapping Inc.,

Lincoln, Nebraska, USA. Photographs with a resolution of 0.3 m 9 0.3 m were taken

during crop vegetative growth stages on 18 July 2004 and 28 July 2005.

Yield mapping

For all sites, maps of grain yield were provided by the producers. Prior to harvesting the

study area each yield monitor was calibrated according to the manufacturer’s specifications

and producer’s experience. Raw yield data were processed with SMS Advanced 5.52

software (Ag Leader Technology, Inc, Ames, IA, USA), and yield measurement errors

were removed by Yield Editor 1.01 software (USDA-ARS, Cropping Systems and Water

Quality Unit, University of Missouri-Columbia, Columbia, Missouri, USA) (Sudduth and

Drummond 2007). To be consistent for all sites, minimum and maximum acceptable values

were set at 1.88 and 17.57 Mg ha-1, respectively, for maize and 0.31 and 3.77 Mg ha-1,

respectively, for soybean, and the standard deviation filter was set at 4 standard deviation

intervals above or below the mean yield.

Fig. 1 Study locations within Nebraska, USA

1 Mention of tradenames does not imply endorsement by the University of Nebraska.
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Data processing

Data interpolation

Aerial photographs of the study sites were re-sampled from 0.3 m 9 0.3 m to 2 m 9 2 m

resolution by the nearest-neighbor method using ENVI 3.2 image analysis software (RSI—

Table 1 Study locations and associated soil types, 2004 and 2005

Site
ID

County Year Field
size
(ha)

Soil
symbol

Soil name Soil description

1 Merrick 2004
2005

31 Cg Caruso-Gayville
complex

Fine-loamy, mixed, mesic, Fluvaquentic
Haplustolls

Gc Gayville-Caruso
complex

Fine, montmorillonitic, mesic,
Leptic Natrustolls

Gg Gibbon loam Fine-silty, mixed (calcareous), mesic,
Fluvaquentic Haplaquolls

Jm Janude sandy
loam

Fine-silty, mixed, mesic Typic Haplaquolls

Le Leshara silt loam Fine-silty, mixed, mesic Typic Haplaquolls

Nv Novina sandy
loam

Coarse-loamy, mixed, mesic Fluvaquentic
Haplustolls

2 Lincoln 2004 27 Lc Lawet silt loam,
drained

Fine-loamy, mixed, superactive, mesic
Typic Calciaquolls

3 Chase 2004 55 Af Altvan loam Fine-loamy over sandy or sandy-skeletal,
mixed, mesic Aridic Argiustolls

Oaf Otero-Canyon
loams

Coarse-loamy, mixed (calcareous), mesic
Ustic Torriorthents

RtB/C Rosebud-Canyon
loam

Fine-loamy, mixed, mesic Aridic Argiustolls

RsB Rosebud loam Fine-loamy, mixed, superactive, mesic
Calcidic Argiustolls

4 Chase 2004 95 AsB Ascalon fine
sandy loam

Fine-loamy, mixed, superactive, mesic
Aridic Argiustolls

Gh Goshen silt loam Fine-silty, mixed, superactive,
mesic Pachic Argiustolls

RtB/C Rosebud-Canyon
loam

Fine-loamy, mixed, mesic Aridic Argiustolls

TaB Tassel-Duda
loamy sands

Loamy, mixed (calcareous), mesic, shallow
Ustic Torriorthents

WpB Woodly fine
sandy loam

Fine-loamy, mixed, mesic Pachic Argiustolls

5 Merrick 2005 16 Cg Caruso-Gayville
complex

Fine-loamy, mixed, mesic, Fluvaquentic
Haplustolls

Gg Gibbon loam Fine-silty, mixed (calcareous), mesic
Fluvaquentic Haplaquolls

Jm Janude sandy
loam

Coarse-loamy, mixed, mesic Cumulic
Haplustolls

Nv Novina sandy
loam

Coarse-loamy, mixed, mesic Fluvaquentic
Haplustolls
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Remote Sensing Exploitation Platform, Research Systems, Inc., Boulder, Colorado, USA).

Pre-processed grain yield, ECas, ECad, pH, NDVI and GNDVI data were imported into

Surfer� 8.0 software (Golden Software Inc., Golden, Colorado, USA) and interpolated

using the inverse squared distance method to a 10 m 9 10 m grid with UTM (Universal

Transverse Mercator) coordinates.

