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Abstract

Botulinum neurotoxins (BoNTs) are among the most lethal biological substances to have been weaponized and are listed as

biodefense category A agents. Currently, no small molecule (non-peptidic) therapeutics exist to counter this threat; hence, identi-

fying and developing compounds that inhibit BoNTs is a high priority. In the present study, a high-throughput assay was used to

identify small molecules that inhibit the metalloprotease activity of BoNT serotype A light chain (BoNT/A LC). All inhibitors were

further verified using a HPLC-based assay. Conformational analyses of these compounds, in conjunction with molecular docking

studies, were used to predict structural features that contribute to inhibitor binding and potency. Based on these results, a common

pharmacophore for BoNT/A LC inhibitors is proposed. This is the first study to report small molecules (non-peptidics) that inhibit

BoNT/A LC metalloprotease activity in the low lM range.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Bioterrorism; Botulinum neurotoxin; Drug discovery; High-throughput screen; Inhibitors; Molecular modeling; Pharmacophore; Three-

dimensional database search; Metalloprotease

Botulinum neurotoxins (BoNTs) are produced by

spore forming anaerobic bacteria Clostridium botulinum

and are among the most lethal of biological poisons

[1,2]. Seven immunologically distinct BoNT serotypes
(designated A-G) have been identified [3]. Accidental

exposure to BoNTs, for example through contaminated

food, can result in life threatening flaccid paralysis [4].

Furthermore, BoNTs have been weaponized in highly

toxic aerosol form, and consequently pose a significant

“dual threat”—i.e., both to civilian and military popu-

lations [5,6]. As a result, there is an urgent need for

therapeutic countermeasures against BoNTs [7].

BoNT is secreted as a holotoxin composed of two

peptide chains that are linked by a disulfide bridge [8].

The heavy chain is responsible for: (1) targeting and

binding to surface receptors on nerve terminals; (2)
translocation into the neuronal cytosol via the forma-

tion of a low pH endosome; and (3) protecting the

substrate binding cleft of the light chain prior to neu-

ronal internalization [9,10]. The light chain, which dis-

sociates from the heavy chain in the low endosomal pH,

is released into the cytosol where it acts as a zinc me-

talloprotease that cleaves SNARE (soluble NSF-at-

tachment protein receptor) proteins: SNAP-25
(synaptosomal-associated protein of 25 kDa), syna-

ptobrevin, and syntaxin [9,10]. BoNT serotypes A, C,

and E cleave SNAP-25 [11]; serotypes B, D, F, and G

cleave synaptobrevin [12–15]; and serotype C can also

use syntaxin as substrate [16]. Without functional
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SNARE complexes, acetylcholine is not released into
neuromuscular junctions, leading to paralysis.

Research to identify peptide and small molecule in-

hibitors of BoNT serotype A (BoNT/A) has targeted

both holotoxin translocation and light chain (BoNT/A

LC) metalloprotease activity. Sheridan et al. [17] and

Deshpande et al. [18] have shown that a number of an-

timalarial agents interfere with BoNT/A translocation

into nerve cytoplasm. Specifically, it has been shown that
several antimalarial compounds act subsequent to toxin

binding to cell-surface receptors [17], and it has been

hypothesized that these agents inhibit BoNT/A cytosol

entry by raising endosomal pH (an endosomal pH of 5.5

or lower is needed for release into the cytoplasm) [17,18].

Hayden et al. [19] have found that BoNT/A LC is in-

hibited by mM concentrations of known protease in-

hibitors: captopril, lysinopril, and enalapril. In the same
study, it was also reported that a number of short pep-

tides, from specific “hinge” libraries, inhibit BoNT/A LC

activity by as much as 51% at concentrations as low as

0.5 lM [19]. Using a chromatographic method, Schmidt

et al. [20] identified the peptide motif CRATKML as a

potent inhibitor. In a subsequent study, the Cys residue

of CRATKML was replaced with thiol containing

organic moieties and it was found that a 2-mercapto-
3-phenylpropionyl containing derivative was the most

effective (Ki ¼ 0:3 lM) [21].

