
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Anthony F. Starace Publications Research Papers in Physics and Astronomy 

1-21-2009 

Analytic formulae for high harmonic generation Analytic formulae for high harmonic generation 

M. V. Frolov 
Voronezh State University, Russia 

N. L. Manakov 
Voronezh State University, manakov@phys.vsu.ru 

T. S. Sarantseva 
Voronezh State University, Russia 

Anthony F. Starace 
University of Nebraska-Lincoln, astarace1@unl.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/physicsstarace 

 Part of the Physics Commons 

Frolov, M. V.; Manakov, N. L.; Sarantseva, T. S.; and Starace, Anthony F., "Analytic formulae for high 
harmonic generation" (2009). Anthony F. Starace Publications. 165. 
https://digitalcommons.unl.edu/physicsstarace/165 

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Anthony F. Starace 
Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/physicsstarace
https://digitalcommons.unl.edu/physicsresearch
https://digitalcommons.unl.edu/physicsstarace?utm_source=digitalcommons.unl.edu%2Fphysicsstarace%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.unl.edu%2Fphysicsstarace%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/physicsstarace/165?utm_source=digitalcommons.unl.edu%2Fphysicsstarace%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages


1. Introduction 

Exactly solvable models play a key role in understand-
ing intense laser–atom phenomena. Especially attractive 
are those for which the final results have a simple analytic 
form, thereby providing the explicit dependence of exper-
imentally measurable quantities on key parameters. The 
Keldysh formula for tunnelling ionization [1] is one such 
example. However, no such simple analytic formula ex-
ists for high-order harmonic generation (HHG), which is 
a more complex process. In particular, ionization repre-
sents only the initial step of the commonly accepted three-
step scenario [2–4]. Semi-analytical quantum analyses of 
the HHG process that confirm this scenario are based pri-
marily upon two alternative approaches: (i) the use of 
some version of the strong field approximation, includ-
ing quasiclassical analyses in terms of electron trajectories 
(or quantum orbits) (cf. [5] for a review); or (ii) the use of 
some exactly solvable quantum model for the HHG prob-
lem. One such model (cf. [6, 7]) is based upon the exact so-
lution of the time-dependent Schrödinger equation for an 
electron in both a zero-range potential (ZRP) and a strong 
laser field [8]; another, more general model (cf. [9]) is based 
on the time-dependent effective range (TDER) theory [10], 
within which the ZRP model is a special case (for bound 
s states and an effective range parameter of zero). Among 
other semi-analytical HHG studies, we note the quantum 
analysis of [11], which supports the three-step scenario us-
ing a quasiclassical approach. Although Coulomb effects 
are usually neglected in semi-analytical analyses, such 
short-range potential model results in many instances ex-
hibit good qualitative agreement with numerical results for 
neutral atoms [5, 12]. However, all semi-analytic HHG the-

ories (even the most simplified) require in a final step the 
numerical evaluation of one or more complicated tempo-
ral integrals. 

An important extension of the three-step HHG scenario 
consists of the ad hoc factorization of the rate for generating 
the Nth harmonic, (EΩ) (where EΩ = ħΩ = Nħω),

(EΩ) =W(E)σ(r)(E),     E = EΩ –|E0|,            (1) 

in terms of the photorecombination cross section, σ(r)(E), 
of an active electron having energy E = EΩ –|E0|(where 
E0 is its initial bound state energy) and an “electron wave 
packet,” W(E), corresponding to the first two steps of the 
three-step scenario (i.e., ionization and propagation). The 
parametrization (1) was proposed in 2004 [13] for tomo-
graphic imaging of molecular orbitals (using the Born ap-
proximation result for σ(r)(E)) and has recently been the 
subject of numerous detailed studies [14–17]. Although 
these recent studies support the factorization (1) and show 
that the energy dependence of the “electron wave packet” 
W(E) is largely independent of the target atom (based upon 
both experimental measurements and numerical solutions 
of the time-dependent Schrödinger equation for a single ac-
tive electron), the analytic structure of the function W(E) re-
mains a “black box.” Hence an analytic justification for the 
parametrization (1) as well as an explicit form for W(E) is 
very desirable, even for an atomic system that may be re-
garded as a special case. 

