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Estimates of Heritabilities and Genetic and Environmental Correlations
for Left- and Right-Side Uterine Capacity and

Ovulation Rate in Mice1,2,3

M. K. Nielsen*,4, Y. L. Kochera Kirby*,5, and A. C. Clutter†

*University of Nebraska-Lincoln, Lincoln 68583-0908 and
†Oklahoma State University, Stillwater 74078-0425

ABSTRACT: Heritabilities for and genetic and
environmental correlations between uterine capacity,
ovulation rate, and body mass (BM) were estimated
in mice. Uterine capacity was defined as the number
of fetuses (LUC or RUC for left or right side) in one
uterine horn for unilaterally ovariectomized females.
Ovulation rate (corpora lutea, LCL or RCL for left or
right ovary) was measured on the remaining single
ovary in these same females. Data on 1,931 mice from
four selection populations were used. Left ovulation
rate and LUC were measured on 958 animals, and
RCL and RUC of another 972 animals were recorded.
Genetic and environmental variances and covariances
were estimated simultaneously using an animal model

with a multiple-trait, derivative-free, restricted maxi-
mum-likelihood procedure. Averages for heritability
and correlation estimates derived from separate ana-
lyses of the selection populations are presented below.
Heritability of LUC was higher (.33 ± .06) than that
of RUC (.19 ± .02). Heritability of LCL and RCL
ranged from .17 ± .03 to .27 ± .06, and heritability for
BM was .65 ± .05. The genetic correlation between
LUC or RUC and LCL or RCL ranged between .43 ±
.29 and .68 ± .05, and between LUC and RUC was .92
± .05. Body mass had a higher genetic correlation with
LCL and RCL (.70 ± .12 and .93 ± .02) than with LUC
and RUC (.37 ± .05 and .47 ± .12). Environmental
correlations between LCL and LUC and RCL and
RUC were .32 ± .09 and .36 ± .05, respectively.
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Introduction

Attempts to explain litter size in terms of compo-
nents such as ovulation rate and the proportion of ova
that become fully formed fetuses or ovulation rate and
uterine capacity have enhanced understanding its
genetic control. Bennett and Leymaster (1989) pur-

sued elaboration of the ovulation rate, potentially
viable embryos, uterine capacity model in swine,
showing that such a mathematical model could
explain differences in litter size and embryonic
survival. Bennett and Leymaster (1990a,b) went on
to examine underlying genetic models and expected
responses to selection, given assumptions for possible
genetic parameters in their model.

Selection for uterine capacity has been practiced in
mice at the University of Nebraska and responses in
litter size have been reported (Gion et al., 1990; Kirby
and Nielsen, 1993). Responses in left and right
uterine capacity following selection for various criteria
to increase litter size in the same Nebraska study
have also been reported (Clutter et al., 1994).
Estimates of genetic variances and heritabilities for
uterine capacity and genetic covariances (correla-
tions) between uterine capacity and ovulation rate are
lacking. The purpose of the present study was to
estimate these variances and covariances and then
derive estimates of heritabilities and genetic and
environmental correlations.
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Materials and Methods

Experimental Animals. The data were the same as
those used in the work by Clutter et al. (1994). The
mice were from a long-term selection project for which
the selection criteria, selection applied, and selection
responses in litter size through 21 generations were
described most recently by Kirby and Nielsen (1993).
The four criteria for selection were as follows: 1) LS =
selection on number born to unaltered females; 2) IX
= selection on an index of I = 9.21 × ovulation rate + 21
× ova success (success defined as the proportion of ova
resulting in fully formed pups at parturition); 3) UT =
selection on number born to females unilaterally
ovariectomized (right ovary excised) at 4 wk of age;
and 4) LC = randomly selected control. All four
selection criteria were applied in each of three
replicates for a total of 12 lines.

Selection ceased after 21 generations, and mice
sampled to constitute the data for the present study
came from Generations 22 and 23, the two generations
immediately after selection. All generations of selec-
tion took place in the laboratory at the University of
Nebraska (UNL). Within each line (criterion-repli-
cate) and generation of the present study, daughters
from approximately 30 litters were randomly assigned
to either stay in the UNL laboratory or be transported
shortly after weaning to the laboratory at Oklahoma
State University (OSU). From 40 to 45 females of
each line in each generation went to OSU and 40 to 50
females of each line in each generation stayed at UNL.
Care was taken to cross-classify laboratory with litter
of female. At each laboratory, unilateral ovariectomies
(half the females on their left side and half on their
right) were performed on the females at approxi-
mately 4 wk of age. Wherever possible, full-sib sisters
within a laboratory were assigned to each of the two
ovariectomy treatments.