Presently, no small molecule (non-peptidic) inhibitors

of BoNT/A LC metalloprotease activity, which are ef-

fective in the low lM range, have been reported. In this

report, a high-throughput assay was used to facilitate

BoNT/A LC inhibitor identification [22]. Initially, the

National Cancer Institute (NCI) Diversity set was
screened, and several compounds possessing >50% in-

hibition (at 20 lM concentration) were identified. Based

on molecular modeling studies, common structural

features and binding modes in the BoNT/A LC sub-

strate binding cleft were identified for these leads. Ad-

ditional screening of 7-chloro-4-aminoquinoline

derivatives also resulted in the identification of leads

that substantially inhibit BoNT/A LC at 20 lM con-
centrations. Analyses of these compounds indicate that

they share common structural/functional group charac-

teristics with inhibitors identified during the screen of

the NCI Diversity set, and that they may also bind to

the enzyme’s substrate binding cleft in a similar manner.

Based on our analyses, a common pharmacophore for

BoNT/A LC inhibitors is proposed.

Materials and methods

Compounds. The NCI Diversity set was obtained in 96-well plate

format from the National Cancer Institute (http://dtp.nci.nih.gov/

branches/dscb/diversity_explanation.html). The syntheses of N,

N-bis(7-chloroquinolin-4-yl)alkanediamines and N,N-bis(7-chloro-

quinolin-4-yl)heteroalkanediamines used in these studies have been

described previously [23,24]. Amodiaquine, chloroquine, quinacrine,

quinidine, and quinine were obtained from Sigma–Aldrich (USA).

High-throughput assay of BoNT/A LC activity. The high-through-

put assay used to screen BoNT/A LC proteolytic activity has been

described previously [22]. Briefly, liquid transfers were done with a

SciClone automated pipettor (Zymark, Hopkinton, MA). Re-

combinant BoNT/A LC [25] was diluted to 0.6 lg/ml in 40mM Hepes,

and 0.5mg/ml BSA, pH 7.4. Test compounds was diluted to 0.2mM

with methyl sulfoxide. Ten microliters of each compound were trans-

ferred into the corresponding wells of another 96-well plate containing

immobilized fluorescent-labeled peptide substrate, specific for the

protease activity of BoNT/A LC [22]. Ninety microliters BoNT/A LC

was then added and mixed, for final concentrations of 20lM com-

pound and 0.5lg/ml BoNT/A LC. Blanks (buffer only) and controls

(buffer and BoNT/A LC), eight wells each, were included on each assay

plate. After incubation at 30 �C for 60min, 70 ll was transferred from

each well to an opaque-wall plate and fluorescence was measured in a

Wallac 1420 multi-label counter (Perkin–Elmer, Gaithersburg, MD).

HPLC-based assay of BoNT/A LC protease activity. Compounds

exhibiting P 40% inhibition in high-throughput assays were retested

in a HPLC-based assay as described previously [1,26].

BoNT/A LC refinement and inhibitor docking. The structure of

BoNT/A LC was obtained from the deposited crystallographic coor-

dinates of the holotoxin (PDB refcode¼ 3BTA) [27]. The 3.2�AA holo-

toxin includes the heavy chain, light chain, and a protective residue

belt that covers the substrate binding site of the light chain. The heavy

chain and the protective belt were removed from the holotoxin, and the

light chain was energy refined using the Discover (Accelrys, San Diego,

CA) program’s cff91 force field. During the refinement, the zinc ion

and residues coordinating the zinc ion were fixed in their original co-

ordinates. Our strategy entailed applying 2000 kcal/mol per �AA2 of force

that was stepped off the structure in 100-kcal/mol decrements by

minimizing with conjugate gradients, until the norm of the gradient

was 0.01 kcal/�AA [28]. This process was repeated until all applied ex-

ternal force was removed. The resulting coordinates of the final model

were within the experimentally determined X-ray crystallographic

resolution. The optimized structure had an rms deviation of 2.6�AA

across all backbone atoms from the reported crystallographic coordi-

nates of the holotoxin light chain.