In this paper we derive surprisingly simple analytic for-
mulae (involving a single Airy function) for the amplitudes 
and rates of harmonics generated by an electron bound in 
a short-range potential that provide excellent agreement 
with exact TDER results over the high energy part of the 
HHG plateau (and beyond). These results provide a quan-
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tum justification for the classical three-step HHG scenario 
as well as a correction to the well-known classical law for 
the position of the HHG plateau cutoff. They also confirm 
the parametrization (1), show the insensitivity of W(E) to 
the orbital symmetry (i.e., the angular momentum) of the 
bound electron wavefunction, and provide clear explana-
tions for various qualitative features of HHG spectra, such 
as (i) the dependence of the oscillatory patterns of HHG 
rates in the plateau region on the harmonic number N, (ii) 
the dependence of the oscillatory patterns of the rate for 
the Nth harmonic on the laser parameters and (iii) the de-
pendence of the rates on the orbital angular momentum, l, 
of the bound electron. 

2. Theory 

We consider a single active electron in a bound state ψκlm(r) 
= Rκl(r)Yl,m(r̂), having angular momentum l and energy E0 
= –(ħκ)2/(2m), that interacts with a monochromatic laser 
electric field F(t) = ẑ F cos ωt, where F and ω are the field 
amplitude and frequency. Employing our recently devel-
oped ab initio quantum formulation for the HHG ampli-
tude [18], the rate (l)(EΩ) is 

 (2) 

Here χN
(m) (F, ω) is the HHG amplitude, which can be 

expressed in terms of the complex quasienergy of the elec-
tron in both the laser field F(t) and a weak (probe) field of 
frequency Ω. Within the framework of TDER theory (i.e. 
assuming an electron bound by short-range forces that has 
only a single bound state, ψκlm(r), dynamically interacting 
with the three-dimensional continuum), the explicit form 
of χN

(m) (F, ω) is given in [9]. Moreover, the analysis in [9] 
shows that (i) the partial rate with zero projection m of the 
angular momentum in the direction of linear laser polariza-
tion gives the dominant contribution to the rate (2) and (ii) 
for low frequencies, the exact TDER results are in perfect 
agreement with those in the quasiclassical approximation. 

The subject of this paper is an analytical evaluation of 
the quasiclassical result for the HHG amplitude, to which 
our exact quantum TDER result [9] reduces in the limit ħω 
 |E0|. To simplify the notation, in the rest of this theo-
retical section we use scaled units (su), in which energies 
and ω are measured in units of |E0|and |E0|/ħ respec-
tively and laser field amplitudes, F, are given in units of F0 
= (2m|E0|3)1/2/|e|ħ. In these units, our quasiclassical re-
sult for χN (F, ω) for the cases of initial s (l = 0) and p (l = 1, 
m =0) states can be presented as follows [9]: 

 

 (3)

where pt = –(F/ω) sin ωt, Pn = (nω – 1 – up)1/2, up = F2/(2ω2) 
= (e2F2)/(4mω2) (in absolute units) is the ponderomotive en-
ergy, and the classical action, S(Pn,t), and the amplitude, 

l,n, are defined by 

(4) 

where Cκl is the coefficient in the asymptotic form (in abso-
lute units) of ψκlm(r) ≈ Cκlr–1 exp(–κr)Yl,m(r̂) for r  κ–1. The 
time t0 in (3) and (4) is the root of the saddle point equation, 
(Pn – ptν )2 + 1 = 0, having positive imaginary part and the 
smallest value of Re tν. As discussed in [9], for s states our 
result (3) coincides with that obtained in [11] by an alterna-
tive quantum analysis of the HHG amplitude, represented 
in terms of the Fourier coefficients of a field-induced dipole 
moment. 