After ovariectomy, the females were grown to
approximately 9 wk of age and then assigned to
mating cages of three to four females per male. Body
mass ( BM) was recorded on the females at this time.
Males were from the same line as their mates, and
matings were assigned to minimize inbreeding. Evi-
dence of mating plugs was recorded each morning, and
pregnant females were euthanatized at 17 d of
gestation (mating date = d 0) for collection of the
reproductive data. In the event of missing a mating
plug, resulting pregnant females were externally
palpated to estimate stage of pregnancy and then
euthanatized for data collection at approximately the
same stage as d 17.

Ovulation rate was determined by counting number
of corpora lutea ( LCL or RCL for left or right corpora
lutea) on the remaining ovary, and uterine capacity
was measured as the number of fully formed fetuses in
the functioning uterine horn ( LUC or RUC for left or
right uterine capacity). Resulting numbers of females

per laboratory-line-generation-ovariectomy treatment
ranged from 16 to 25 (see table 1 of Clutter et al.,
1994), and total number of females measured was
1931. Table 1 contains a listing of the numbers of mice
measured for each selection criterion group and
overall.

Data Analysis. Estimates of the variances and
covariances for genetic and environmental effects were
derived using the multiple-trait, derivative-free, res-
tricted maximum-likelihood (MTDFREML) program
of Boldman et al. (1993) with an animal model that
accounted for genetic relationships back to foundation
mice. All five variables were run together in the
multiple-trait analysis that accepts missing data
(mice either had LCL and LUC or RCL and RUC due
to the ovariectomy). The data were analyzed by each
selection criterion group (LS, IX, UT, and LC) and as
a total data set.

The model for each of the selection criterion groups
was variable = generation + laboratory + replicate +
animal breeding value + random environment. The
model for the total data set was variable = generation
+ laboratory + line (selection criterion-replicate) +
animal breeding value + random environment. Only
the animal breeding value and random environmental
effects were considered random; the other effects were
fixed. For a computing strategy, all five variables with
all variances and covariances were estimated simul-
taneously. After convergence to 10−6 for the variance
of the simplex function, the analyses were restarted.
The cycle of repeated starts was stopped when the
changes in the F-value for the model were less than
.01, and the estimation was deemed completed.

Because mice could only have BM, LUC, and LCL
or BM, RUC, and RCL, there was no way to estimate
the environmental correlation between any combina-
tion of the left (LUC and LCL) and right (RUC and
RCL) characteristics, and these were forced to zero.
The genetic correlations could be estimated through
the genetic relationships for all characteristics.

The variability across the four subgroups of data
between heritability or correlation estimates was used
to derive empirical standard errors. These standard
errors thus have three degrees of freedom. The
estimates for the data subgroups were averaged, and
the same standard error was used for the average and
for the estimates from the total data set. The standard
errors for estimates calculated from the total data
were thus conservative.

An additional set of estimates was derived from a
restricted set of the total data. Conceptually, number
of fetuses produced by unilaterally ovariectomized
females can only be interpreted as uterine capacity if
the phenotypic correlation between number of fetuses
and number of ovulations is zero (i.e., measurement of
uterine capacity is not limited by number of ova
[Christenson et al., 1987]). In the total data, the
correlation between number of corpora lutea and 
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Table 1. Number of observations for the five
variables by selection populations across

the three replicates

aSelection criteria in the following were: IX = index of ovulation
rate and ova success, LS = number born, UT = number born to
unilaterally ovariectomized female, and LC = unselected control.

bBM = body mass, LUT and RUC = left- and right-side fetuses for
unilaterally ovariectomized females, and LCL and RCL = left- and
right-side corpora lutea for unilaterally ovariectomized females.

Selection
populationa

Variableb

BM LUC RUC LCL RCL

IX 498 239 259 239 259
LS 491 249 244 249 244
UT 471 239 241 238 241
LC 460 231 229 231 228

Total 1,920 958 973 957 972

Table 2. Number of observations (n) and phenotypic
correlations (r) between number of corpora lutea and
number of fetuses by selection population and side
of reproductive tract in unilaterally ovariectomized

females for the total and restricted data sets

aSee Table 1 for descriptions.
bIX and LS populations restricted to ≥ 15 corpora lutea, UT

restricted to ≥ 13 corpora lutea, and LC restricted to ≥ 12 corpora
lutea.