Using InsightII molecular modeling software (Accelrys, San Diego,

CA), identified inhibitors were manually docked into the BoNT/A LC

substrate binding cleft, and van der Waals violations of 0.25�AA were

removed by small adjustments to side-chain torsion angles and in-

hibitor positioning. The inhibitor-enzyme structure coordinates were

subsequently tether minimized in the same manner as described above

and the final structure was subjected to hydropathic analysis using the

program HINT (eduSoft, Richmond, VA).

Conformer generation. Conformational models of inhibitors were

generated using Catalyst 4.7 software (Accelrys, San Diego, CA). In-

hibitors were imported into Catalyst and energy minimized to the

closest local minimum using the generalized CHARMM-like force

field, as implemented in the program. Following, the “best quality”

conformational search option was employed to generate conformers

within 20 kcal/mol from the global energy minimum. In this study, it

was found that 100 conformers per compound ensured adequate

coverage of conformational space.

Results and discussion

Screening of the NCI diversity set

A high-throughput fluorescence-based assay was ini-

tially used to screen the NCI diversity set: a collection of

1990 molecules that were selected to cover a wide range
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of conformational space, and at the same time provide
pharmacophore diversity and structural rigidity. Fol-

lowing the initial high-throughput screen, a HPLC-

based assay [1,26] was used to eliminate false positives

resulting from fluorescence quenching by some of the

compounds. The final set of inhibitors, which were tes-

ted at 20 lM concentration in the presence 0.1mM

substrate, consisted of 21 compounds with potencies

ranging from 14% to 100% BoNT/A LC inhibition.
Two-dimensional structures for compounds possessing

>40% inhibition are shown in Table 1.

Additional testing of NSC 625324 (silver sulfadia-
zine), initially the most potent of the identified com-

pounds, indicated that this molecule’s efficacy was

entirely mediated by the silver ion: no inhibition was

observed when the unionized, organic form of sulfadi-

azine was tested in the HPLC-based assay. Furthermore,

BoNT/A LC activity was examined in the presence of

silver acetate, and 100% inhibition of protease activity

was found at concentrations P5 lM silver ion (the IC50

was 1.5–2.0 lM). Cesium and rubidium salts did not

inhibit BoNT/A LC protease activity at concentrations

Table 1

NCI diversity set inhibitors of BoNT/A LC

Compound NSC No. % Inhibitiona

NSC 625324 (silver sulfadiazine) 100

NSC 661755 (michellamine B) 62

NSC 357756 57

NSC 119889 56

NSC 86372 51

NSC 130796 48

NSC 402959 40

aCompounds tested in the HPLC-based assay at 20 lM concentration in the presence of 0.1mM substrate.
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up to 20 lM. The presence of zinc (5–50 lM) in assays
had no effect on inhibition by 3 lM silver ion, but ad-

dition of 1mM DTT immediately reversed inhibition.

These observations suggest that silver neither displaces

zinc from the active site, nor causes irreversible dena-

turation by reacting with a residue important for con-

formational stability. It is possible that this ion might

bind to polar residues in or near the substrate binding

cleft, blocking access to the catalytic site.
Inhibitors NSC 86372 and 130796 both contain an 8-

hydroxyquinoline moiety (Table 1), which is known to

chelate metal ions [29]. Based on our analyses, both of

these molecules do chelate the BoNT/A LC catalytic

zinc. Support for a chelation mechanism is based on: (1)

assay data showing that several congeners of NSC 86372

possess equivalent inhibitory potency to that of the

original lead molecule; (2) addition of 20 lM zinc im-
mediately and quantitatively reversed inhibition caused

by up to 10 lM NSC 86372; and (3) NSC 86372, its

congeners, and NSC 130796 inhibit other zinc metallo-

proteases (including anthrax lethal factor and BoNT

serotype B light chain (BoNT/B LC)). Consequently, the

8-hydroxyquinoline motif is not suitable for further

development as a component of BoNT/A LC inhibitors;

however, as will be shown, structural similarities be-
tween NSC 86372 and other identified compounds do

appear to fit a general model for BoNT/A LC inhibition.