In order to evaluate expression (3), we first replace the 
sum over n by an integral over the active electron’s mo-
mentum, p, using the following substitutions: 

 (5)

Introducing the new variables, k = γp and τ = ωt, expression 
(3) has the form 

(6)

where γ = ω/F = [( 2m|E0|]1/2ω)/(|e|F) (in absolute units) 
is the Keldysh parameter, 

(7) 

In terms of γ, τ0 satisfies the equation, (k + sin τ0)2 + γ2 = 0, 
or 

sin τ0 = –iγ – k.                                                      (8) 

For later use, we note also the following results for the de-
rivatives ∂τ0/∂γ and ∂τ0/∂k, 

∂τ0/∂γ = –i/cos τ0,    ∂τ0/∂k = –1/cos τ0.              (9) 

For γ → 0 (i.e. in the strong field, or tunneling, limit), 
both integrals in (6) are highly oscillatory, so that sad-
dle point methods may be used to evaluate them. Saddle 
points for the integral over k are given by the equation, ∂(k, 
τ)/∂k = 0, or 

k = (cos τ – cos τ0)/(τ – τ0),                                (10) 

while those for the integral over τ in (6) satisfy the equa-
tion, ∂Φ(k, τ)/∂τ = 0, or 

Ω – 1 = γ–2(k +sin τ)2 .                                        (11) 

We consider first the exact saddle-point equations (8), (10), 
and (11) to lowest order in γ. According to (8), τ0 ≈ τ̃ 0 for 
this case, where sin τ̃ 0 = –k, while k is given by (10) after 
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substituting τ0 → τ̃ 0. We then eliminate k by substituting k 
= –sin τ̃ 0 in (10) and (11) to obtain the following system of 
two coupled equations, 

–sin τ̃ 0 =(cos τ – cos τ̃ 0)/(τ – τ̃ 0),                  (12) 

Ω – 1 = γ–2(sin τ – sin τ̃ 0)2 ,                            (13) 

for two characteristic times (in units of ω–1), τ̃ 0 and τ, corre-
sponding (in the three-step HHG model) to the moments of 
ionization and recombination of the active electron. Equa-
tions (12) and (13) coincide with the classical equations for 
a free electron in the laser field, moving along a closed tra-
jectory: equation (12) determines the time τ at which the 
electron, starting at the time τ̃ 0 from some point r, returns 
to the same point r, while the right-hand side of (13) gives 
the energy, cl(τ), gained by the electron from the laser field 
over the time interval (τ – τ̃ 0) [6]. (Note that the appearance 
of classical features in our quantum analysis of the HHG 
amplitude is not surprising since the classical equations 
(12) and (13) arise from treating in (7) the classical action, 

 (14)

for real t0 (= τ̃ 0).) An analysis of the classical equations (12) 
and (13) in section V of [6] shows that the function cl(τ) = 
γ–2(sin τ – sin τ̃ 0)2 has the famous maximum, 

cl
max ≡ max cl(τ) = γ–2 sin2(τcl/2) ≈ 3.173 up,       (15)

at τ = τ̃ (cl) = τ̃cl/2 – π/4 and τ̃0 = τ̃0
(cl) = –τcl/2 – π/4, where 

τcl = τ̃ (cl) – τ̃ 0
(cl) ≈ 4.086 is the return time along a closed 

trajectory. 
The zeroth-order (in γ) approximation for k(k = –sin τ̃ 0) 

is not sufficiently accurate for the saddle-point evaluation 
of the integral over k in (6). We thus expand the right-hand 
side of (10) up to terms ~γ2,using (8) and (9), to obtain 

(16)

Substituting k → k̃ into Φ(k, τ) (and k → –sin τ̃ 0 otherwise) 
and using the lowest-order (in γ) expression for the second 
derivative of (k, τ), 

 (17)

the saddle-point integration over k in (6) gives 

 (18)

The integration over τ in (18) requires a more detailed anal-
ysis of Φ(k̃, t), taking into account high-order corrections in 
γ. Substituting k → k̃ into γ2(τ) = (k + sin τ)2 and expanding 
the result in γ up to terms ~γ2, we obtain 

(19) 