Statistical analysis

Linear and quadratic relationships between measured grain yield and data layers of ECas,

ECad, Veris pH, NDVI and GNDVI were examined using the general linear models (GLM)

procedure (SAS v 9.1, SAS Institute, Inc., Cary, NC, USA). Regression analyses were done

to determine the properties with the strongest relationship to yield, on a site-by-site basis as

well as across all sites. This was followed by successive analyses to determine the layers

with the second, third, fourth and fifth strongest relationships with yield. This was done

site-by-site and across all sites, and was used to determine the relative value of including

additional layers for predicting grain yield.

Management zone classification

Two layers (NDVI and ECad) were selected as having collectively the strongest rela-

tionship to grain yield across sites. Data from these two layers were used to delineate the

management zones. To scale yield equally across sites and years, it was standardized to

zero mean and unit variance (observed yield was subtracted from the annual mean, and

then divided by the standard deviation) (Ferguson et al. 2003). These data were analyzed

by the Management Zone Analyst software (MZA 1.0.1, University of Missouri-Columbia,

Columbia, Missouri, USA) (Fridgen et al. 2004). The measure of similarity (Euclidean

distance) and the fuzziness exponent (1.30) were left at the default values. Post classifi-

cation analysis within MZA provided two performance indices, Normalized Classification

Entropy (NCE) and Fuzziness Performance Index (FPI). The NCE determines the amount

of disorganization created by dividing the data into classes (Lark and Stafford 1997) and

FPI is a measure of membership sharing (fuzziness) among classes (Odeh et al. 1992). The

best classification was determined when NCE and or FPI were at a minimum, representing

the least membership sharing (FPI) or greatest amount of organization (NCE) as a result of

the clustering process (Fridgen et al. 2004).

Results and discussion

Property selection

Grain yield is used as the primary indicator of the degree of chlorosis pressure in this study.

Although many factors can influence yield potential, for these irrigated sites Fe chlorosis

was the primary yield-limiting factor after water, nitrogen and phosphorus, which were

applied at recommended rates. Soil Fe concentration is not a good predictor of the potential

for pH-induced iron chlorosis, and plant tissue Fe concentrations do not indicate the

presence or absence of pH-induced iron chlorosis accurately (Mengel 1994; Wallace et al.

1976). Observations made during the growing season confirmed that symptoms of iron
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chlorosis were present in plants in areas of reduced yield. Table 2 gives the ability of each

selected property to predict grain yield. The relationship of some properties to grain yield

is relatively strong at sites 1 (2005) and 3, moderate for some properties at sites 2 and 4,

and weak for most properties at site 5. Site 1 had non-existent relationships between

properties and yield in 2004, but good relationships with most properties in 2005. Only a

portion of the field was used for the study in 2004, whereas the entire field was used in

2005. Also, soybean was planted at site 1 in 2005 which is more sensitive to chlorosis

pressure than maize, which was planted at site 1 in 2004. Across all sites, NDVI and

GNDVI were found to be the two parameters most related to grain yield. In a second

analysis, both linear and quadratic terms of NDVI and GNDVI were included in the model

to determine which other properties have the next greatest ability to predict yield. Deep

ECa has the next greatest additional ability to predict yield across all sites after either