Screening of 7-chloro-4-aminoquinoline derivatives

Congeneric series of N,N-bis(7-chloroquinolin-4-

yl)alkanediamines [23] and N,N-bis(7-chloroquinolin-4-

yl)heteroalkanediamines [24] (collectively referred to as

BQs for the remainder of the text) were examined for

BoNT/A LC inhibition. The compounds were tested in

the HPLC-based assay at 20 lM concentration in the

presence of 0.1mM substrate [1,26]. Inhibition of

BoNT/A LC by these compounds was not affected by
added zinc. Furthermore, when tested against BoNT/B

LC protease activity, no significant inhibition was

found. Taken together, these observations suggest that

these compounds exhibit specificity for binding to

BoNT/A LC and are not zinc chelators. Table 2 shows

the two-dimensional structures of these compounds,

along with percent inhibition of BoNT/A LC.

Results from our studies on BQs led us to hypothesize
that other quinoline-based compounds might also in-

hibit BoNT/A LC enzymatic activity. One method for

fast tracking the evolution of therapeutics against

BoNT/A LC would be to identify inhibitors of this en-

zyme that are already approved drugs (and subsequently

already possess pharmacological and toxicological data

from clinical trials). Subsequently, we tested five readily

available antimalarial drugs—amodiaquine, chloro-
quine, quinacrine, quinidine, and quinine—that share

similar structural characteristics with the BQs. These

compounds were obtained and examined in our HPLC-
based assay; structures of these compounds and percent

inhibition of BoNT/A LC protease activity are shown in

Table 2.

Identification of structural similarities and potential

binding sites for inhibitors from the NCI diversity set

Superimpositions of several of the most potent in-

hibitors identified during the NCI Diversity set screen

are shown in Fig. 1. An evident feature to emerge from

superimposing these compounds is that they all possess

biaryl and triaryl heterocyclic scaffolds (for example,

quinoline, phenazinium, or xanthene). The exception to
this observation is michellamine B—the central naph-

thalenes of this molecule do not possess heteroatoms.

However, like aromatic heterocyclic nitrogens or oxy-

gens, hydroxy and methoxy substituents on the naph-

thalene rings may participate in electron donating

interactions. The superimposed structures in Fig. 1 also

indicate that possessing hydrophobic moieties at either

end of the aromatic components may be important for
potency.

To gain a better understanding of how these inhibi-

tors interact with BoNT/A LC, molecular docking

studies were performed. Michellamine B (Table 1) was

the first inhibitor to be examined. This molecule was the

best lead for initially probing the steric constraints of the

substrate binding cleft, as it is an atropisomer that re-

sults from hindered rotation of about single bonds [30–
33]; it possesses restricted conformations, which reduces

the number of potential binding modes that it may as-

sume in the enzyme’s substrate binding cleft. Further-

more, unlike NSC 86372, inhibition of BoNT/A LC by

michellamine B is not affected by added zinc, suggesting

that inhibition is not simply the result of michellamine B

acting as a chelator.

Fig. 2 shows michellamine B docked in the BoNT/A
LC substrate binding cleft. There is a good complement

between the steric space of the binding cleft and the twist

planar conformation of michellamine B. Hydropathic

analyses of favorable and unfavorable contacts in sev-

eral docked models indicated that the best binding mode

results when the naphthalenes (labeled A and B for de-

scriptive purposes, Fig. 2) extend down the length of the

catalytic cleft. In this model, the two hydroxyl moieties
of the naphthalenes exist in close proximity to the cat-

alytic zinc and form an intramolecular hydrogen bond.

Either of the hydroxyl moieties may displace the water

molecule that is used by the enzyme’s catalytic engine

during peptide lysis. As seen in Fig. 2, the methoxy and

methyl groups of naphthalene A point toward a hy-

drophobic pocket (referred to as binding subsite 1 for

the remainder of the text) that is formed by the aromatic
side-chains of residues Phe 162, Phe 177, and Phe 193, as

well as the side-chain methyl of Thr 219. The methoxy
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moiety of naphthalene B packs into a deep pocket (re-

ferred to as binding subsite 2 for the remainder of the

text) that is located behind His 226 of the catalytic en-

gine, and surrounded by residues Met 164, Thr 175, Arg

230, and Pro 238. The methyl moiety of naphthalene B

packs into space behind the side-chain pyrrolidine of

Pro 238.