Total data
Restricted

datab

Selection populationa and side n r n r

IX
Left 239 .26 169 .15
Right 259 .26 176 .18

LS
Left 249 .33 179 .11
Right 244 .45 178 .23

UT
Left 238 .31 170 .14
Right 241 .41 171 .30

LC
Left 231 .38 177 .28
Right 228 .43 161 .24

number of fetuses ranged from .26 in the IX animals
to .45 for LS mice measured on the right side. By
excluding data for mice with low numbers of corpora
lutea, hence where uterine capacity was not indepen-
dent of ovulation rate, we hoped to obtain a data set in
which uterine capacity would be independent of
ovulation rate.

Table 2 contains data that give a comparison
between the total and restricted data sets. Only IX
and LS mice with ≥ 15, UT mice with ≥ 13, and LC
mice with ≥ 12 corpora lutea were included in the
restricted data set. The average correlation between
number of corpora lutea and number of fetuses across
selection populations and sides was reduced from .35
to .20 by eliminating approximately 30% of the data.
From bivariate normal theory, one would predict that
deleting the lowest 30% of the observations on one
variable would reduce the correlation in the remaining
data to .73 of the original: (.35)(.73) = .26. With
finite numbers of observations and characteristics that
approach normality, the reduction in correlation was
somewhat higher. The same model was used for the
restricted as for the total data set. No standard errors
were calculated for the heritability and correlation
estimates in the restricted data set; these estimates
were only derived for the purpose of interpreting
estimates from the total data.

Results and Discussion

Phenotypic variances, derived after accounting for
the fixed effects in the models, are presented in Table
3. The variances for LUC and RUC were highest in
the data set from LS females. The variances for LUC
and RUC were considerably higher than those for LCL
and RCL.

Although the variances for LUC and RUC were of
greatly differing magnitude across the data sets of the
four selection groups, the CV were quite similar. The
range of CV across the four data groups for the five

characteristics were as follows: BM, 8.2 to 9.4%; LUC,
28.4 to 32.0%; RUC, 24.6 to 28.2%; LCL, 13.2 to
15.4%; and RCL, 14.8 to 15.8%. The CV for uterine
capacity, as measured in the unilaterally ovariec-
tomized female, was essentially the same as that for
number of fetuses (28.6%) at term in unaltered
females (hence litter size at birth) reported by Clutter
et al. (1990). The CV for LCL and RCL agreed well
with that for total number of corpora lutea (15.2%)
measured in intact females (Clutter et al., 1990).

Estimates of heritabilities and genetic and environ-
mental correlations using the total data are presented
in Tables 4 and 5. Table 4 has the average of
estimates that were derived from the analyses of the
four groups (different selection background) of data.
Table 5 has the estimates calculated from the overall
total data set.

Estimates of heritabilities and genetic and environ-
mental correlations in the restricted data set are
presented in Table 6. The estimates in Table 6 are
quite similar to those in Tables 4 and 5. Heritability
estimates for LUC and RUC in the restricted data
were within the range of the corresponding estimates
from the overall and pooled analyses of the total data.
Only the estimates of genetic correlation between LUC
and RCL and RUC and RCL from the restricted data
were outside the range of the corresponding estimates
from the two analyses of the total data; one of these
correlation estimates was greater and the other less
than what was estimated in the total data. Environ-
mental correlations between number of corpora lutea
and number of fetuses, only estimable for the same
side of the mouse, were lower in the restricted data,

  

http://jas.fass.org


NIELSEN ET AL.532

Table 3. Phenotypic variancesa by selection populations and in the total data set

aAfter accounting for fixed effects in the models. See text for models.
bSee Table 1 for descriptions.

Selection
populationb

Variableb

BM, g2 LUC RUC LCL RCL

IX 6.41 10.73 8.40 4.24 5.43
LS 5.05 11.63 10.52 4.68 5.55
UT 5.81 8.58 7.88 3.24 4.61
LC 5.10 6.51 7.35 3.96 4.02

Total 5.60 8.93 8.27 4.19 4.83

Table 4. Estimates (± SE) of heritabilities, genetic correlations, and environmental
correlations: averages of the estimates from the four data setsa

aHeritabilities on diagonal, genetic correlations in upper right, and environmental correlations in lower left.
bSee Table 1 for descriptions.
cEnvironmental correlations forced to zero because animals could only have left- or right-side measurements.