The maximum value of (τ) can be found by setting τ = τ̃ (cl) 
and τ̃ 0 = τ̃ 0

(cl) in (19) 

max ≡ max  (τ)  ≈ cl
max + Δ,                           (20)

where Δ is given by δ(τ) in (19) at τ = τ̃ (cl), τ̃ 0 = τ̃ 0
(cl) and 

can be represented as 

Δ = –(∂τ̃ 0/∂τ)|τ = τ̃ (cl)   ≈ 0.324.                        (21) 

(Note that the quantum correction Δ = 0.32 to cl
max in the 

limit γ → 0 was obtained also in [4] within the saddle-point 
approximation. In addition, there it was shown that this 
correction slowly decreases with decreasing intensity, e.g., 
Δ  0.27 at γ = 1.) 

Near its maximum (at τ = τmax ≈ τ̃ (cl)), the energy (τ) is 
approximated as 

(τ) ≈ ̃(τ) = max – δ(τ  – τ̃ (cl))2/γ2 ,                 (22) 

where the dispersion parameter δ (to lowest order in γ) is 

δ = –(½)γ2″cl(τ̃
(cl)) ≈ 1.072.                              (23) 

(The quantum corrections ~ γ2 to τmax and δ and the correc-
tion ~ γ2 to Δ also have a closed analytic form; however, be-
cause they give negligible contributions to the final results, 
we do not present them here.) Using (22) and a relation fol-
lowing from (7), 

 (24)

the function Φ(k̃, τ) in (7) is approximated by a cubic poly-
nomial in τ 

 (25) 

The τ-independent factor Φ0 is related to Φ(k̃, τ0) (cf. (14)): 
Φ0 = (Ω/ω)τ̃ (cl) + S(k̃, τ0) – S(k̃, τ̃ (cl)). Taking into account 
the correction ~γ to τ̃ 0 using (8) and (9) (τ0 =τ̃ 0 – iγ/cos τ̃ 0, 
where cos τ̃ 0 ≈ cos τ̃ 0

(cl) = –0.95 ...), Φ0 may be presented as 

(26)

Finally, using (25) and (26) and substituting τ̃ 0 → τ̃ 0
(cl), 

(τ – τ̃ 0) → τcl,(sin τ – sin τ̃ 0) → γ(Ω – 1)½ in the integrand 
of (18), the integral over τ can be expressed in terms of the 
Airy function, Ai(x), so that χN takes the form 

 (27) 
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3. Analytic three-step formula for HHG rates and 
discussion 

Converting χN in (27) from scaled to absolute units and 
substituting the result into (2), the HHG rate takes the fol-
lowing analytic form: 

 (28) 

where 

(29)

Figure 1 compares results of the analytic formula (28) with 
exact numerical evaluation of the amplitude (3) for the cases 
of HHG in the negative ions H– and F–. One sees that for 
harmonic energies at the high energy end of the HHG pla-
teau, as well as beyond the plateau cutoff, the agreement of 
the analytic and the exact numerical results is excellent. Note 
that (28) correctly predicts the rate for the cutoff harmonics 
even for the case when γ (= 0.60 for H– and 0.53 for F–) is not 
small. This fact is similar to that for the Keldysh tunneling 
rate, which also was derived for small γ, but which in prac-
tice has been found to provide reasonable rates up to γ < 1. 

The analytic formulae (27) and (28) allow one to obtain a 
number of general results, which we discuss in turn. First, 
since Ai(ξ) decreases rapidly for positive ξ and oscillates for 
ξ < 0, the plateau cutoff, EΩ

max, follows by equating the ar-
gument of Ai(ξ) in (28) to the position ξ1 (≈ –1.019) of the 
first maximum of Ai(ξ) for ξ < 0 

EΩ
max = cl

max + [1 + Δ – |ξ1|δ1/3(F/F0)2/3]|E0|,     (30) 

where |ξ1|δ1/3 ≈ 1.08. For Δ = δ = 0, (30) reduces to the clas-
sical cutoff law [2, 3, 6], 