The tetrahydroisoquinoline attached to naphthalene

A binds in such a way that the 6,8-diol moieties point

toward the solvent, while the 1,3-dimethyl moieties

point toward hydrophobic residues of the substrate

binding cleft. The ionizable amine of the tetrahydro-

isoquinoline attached to naphthalene B points towards a

cluster of polar residues, including Glu 55, Gln 161, Glu

Table 2

Quinoline-based inhibitors of BoNT/A LC

Bisquinolines (BQs)

Compound % Inhibitiona Compound % Inhibitiona

Q1-21 24
Q3-81

32

Q3-87 7

Q2-59 26

Q3-79

27

Q1-19 5

Q2-61 50
Q2-97

15

Q2-15 60

Q2-43 52

Q2-11

8

Q1-3 12

Antimalarial drugsb

20 30

30 9

3

aCompounds tested in the HPLC-based assay at 20 lM concentration in the presence of 0.1mM substrate.
bAntimalarial drugs tested in the HPLC-based assay to 50 lM concentration in the presence of 0.2 mM substrate.
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163, Lys 165, and Arg 176, and may either engage di-

rectly in an ionic bond with one of the Glu residues in

this area, or participate in a water mediated hydrogen

bond with any of the indicated polar residues (Fig. 2).

Along the same lines, the ionizable amine may also serve

to solubilize the tetrahydroisoquinoline ring. The 6,8-

diol substituents of this tetrahydroisoquinoline are ori-

ented toward the solvent interface.

Subsequent docking studies with other BoNT/A LC
inhibitors from the NCI Diversity set indicated that

these compounds may use binding modes similar to that

of michellamine B. Fig. 3 shows a two-dimensional

schematic that matches inhibitor substituents with pro-

posed binding subsites for three inhibitors from the NCI

Diversity set. Our analyses indicate that the most potent

inhibitors engage in contacts with residues in both

binding subsites 1 and 2, and in each case, either an
oxygen or a nitrogen (in an aromatic heterocyclic ring) is

positioned in close proximity to the catalytic zinc. For

example, the 8-hydroxyquinoline of NSC 86372 (Fig. 3),

when optimized in the substrate binding cleft, is posi-

tioned in such a way that zinc chelation is possible.

Additionally, the methyl substituent of the compound’s

quinolinium substituent inserts into binding subsite 2

(similar to the methoxy moiety of michellamine B
naphthalene B), while the ethoxy moiety of the quino-

linium fills space located behind Pro 238 (similar to the

methyl moiety of michellamine B naphthalene B).

In another example, the most favorable binding mode

of NSC 357756 indicates that the dihydro-imidazolyl

(attached to the benzofuran) inserts into binding subsite

1 (Fig. 3) (the same pocket that is occupied by the

methoxy and methyl moieties of michellamine B naph-
thalene A (Fig. 2)). The oxygen of the benzofuran

moiety is positioned in close proximity to the zinc ion,

and the 3-amino substituent on the indole ring engages

in a hydrogen bond with Glu 163. In binding subsite 2, a

nitrogen in the dihydro-imidazolyl (which is attached to

the 6 position of the indole) engages in a hydrogen bond

Fig. 1. Overlay of BoNT/A LC inhibitors from the NCI Diversity set.

For all structures, nitrogen atoms are blue, oxygen atoms are red, and

iodine atoms are orange. Carbon atoms for michellamine B are green,

for NSC 86372 are light blue, for NSC 357756 are magenta, and for

NSC 119889 are white. There are structural trends in: (1) the super-

imposed aromatic scaffolds and (2) the positioning of hydrophobic

moieties.