Variable

Variableb BM LUC RUC LCL RCL

BM .65 ± .05 .37 ± .05 .47 ± .12 .70 ± .12 .93 ± .02
LUC −.03 ± .05 .33 ± .06 .92 ± .05 .43 ± .29 .54 ± .11
RUC .19 ± .09 0c .19 ± .02 .52 ± .31 .68 ± .05
LCL .05 ± .04 .32 ± .09 0c .27 ± .06 .73 ± .17
RCL .17 ± .04 0c .36 ± .05 0c .17 ± .03

reflecting the lower phenotypic correlations in the
restricted compared to the total data set.

Being able to estimate heritabilities and correla-
tions in a data set in which uterine capacity was
independent of ovulation rate was the intent in
forming the restricted data set. With our limited data,
we chose not to eliminate more than 30% because of
the initial size of the data set, and thus we were not
able to derive a data set with no correlation between
ovulation rate and our measure of uterine capacity. By
using the restricted data with a correlation of .20
compared with the total data with a correlation of .35,
the estimates of the genetic parameters were about
the same. Thus, in the remainder of the discussion, we
will concentrate only on the estimates from the total
data set (Tables 4 and 5).

Although the variances for LUC and RUC in the LS
data and for LUC in the IX data were greater than for
the other data sets, we did not attempt to equalize
these before running the analysis of the total data set.
Comparison of the average heritability and correlation
estimates pertaining to LUC and RUC to those from
the total data analysis (values in Table 4 vs Table 5)
was reasonably similar with the exception of the
heritabilities and the genetic correlations between
LCL and LUC and between LCL and RUC and the
environmental correlation between LCL and LUC.

Estimates of heritability for uterine capacity and
ovulation rate were consistently greater on the left
side than on the right. This is in contrast to the

comparison of sides for estimates using characteristics
of intact animals measured in the base population
before selection was initiated at UNL (Clutter et al.,
1990). In intact mice in the base generation, esti-
mated heritability was the same (.11) for left and
right number of corpora lutea, and in the same intact
mice, estimated heritability was greater for the
number of right-side fetuses (.18) than for the left-
side fetuses (.03). Estimates from the present study
were also unexpected given the higher responses,
using our three selection criteria, for the right side vs
the left side in number of corpora lutea and number of
fetuses observed in intact animals (Gion et al., 1990)
and in the uterine capacity of unilaterally ovariec-
tomized animals (Clutter et al., 1994). Bolet et al.
(1994) have also estimated heritability for litter size
in unilaterally ovariectomized rabbits. Their estimate
(.20 ± .12) derived by REML with an animal model
using data from a selection line, is not different from
that estimated in the present study.

Our estimates of heritability for ovulation rate,
measured on the remaining ovary of the unilaterally
ovariectomized mice, were similar in magnitude to the
estimates for total ovulation rate in intact mice using
sib covariances (.22; Land and Falconer, 1969) and in
a combined data set of intact and unilaterally
ovariectomized females (.18; Long et al., 1991) but
less than that reported for intact females in our base
generation (.33; Clutter et al., 1990). Realized herita-
bilities following selection for total ovulation rate in
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Table 5. Estimates (± SE) of heritabilities, genetic correlations, and
environmental correlations: analysis of the total data seta

aHeritabilities on diagonal, genetic correlations in upper right, and environmental correlations in lower left.
bSee Table 1 for descriptions.
cEnvironmental correlations forced to zero because animals could only have left- or right-side measurements.

Variable

Variableb BM LUC RUC LCL RCL

BM .64 ± .05 .44 ± .05 .51 ± .12 .87 ± .12 .98 ± .02
LUC −.03 ± .05 .22 ± .06 .99 ± .05 .81 ± .29 .58 ± .11
RUC .22 ± .09 0c .13 ± .02 .84 ± .31 .65 ± .05
LCL −.02 ± .04 .22 ± .09 0c .24 ± .06 .93 ± .17
RCL .22 ± .04 0c .36 ± .05 0c .10 ± .03

Table 6. Estimates of heritabilities, genetic
correlations, and environmental correlations:

analysis of the restricted total data set

aHeritabilities on diagonal, genetic correlations in upper right,
and environmental correlations in lower left.

bSee Table 1 for descriptions.
cEnvironmental correlations forced to zero because animals could

only have left- or right-side measurements.