EΩ
max = cl

max +  |E0|,                                                 (31) 

while if one retains only the correction Δ, one obtains the 
cutoff law predicted in [4] 

EΩ
max = cl

max +  (1 + Δ)|E0|.                                    (32) 

The field amplitude (Fcr) at which the corrections ~δ and Δ 
in (30) approximately compensate each other is Fcr ≈ 0.17 
su or Fcr ≈ 0.24(|E0|/Eat)3/2Fat in absolute units, where Fat 
= m2|e|5/ħ4   5.14 × 109 V cm–1. For H– and F–, Fcr corre-
sponds to intensities of about 4 × 1010 and 4 × 1012 W cm–2, 
respectively. This approximate compensation explains why 
the classical result (31) is in good agreement with our more 
accurate estimate (30) and with the exact results in Figure 
1, whereas accounting only for the correction Δ systemati-
cally overestimates the cutoff position. (For rare gas atoms, 
we estimate that this compensation occurs in the range 
1014–1015 W cm–2.) 

The positions of the maxima and minima in the oscilla-
tory behavior of (l)(EΩ) shown in Figure 1 for EΩ  < EΩ

max  

Figure 1. HHG spectra (with harmonic energies EΩ ≥. (|E0|+2.0up)) at three different wavelengths for H– at I = 1011 W cm–2 (left) 
and F– at I = 2 ×1013 W cm–2 (right). Squares (red): exact TDER results; circles (green): analytic result (28). Vertical dash-dotted, 
dashed, and dotted lines show the HHG cutoff positions according to (30), (31), and (32) respectively. 
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coincide with the positions (ξn) of the maxima/minima of 
the Airy function in (28) (cf. (30)). For n ≥ 2, these positions 
are well approximated by equating to πn/2 the argument 
of the sine function in the asymptotic form of Ai(–|ξ|) for 
large |ξ|, 

 (33) 

The minima (maxima) of (l)(EΩ), at the energies (EΩ)max/

min, correspond to even (odd) n in the relation 

ξ = ξn = –0.25[3π(2n – 1)]2/3 ,    n ≥ 2,                       (34) 

where ξ  is given by (29). The energies (EΩ)max/min are given 
by equation (30) upon making there the following two re-
placements: EΩ

max → (EΩ)max/min and ξ1 → ξn. (Note that the 
oscillatory behavior of (l)(EΩ) was described in [19] as the 
result of interference between two effective (complex-val-
ued) electron trajectories.) 

Condition (34) also describes the interference oscillations 
in the intensity and frequency dependences of the rate for 
a fixed (Nth) harmonic. In this case, condition (34) gives 
a transcendental equation for the intensities or frequen-
cies corresponding to minima and maxima of these oscilla-
tions. Such oscillation patterns in the intensity dependence 
of HHG rates have been discussed in [4, 19, 20] (see also a 
recent experiment [21]) and interpreted in [19, 20] in terms 
of the interference between two electron trajectories. In Fig-
ure 2 we present results for the 45th harmonic in F–. One 
sees that (34) correctly describes the exact results in the cut-
off region, while with increasing intensity or wavelength 
(when the position of the Nth harmonic moves to the mid-
dle part of the plateau) threshold phenomena correspond-
ing to the closing/opening of the lowest-order multiphoton 
detachment channels (which were not taken into account in 
our derivations of (l)(EΩ) due to the substitution (5)) sig-
nificantly affect the results (see [12, 22] for details). 

The result (28) also explains the l-dependence of HHG 
rates, which originates completely from the recombination 
step of the three-step HHG model. Indeed, the recombina-
tion cross section from the free electron continuum state, 
ψp(r) = exp(ip ∙ r/ħ with momentum p directed along the 

laser polarization (with p = [2m(EΩ –|E0|)]½) to the s and 
p bound states ψκlm(r), whose radial wavefunctions outside 
the short-range potential well are given by spherical Han-
kel functions hl

(1)(iκr), is 

(35) 

where a0 is the Bohr radius. The l-dependent term in (35) 
coincides precisely with that in the HHG rate (28), which 
corresponds, therefore, to the recombination factor in the 
three-step HHG scenario and justifies the parametrization 
of (l)(EΩ) in the form (1). Note that the rate (28) involves 
the Born approximation result (35) for σ(r)(E) because our 
quasiclassical result (3) was obtained in an approximation 
that takes minimal account of the electron–atom interaction 
[9], i.e., only for the initial bound state wavefunction, as in 
the Keldysh approximation [1] for tunnel ionization. 