Fig. 2. Michellamine B docked in the BoNT/A LC substrate binding

cleft. Nitrogen atoms are blue and oxygen atoms are red. Carbon at-

oms of michellamine B are white, and the naphthalene scaffolds of the

inhibitor are labeled A and B (as referenced in the text). Carbon atoms

of residues in predicted binding subsites are light blue (binding subsite

1 in the text), light green (binding subsite 2 in text), and magenta

(referred to as the polar region in the text). All other enzyme carbons

are green. For michellamine B, the methoxy and methyl substituents of

naphthalene A pack into binding subsite 1, while the methoxy

of naphthalene B packs into binding subsite 2. The ionizable nitrogen

of the tetrahydroisoquinoline attached to naphthalene B points toward

a cluster of polar residues: Glu 55, Gln 161, Glu 163, and Lys 165.

Fig. 3. A two-dimensional schematic relating compound substituents

to predicted binding subsites in the BoNT/A LC substrate binding

cleft. Dashed circles indicate substituents that engage in favorable

contacts in binding subsite 1, solid circles indicate substituents that

engage in favorable contacts in binding subsite 2, and gray spheres

indicate substituents that engage in favorable interactions with polar

residues.
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with the side-chain guanidinium of Arg 230, while the
methylenes of this ring pack behind the pyrrolidine ring

of Pro 238.

Structural evaluation and molecular docking of BQs and

antimalarial drugs

BQs possessing a flexible linker between the 7-chloro-

4-aminoquinoline moieties are more potent inhibitors

than conformationally constrained derivatives (Table 2).

In addition, it is also evident that an ionizable amine in

the flexible linker increases potency (for example, Q2-61

versus Q1-19). Compound Q2-15 shows that a seven

atom linker, with a central ionizable amine, is favored
over shorter linkers that also contain an ionizable amine.

Conformational analyses of the most potent BQs

show that these compounds favor a folded conforma-

tion, with the 7-chloro-4-aminoquinoline moieties posi-

tioned front to back and slightly offset relative to one

another (Fig. 4A). Based on these observations, it ap-

pears that these congeners may all bind in the BoNT/A

substrate binding cleft in a similar manner.
To gain a better understanding of how the folded

conformations of these congeners might bind in the

BoNT/A LC substrate cleft, Q2-15 was fit onto mi-

chellamine B (in its docked conformation). The super-

imposition shown in Fig. 4B indicates a good overlap

between: (1) the 7-chloro-4-aminoquinoline components

of Q2-15 and the naphthalene moieties of michellamine

B and (2) the ionizable nitrogen of the Q2-15 flexible
linker and the ionizable nitrogen of one of the michell-

amine B isoquinolines.

These observations led to docking studies to deter-

mine if the BQs might also bind to predicted subsites 1

and 2 in the BoNT/A LC substrate binding cleft. For the

most potent compounds, the ring nitrogen of one of the

7-chloro-4-aminoquinoline moieties sits in close prox-

imity to the catalytic zinc, while the 7-chloro substituent
packs into binding subsite 1. The ionizable amines in

compounds with flexible linkers engage in potential io-

nic bonds with the polar side-chains of either Gln 161 or

Glu 163. Another explanation for the importance of the

ionizable amine may be that it is necessary for solubi-

lizing the otherwise hydrophobic linkers found in this

series of compounds.

Docking studies also indicate that the second 7-
chloro-4-aminoquinoline moiety (of the most potent

derivatives) binds in subsite 2 such that the nitrogen of

the heterocycle points toward the solvent and engages in

a hydrogen bond with the side-chain guanidinium of

Arg 230 (as was also observed for a nitrogen in one of

the dihydro-imidazolyl rings of NSC 357756), and the 7-

chloro substituent points into the hydrophobic space

behind His 226. For comparison, molecular docking of
compounds with rigid linkers (for example, Q2-11 and

Q2-97) indicates that steric constraints prevent these

compounds from adopting binding modes in subsites 1
and 2 that are as favorable as those observed for

congeners with flexible linkers. In general, these studies

provide evidence that the BQs interact with the BoNT/A

LC substrate binding cleft in a manner similar to in-

hibitors from the NCI Diversity set. Fig. 3 shows two-

dimensional schematics matching substituents from two

of the most potent BQs (Q2-15 and Q3-81) with their

corresponding binding subsites in the BoNT/A LC
substrate binding cleft.