Table 2 Linear regression coefficients of mapped properties to grain yield—R2

Parameter Site 1 2004 Site 1 2005 Site 2 Site 3 Site 4 Site 5

pH 0.02 0.19 0.01 0.02 0.05 0

ECas 0.01 0.50 0.03 0.36 0.09 0

ECad 0.01 0.53 0.02 0.33 0.25 0.01

NDVI 0.01 0.66 0.20 0.63 0.26 0.15

GNDVI 0.00 0.67 0.38 0.59 0.15 0.19

With inclusion of pH in model

ECas 0.02 0.51 0.04 0.36 0.11 0.00

ECad 0.02 0.53 0.03 0.33 0.25 0.00

NDVI 0.02 0.68 0.22 0.64 0.27 0.15

GNDVI 0.02 0.68 0.40 0.60 0.17 0.20

With inclusion of ECas in model

pH 0.02 0.51 0.04 0.36 0.11 0.00

ECad 0.01 0.54 0.03 0.36 0.28 0.02

NDVI 0.01 0.72 0.23 0.65 0.32 0.15

GNDVI 0.01 0.71 0.41 0.62 0.27 0.20

With inclusion of ECad in model

pH 0.02 0.53 0.03 0.33 0.25 0.00

ECas 0.01 0.54 0.03 0.36 0.28 0.02

NDVI 0.01 0.73 0.21 0.65 0.41 0.15

GNDVI 0.01 0.72 0.40 0.63 0.36 0.20

With inclusion of NDVI in model

pH 0.02 0.68 0.22 0.64 0.27 0.15

ECas 0.01 0.72 0.23 0.65 0.32 0.15

ECad 0.01 0.73 0.21 0.65 0.41 0.15

GNDVI 0.01 0.67 0.45 0.64 0.31 0.20

With inclusion of GNDVI in model

pH 0.02 0.68 0.40 0.60 0.17 0.20

ECas 0.01 0.71 0.41 0.62 0.27 0.20

ECad 0.01 0.72 0.40 0.63 0.36 0.20

NDVI 0.01 0.63 0.45 0.64 0.31 0.20
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NDVI or GNDVI. In successive analyses, NDVI or GNDVI with ECad and their cross-

products were included in the model to determine the third, fourth and fifth most important

properties in predicting yield. Although other properties in the yield prediction model were

statistically significant, this was due to the large number of observations at each site.

Therefore, we decided that they did not substantially improve our ability to predict yield.

Since GNDVI and NDVI, as well as ECad and ECas, are auto-correlated, we investigated

which combinations of these properties provided the most accurate prediction of yield. The

combination of NDVI and ECad is the best combination of properties for predicting grain

yield across all six sites, and in particular at sites 1 (2005) and 3. These were the two

properties used in MZA to delineate chlorosis management zones.

Zone delineation

Sites 1 (2005) and 3 are the only two sites at which the NDVI-ECad model could predict

yield with reasonable accuracy (Table 2). Figure 2 illustrates the relationship of chlorosis

zones to grain yield for site 1 (2005). In general, the northern part of this field can be

considered chlorosis-prone. This area generally coincides with the Gibbon loam (Gg) and

Gayville-Caruso (Gc) soil series (Fig. 3). Both soil series are somewhat poorly drained,

with salt accumulation in the Gayville series occasionally causing dispersion of the soil

colloids (classified as Leptic Natrustolls). The relationship between the chlorosis zones and

grain yield for site 3 is shown in Fig. 4. The chlorosis zones at this site are more scattered

than for site 1 and show less coincidence with any specific soil series (Fig. 5). Figures 2–5
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Fig. 2 Chlorosis-prone area (a) (zone 1, gray shading) delineated from the combination of ECad and NDVI,
and soybean yield (b), site 1 (2005)
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show that, for both sites, the chlorosis-prone zones coincided with visual observations of

chlorosis during the growing season.

Table 3 gives mean values for properties within the chlorosis zones. Basing the

delineation of chlorosis zones on the combination of NDVI and ECad resulted in sites 1

(2004) and 5 having a slightly larger yield in the chlorosis-prone zone 1. At both of these

sites there are no substantial differences in vegetation indices between zones. For site 1 in

both 2004 and 2005, the chlorotic zone 1 has a slightly higher pH, and considerably larger

ECa at both depths, than the non-chlorotic zone 2. For site 2, soil pH and ECa at both

depths are only slightly higher for the chlorotic zone 1, with no difference in vegetation

indices. For sites 3 and 4, pH is slightly higher for the chlorotic zone 1, but ECa at both

depths is larger for the non-chlorotic zone 2. Sites 3 and 4 are characterized by somewhat

coarse and quite shallow soil. At these sites, larger ECa indicates greater clay content and

yield potential, compared to sites 1 and 5 where larger ECa generally indicates salt

accumulation because of poorly drained soil and thus a lower yield potential.