Variable

Variableb BM LUC RUC LCL RCL

BM .63 .37 .27 .83 .94
LUC .00 .24 1.00 .81 .67
RUC .23 0c .19 .75 .59
LCL .03 .09 0c .21 .97
RCL .22 0c .28 0c .10

mice have ranged from .10 (Bradford, 1969) to .31
(Land and Falconer, 1969). In rabbits (Bolet et al.,
1994), estimates of heritability of ovulation rate
derived from REML analyses in unilaterally ovariec-
tomized females (.30) and intact females (.24) have
been similar, accounting for the precision of the
estimates. Estimates of heritability of ovulation rate
in pigs have been either similar (.17; Neal et al.,
1989) or greater (.42; Cunningham et al., 1979) than
those in the present study, with the greater being a
realized estimate.

The estimated genetic correlation between LUC and
RUC was near unity (.92 to .99). Physiological causes
of variability in uterine capacity may be much the
same for each side, and genes that contribute to size or
space (Nielsen et al., 1995), as well as nutrient
availability or other contributors to uterine capacity,
may largely have universal effects in the animal. Also,
in our selection for uterine capacity (UT), all females
had right-side ovariectomy, and thus selection pres-
sure was for left-side uterine capacity. Because more
response was realized in right than in left uterine
performance in intact (Gion et al., 1990) and in
unilaterally ovariectomized females (Clutter et al.,
1994), one would have expected a high positive
genetic correlation between sides.

There was no tendency for ovulation rate to be more
genetically correlated to uterine capacity on the same
side as compared to the opposite side in these
unilaterally ovariectomized females. The estimates
were near .50 for the averages of the separate data
sets and near .75 when derived from the total data set.
One would presume that the genetic correlation
between ovulation rate and uterine capacity in intact
animals is at least .50 and not different across
different uterine horns. Our estimate is consistent
with that of Long et al. (1991), who previously
reported an estimate of the genetic correlation be-
tween ovulation rate and uterine capacity in unilater-
ally ovariectomized mice of .73.

The estimated heritability of body mass, here
measured at 9 wk, was approximately .65. This is
much higher than the range of estimated realized
heritabilities for weight at ages of 6 to 10 wk of .13 to
.55 (McCarthy, 1982). Estimated genetic correlations
between body mass and ovulation rate (.70 to .98)
were higher than between body mass and uterine
capacity (.37 to .51). Land (1970) surmised, based on
estimates made in selection lines, that the genetic
correlation between body mass and ovulation rate in
intact mice is positive and greater than .40. A fairly
strong realized genetic correlation (.62) between litter
size and body mass has been reported by Joakimsen
and Baker (1977); Fuente et al. (1986) estimated
lower positive realized correlations.

Environmental correlations between uterine capac-
ity and ovulation rate, again as measured in these
surgically altered females, were positive and modest
in magnitude (.22 to .36). This is in conflict with the
suggestion by Long et al. (1991) that the environmen-
tal correlation between ovulation rate and number of
fetuses (uterine capacity in the unilateral ovariectomy
model) must be negative. Environmental correlations
with body mass only reached an important magnitude
for right-side reproductive performance, in which case
they were positive.

Individual estimates for heritabilities and correla-
tions from the selection subgroups of data are not
presented for the sake of brevity. Where SE were less
than .05, the range in estimates was ≤.18. There were
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extremely large SE for the genetic correlations be-
tween LCL and LUC and LCL and RUC. These were
due to one data set (LS) in which estimates of these
correlations were −.33 and −.38 compared with the
other three data sets in which these correlations
ranged from .27 to .93.

For their simulation of selection for litter size in
swine, Bennett and Leymaster (1989, 1990b) as-
sumed the heritability of ovulation rate (.25) was
slightly larger than that for uterine capacity (.20);
they also assumed no genetic correlation between
ovulation rate and uterine capacity. Although herita-
bility estimates in the present study are not signifi-
cantly different for ovulation rate vs uterine capacity,
the genetic correlation between uterine capacity and
ovulation rate was significant and probably at least
.50. Whether mice and pigs are that different, whether
the unilaterally ovariectomized and intact animals are
quite different, or whether Bennett and Leymaster
(1989, 1990a,b) erred in their assumption for the
genetic correlation is not yet clear. Modeling litter size
in intact mice using an ovulation rate, potentially
viable embryos, uterine capacity model may provide
part of the answer.

Implications

Genetic variation and covariation exist for ovula-
tion rate and uterine capacity in mice. Simulation of
litter size in mice, using parameters to describe
genetic and environmental (co)variation of the compo-
nents, will help in verifying suitability of methods for
practicing selection for litter size in livestock species.
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