Of the five examined antimalarial drugs (Table 2),

amodiaquine and quinacrine were the most potent (30%

inhibition of protease activity). However, the fact that

these two drugs inhibit BoNT/A LC with approximately

half the potency of Q2-15 provides further evidence that

a second aromatic component, such as found in the BQs

or michellamine B, is necessary for enhanced potency,
and supports our hypothesis that binding subsite 2 (in

the enzyme’s substrate binding cleft) is an important

contact region for inhibitors. Furthermore, as quina-

crine contains an acridine scaffold, these studies have

revealed a new aromatic component that may be used to

identify and/or synthesize new BoNT/A LC inhibitors.

The antimalarial agents that we found to inhibit

BoNT/A LC protease activity have previously been
shown to increase the time to BoNT/A holotoxin in-

duced muscle paralysis [17,18]. In the earlier work, it

was hypothesized that these compounds delayed paral-

ysis by interfering with toxin translocation into the

nerve cytoplasm and therefore they were not tested for

specific inhibition of BoNT/A LC protease activity. The

percent inhibition of BoNT/A LC that we observed for

these drugs was not equivalent to the level of protection
that they afforded against muscle paralysis in the pre-

vious studies [17,18]. For example, quinacrine, which we

report to inhibit BoNT/A LC protease activity by 30%

at 50 lM (0.2 mM substrate), was found, in an earlier

study [17], to delay the time to 50% muscle paralysis by

at least 30% (over control) at 3.3 lM [17]. Thus, the

results from the earlier studies, combined with the

findings from our investigation, suggest that these
compounds possess a dual mechanism of action—inter-

fering with both BoNT/A entry into the cytoplasm and

with the protease activity of the light chain. This dual

mechanism of action is appealing from a drug design

standpoint, as one molecule can be used to inhibit two

separate functions of the same target. Indeed, if the BQs

are found to also inhibit BoNT/A cytoplasm entry, then

these studies will be the basis for the development of a
new family of bifunctional inhibitors.

A common pharmacophore for BoNT/A LC inhibitors

Based on conformational sampling and molecular
docking studies, a common pharmacophore for BoNT/

A LC inhibitors is proposed (Fig. 5A). An example of
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how one of the inhibitors (Q2-15) fits the pharmaco-

phore, using Catalyst 4.7 (Accelrys, San Diego, CA) as

the query engine, is shown in Fig. 5B. Specifically, our
studies show that the BoNT/A LC binding cleft can

accommodate up to two biaryl/triaryl aromatic com-

ponents, which are defined by planes A and B in the

pharmacophore (Fig. 5A). These planes serve as scaf-

folds for positioning other components of the pharma-

cophore, provided that the distance between centroids of

the two planes only varies from approximately 6.5–9.5�AA
(Fig. 5A). An additional requirement of plane A is the
presence of a heteroatom (Fig. 5A) that may serve to

either directly engage in an interaction with the catalytic

zinc, or potentially replace the water molecule used by

zinc during substrate lysis. Examples of structural

components of inhibitors that occupy planes A and B

include: the two quinoline rings of BQs (a quinoline

nitrogen would be the electron donor) (Table 2, Figs. 3,
4, and 5B); the two naphthalene rings of michellamine B

(a hydroxyl oxygen would be the electron donor) (Table

1, Figs. 2 and 3); and the indole and benzofuran rings of

NSC 357756 (the benzofuran oxygen would be the

electron donor) (Table 1 and Fig. 3).

Two hydrophobic moieties (C and D) are key com-

ponents of the common pharmacophore (Fig. 5A). In

relation to the BoNT/A LC substrate binding cleft, C
and D correspond to binding subsites 1 and 2, and fa-

cilitate hydrophobic collapse between inhibitors and the

enzyme. The C!D distance range of the common

pharmacophore shown in Fig. 5A reflects the extent of

the potential binding space that inhibitors may occupy

in subsite 2 of the BoNT/A LC substrate binding cleft.