Fig. 3 Aerial photograph of site 1 (2005), with soil series boundaries superimposed
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Site 1 was planted with maize in 2004 and with soybean in 2005; the latter crop is more

sensitive than maize to iron chlorosis. A larger part of the field was also used for the study

in 2005. The more sensitive crop and greater area provided a strong relationship in 2005

between grain yield and chlorosis zones, while there was little relationship in 2004 between

mapped properties and grain yield. However, chlorosis zones based on NDVI-ECad in

2004 showed a similar relationship to the zones mapped in 2005 (Fig. 6). This suggests that

chlorosis zones might be stable across years, and could be a useful aid for improved

management in future years.
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Fig. 4 Chlorosis-prone area (a) (zone 1, gray shading) delineated from the combination of ECad and NDVI,
and maize yield (b), site 3

Fig. 5 Aerial photograph of site 3 with soil series boundaries superimposed. The study area is outlined with
a solid line
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Economic considerations

The total area in site 1 (2005) is 30.8 ha. The area mapped as chlorosis-prone is 13.1 ha

(42.7%), and 17.7 ha is mapped as not chlorosis-prone. Assuming a cost of $69 ha-1 for a

Table 3 Mean values of mapped properties within delineated chlorosis management zones. Mean pairs
with * are not significantly different (p = 0.05)

Site Year Zone Yield
(Mg ha-1)

pH ECa shallow
(mS m-1)

ECa deep
(mS m-1)

NDVI GNDVI

1 2004 1 14.0 8.3 10.4 50.3 0.23* 0.27*

2 13.8 7.8 3.7 18.8 0.23* 0.27*

1 2005 1 1.3 8.0 11.7 60.0 0.12 0.09

2 2.1 7.7 4.6 25.3 0.24 0.17

2 2004 1 9.3 8.0 5.6 23.4 0.28* 0.29*

2 9.9 7.9 5.1 20.5 0.28* 0.29*

3 2004 1 7.7 7.8 7.9 20.3 0.21 0.26

2 10.3 7.7 10.5 27.1 0.26 0.29

4 2004 1 13.3 7.5 4.2 16.5 0.28 0.30

2 14.2 7.3 5.9 22.3 0.30 0.31

5 2005 1 11.9 7.5 8.6 52.5 0.20 0.15

2 11.8 7.4 3.5 19.4 0.18 0.14

Zone 1 is classified as chlorosis-prone

Site 1 planted to maize in 2004, soybean in 2005
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a bFig. 6 Chlorosis-prone areas for
site 1 (shaded gray): maize in
2004 (a), and soybean in 2005
(b), delineated from the
combination of ECad and NDVI.
The 2004 study area is shown
with a dotted line
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single soil application of 4.5 kg Fe ha-1, Fe fertilizer application to the chlorosis-prone

area of the field only would save $1221. This does not reflect any yield increase because of

Fe application in the chlorosis-prone area of the field. For the study, 4.5 ha of site 3 is

classified as chlorosis-prone (41.3%), whereas 6.4 ha is non-chlorotic. Applying Fe fer-

tilizer only to the chlorotic-prone zone in the study area for site 3 would save $441. These

analyses assume there would be no economic benefit from Fe fertilizer application to non-

chlorotic areas of the field.

Conclusions

Two of the six sites examined in this study showed significant potential for the delineation

of chlorosis management zones. At these sites, the combination of NDVI and ECad was the

most useful for delineating chlorosis zones. Although the statistical relationship between

the mapped properties and grain yield at site 1 (2004) was weak, chlorosis zones mapped

based on NDVI-ECad were basically the same as those mapped the following year at the

same site. The similarity in mapped zones for site 1 in 2004 and 2005 suggests that there is

potential for chlorosis management zones to be useful for several years, but this needs to be

evaluated at more sites and over longer time periods.

The economic impacts of knowing where management for chlorosis is appropriate can

be significant. For example, assuming a cost of $69 ha-1 for a soil application of

4.5 kg Fe ha-1, site-specific Fe fertilizer application for site 1 would save $1221, without

accounting for any potential increase in yield with this application in chlorosis-prone areas.

Based on this study, we believe that sites 1 and 3 would be good candidates for site-

specific chlorosis management practices. Two of the sites (sites 2 and 4) had moderate

differences in properties between mapped zones and would be marginal candidates for site-

specific chlorosis management, whereas site 5 had weak relationships between mapped

properties and yield, and would not be a good candidate for site-specific chlorosis man-

agement. The combination of aerial imagery and soil ECa information provides a good

basis for delineating chlorosis-prone areas within fields. Although NDVI and GNDVI were

the properties most significantly related to yield in this study, the combination of ECad

with NDVI in the delineation process improved our ability to predict yield and insured that

areas of reduced yield were associated with Fe chlorosis. Evaluation of site-specific

chlorosis management on these and other sites is needed to investigate the agronomic and

economic benefits of delineating chlorosis-prone zones.
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