The F̃-dependent exponential in (28) is related to the 
rate of tunnel ionization in an effective static electric field 
of strength F̃ = F|cos τ̃ 0

(cl)|, which corresponds to F(t) at 
the moment of ionization, τ = τ̃ 0

(cl). (This is a consequence 
of our approximation γ  1, which is equivalent to the 
quasistatic limit.) Our key results (27), (28) factorize into 
a product of three terms corresponding to the three-step 
model, thus providing a convincing quantum justification 
for this model. The most interesting one is the “free-prop-
agation” factor, involving the Airy function and describ-
ing all interference (oscillation) effects. To the best of our 
knowledge, our analysis of the HHG process is the first one 
in which this factor is presented explicitly, in closed ana-
lytic form. In particular, our result shows that the energy 
dependence of the “electron wave packet” in (1) is given by 
W(E) ~ E½Ai2(ξ). The appearance of Airy functions is typ-
ical of static-electric-field-mediated photodetachment (cf. 
[23], in which they describe the interference between two 
electron trajectories in a static electric field). In our case, the 
electron energy ̃(τ ) in (22) is approximated by a quadratic 
function near τ = τ̃ (cl), so that the classical electron momen-

Figure 2. Oscillatory patterns in the intensity (a) and wavelength (b) dependences of the rate for the 45th harmonic in F–. Thin 
(red) line: exact TDER results; thick (green) line: analytic result (28). Vertical dotted lines: positions of the maxima/minima ac-
cording to (34); dot-dashed lines: positions of the n-photon detachment thresholds (given by the condition: |E0| + up = nħω.), 
where 20 ≤ n ≤ 27 in panel (a), and 23 ≤ n ≤ 29 in panel (b). The HHG plateau cutoff is given by the leftmost vertical dotted line in 
each panel. 
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tum becomes a linear function of time (as in a static electric 
field). The interference may be attributed to two (“short” 
and “long”) closed electron trajectories, that start at τ 
= τ̃ 0

(cl) and end at τ = τ̃ (cl)  γ[(max – EΩ + |E0|)/(δ|E0|)]½. 
These trajectories originate from the single (“degenerate”) 
trajectory corresponding to the cutoff energy (i.e. τ = τ̃ 0

(cl)), 
which splits into two different trajectories when the energy 
slightly decreases from the cutoff, according to (22). 

4. Conclusions
 
In conclusion, for an electron bound by a short-range po-
tential, U(r), we have presented an accurate quantum der-
ivation of closed form analytic formulae for HHG ampli-
tudes and rates having the same level of transparency and 
simplicity as the Keldysh result for tunnel ionization. These 
formulae justify both the classical three-step HHG scenario 
and the ad hoc parametrization (1). They also describe all 
key features of HHG spectra. Although the TDER theory 
(which is independent of the shape of U(r)) is quantita-
tively reliable only for negative ions, the structure of our 
key (three-step) results (27), (28) leads one to expect that 
the “free-propagation” factor there has a universal charac-
ter, describing the motion of a detached or ionized electron 
in a laser-modified continuum, while the effects of the po-
tential U(r) are most significant for the “bound state” (ion-
ization and recombination) factors. (This expectation is 
supported also by the fact that the “electron wave packet” 
in the parametrization (1) is essentially independent of the 
atomic species, as discussed in [13–17].) For quantitative 
predictions of HHG rates in atoms, a generalization of our 
derivations in this paper is necessary in order to incorpo-
rate properly the Coulomb ionization and recombination 
factors into (28). This generalization, using hydrogen atom 
wavefunctions for ψκlm(r), is now in progress. 
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