Examples of C and D in inhibitors, as they map to the

common pharmacophore, include: the two methoxy
substituents of michellamine B (separated by a distance

of 8.6�AA) (Table 1 and Figs. 2 and 3); the two chlorines

of the BQs (separated by an average distance of 9.8�AA
for all examined BQs) (Table 2 and Figs. 3, 4, and 5B);

Fig. 4. (A) Overlay of folded conformers of BQs: Q1-21, Q2-15, Q3-79,

and Q3-81. For all compounds, nitrogen atoms are dark blue and

chlorine atoms are light green. The carbon atoms of Q1-21 are ma-

genta, of Q2-15 are light blue, of Q3-79 are green, and of Q3-81 are

white. A striking feature of the superimposed compounds is the close

correspondence of their chloro substituents, which provides evidence

that they may bind within the enzyme’s substrate binding cleft in a

similar manner. (B) Overlay of michellamine B and Q2-15. Carbons of

michellamine B are green and carbon atoms of Q2-15 are light blue.

The superimposed conformers show a good correspondence between:

(1) the ionizable amine in the flexible linker of Q2-15 and the ionizable

amine in one of the tetrahydroisoquinolines of michellamine B and (2)

the chloro moieties of Q2-15 and the hydrophobic methoxy/methyl

moieties of michellamine B.

Fig. 5. (A) Common pharmacophore for BoNT/A LC inhibition.

Planar components A and B are blue dashed rectangles. The dashed

green circle in plane A represents a heteroatom. Hydrophobic com-

ponents of the pharmacophore (C and D) are shown with light blue

spheres. The positive ionizable component of the pharmacophore (E) is

shown with a red sphere. (B) Q2-15 mapped onto the common phar-

macophore (shown in (A)) in Catalyst 4.7 (Accelrys, San Diego, CA).

Carbon atoms are black, nitrogen atoms are blue, and chlorine atoms

are green. Planar components A and B are outlined with blue dashed

rectangles. The heteroatom in plane A is indicated with a dashed green

circle. Mapping of the hydrophobic components (C and D) is indicated

with light blue mesh spheres; mapping of the positive ionizable com-

ponent (E) is indicated with a red mesh sphere.

J.C. Burnett et al. / Biochemical and Biophysical Research Communications 310 (2003) 84–93 91



and the two dihydro imidazolyl moieties of NSC 357756
(separated by a distance of 15.8�AA) (Table 1 and Fig. 3).

The final component (E) of the common pharmaco-

phore is a positive ionizable substituent (Fig. 5A). While

inhibitor docking studies have shown that an ionizable

moiety may participate in electrostatic interactions with

enzyme residues, the positive charge may also aid in

solubilizing inhibitors bound within the BoNT/A LC

substrate binding cleft; unlike a traditional binding
pocket, the BoNT/A LC substrate binding cleft is large

and almost completely solvent exposed. Hence, it is

plausible that a hydrogen bonding network involving

the positively charged moiety(ies) of the inhibitors and

surrounding water molecules also serves to stabilize

compound binding. Examples of inhibitor components

that map to E include: the ionizable secondary nitrogen

in one of the michellamine B tetrahydroisoquinolines
(Table 1 and Figs. 2 and 3); the secondary nitrogens in

the flexible linkers of BQs (Table 2 and Figs. 3, 4, and

5B); and the tertiary nitrogens in amodiaquine, chloro-

quine, and quinacrine (Table 2). Interestingly, the de-

termined BoNT/A LC peptide cleavage site of the

natural substrate, SNAP-25, is between a glutamine and

an arginine [34]. Furthermore, the distance between the

side-chain guanidinum of arginine (which is ionized at
physiological pH) and the backbone Ca of this residue

corresponds to the distance between A and E in the

common pharmacophore. Hence, it is possible that the

ionizable substituent of the inhibitors may be mimicking

contacts made by the side-chain guanidinium of the in-

dicated Arg residue of SNAP-25.

Summary

These experiments have, for the first time, identified

small organic (non-peptidic) lead therapeutics that in-

hibit BoNT/A LC protease activity in the low lM range.

Based on the structures of these lead therapeutics, mo-

lecular modeling studies have been used to propose a

common pharmacophore. This pharmacophore will
serve as the basis for directing future database mining

studies and synthetic organic chemistry projects to

identify and develop BoNT/A LC inhibitors with en-

hanced potency.
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