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While prion infection of the lymphoreticular system (LRS) is necessary for neuroinvasion in many prion
diseases, in bovine spongiform encephalopathy and atypical cases of sheep scrapie there is evidence to
challenge that LRS infection is required for neuroinvasion. Here we investigated the role of prion infection of
LRS tissues in neuroinvasion following extraneural inoculation with the HY and DY strains of the transmis-
sible mink encephalopathy (TME) agent. DY TME agent infectivity was not detected in spleen or lymph nodes
following intraperitoneal inoculation and clinical disease was not observed following inoculation into the
peritoneum or lymph nodes, or after oral ingestion. In contrast, inoculation of the HY TME agent by each of
these peripheral routes resulted in replication in the spleen and lymph nodes and induced clinical disease. To
clarify the role of the LRS in neuroinvasion, the HY and DY TME agents were also inoculated into the tongue
because it is densely innervated and lesions on the tongue, which are common in ruminants, increase the
susceptibility of hamsters to experimental prion disease. Following intratongue inoculation, the DY TME agent
caused prion disease and was detected in both the tongue and brainstem nuclei that innervate the tongue, but
the prion protein PrP5° was not detected in the spleen or lymph nodes. These findings indicate that the DY
TME agent can spread from the tongue to the brain along cranial nerves and neuroinvasion does not require
agent replication in the LRS. These studies provide support for prion neuroinvasion from highly innervated

peripheral tissues in the absence of LRS infection in natural prion diseases of livestock.

In scrapie infection of sheep and chronic wasting disease
infection of cervids, prion agent infection and replication in the
gut-associated lymphoreticular system (LRS) precede entry
into the nervous system following oral prion exposure (1, 15,
29, 35). After infection of the LRS, the prion agent enters
peripheral nerves and retrogradely spreads to the central ner-
vous system, where it can replicate to high levels. The scrapie
agent also retrogradely spreads from the enteric nervous sys-
tem to the dorsal motor nucleus of the vagus in the brainstem
via the vagus nerve (21, 28, 36). These modes of neuroinvasion
are postulated to be dependent on prior agent amplification in
the LRS. This is supported by studies using mice that are not
susceptible to prion infection via extraneural routes of inocu-
lation as a result of a permanent or transient loss of functional
germinal centers in lymphoid follicles (17-20, 22).

However, in bovine spongiform encephalopathy (BSE)-in-
fected cattle and atypical scrapie, the role of the LRS in prion
neuroinvasion is less clear, and perhaps not essential. In nat-
ural cases of BSE, prion infectivity has not been detected in
lymph nodes or spleen, and the disease-specific isoform of the
prion protein PrP5¢ was not found in the distal ileum (31).
Following experimental oral exposure of calves to the BSE
agent, BSE infectivity was found in the distal ileum and in a
single sample of tonsil but not in the spleen or lymph nodes
(13, 30, 37, 38). The paucity of the BSE agent in the LRS
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suggests that there may be alternative routes of prion neuro-
invasion that could involve direct infection of the nervous
system.

In atypical cases of scrapie the distribution of the scrapie
agent in the LRS and brain is different from that found in
classical scrapie. PrP5¢ has not been found in lymph nodes
from sheep with atypical scrapie (6) and there is a notable
absence of PrPS® immunostaining in the dorsal motor nucleus
of the vagus in the brainstem (6, 10, 25), which suggests that
scrapie agent neuroinvasion does not occur via the vagus
nerve. These findings raise the possibility that scrapie infection
was not established via agent entry into the gut and, impor-
tantly, that infection of the LRS is not necessary for prion
neuroinvasion in a subset of prion diseases.

To investigate the role of LRS infection in prion neuroin-
vasion, we used an experimental model of transmissible mink
encephalopathy (TME) in hamsters. We tested the hypothesis
that LRS-independent neuroinvasion could occur following
inoculation of a densely innervated peripheral tissue, such as
the tongue. Previous studies have demonstrated that intra-
tongue inoculation of the HY strain of the TME agent resulted
in rapid disease onset consistent with TME agent neuroinva-
sion via the hypoglossal nerve (4). We examined the ability of
the DY TME agent, which does not replicate in the spleen (3),
to establish TME infection following several extraneural routes
of inoculation. Following intraperitoneal, intra-lymph node, or
oral exposure to the DY TME agent, hamsters did not develop
clinical disease and neither DY TME agent infectivity nor
PrPS¢ was detected in the LRS. In contrast, intratongue inoc-
ulation of hamsters with the DY TME agent resulted in prion
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disease in the absence of LRS infection. The initial sites of DY
TME agent deposition in the brainstem following intratongue
inoculation were consistent with prion neuroinvasion via the
tongue-associated cranial nerves. This study suggests that neu-
roinvasion from highly innervated peripheral tissues does not
require LRS infection and has clinical implications for a subset
of prion diseases in livestock in which prion replication in the
LRS is either greatly restricted or not apparent.

MATERIALS AND METHODS

Animal inoculations and tissue collection. All procedures involving animals
were approved by the Institutional Animal Care and Use Committee and comply
with the Guide for the Care and Use of Laboratory Animals (24). Weanling (4
to 5 weeks old) outbred male Golden Syrian hamsters (Harlan Sprague Dawley,
IN) were inoculated with a 1% (wt/vol) brain homogenate from an HY TME- or
DY TME agent-infected hamster containing 107> or 10°* median lethal doses
per ml, respectively. Hamsters were inoculated by the intracerebral (25 pl),
intraperitoneal (100 wl), or intratongue (20 pl) route. Animals were observed
three times per week for the onset of neurological disease as previously described
(8). Animals were sacrificed by CO, asphyxiation and tissues were removed and
frozen for Western blot analysis, or the animals were perfused with fixative and
the brainstem was prepared for PrPS¢ immunohistochemistry.

Hamster bioassay for DY TME agent infectivity. Tissues (i.e., lymph nodes,
spleen, and brain) were aseptically collected from hamsters at various time points
following mock inoculation or intraperitoneal (i.p.) inoculation with the DY
TME agent. The tissues were minced with disposable razor blades and sterile
saline was added to a final volume of 250 pl. The tissue was homogenized using
a 26-gauge needle prior to sonication in a cup horn sonicator (Fisher Scientific,
Atlanta, GA). Tissue homogenates were inoculated intracerebrally into Syrian
hamsters and the time to onset of clinical symptoms was recorded.

Tissue preparation and Western blot of PrPS¢. For PrP5¢ analysis of brain
from clinically ill hamsters, a 5% (wt/vol) homogenate in Dulbecco’s phosphate-
buffered saline without Ca>* or Mg?* (Mediatech, Herndon, VA) was digested
with 4 units per ml of proteinase K (Roche Diagnostics Corporation, Indianap-
olis, IN). Homogenates were incubated at 37°C for 1 hour with constant agitation
followed by the addition of phenylmethylsulfonyl fluoride to a concentration of
5 mM. Proteinase K-digested brain homogenates (0.25-mg equivalents) were
analyzed for PrPS¢ content by sodium dodecyl sulfate (SDS)-polyacrylamide gel
electrophoresis (PAGE) and Western blot as described below.

The spleen and lymph nodes were homogenized in 10 mM Tris-HCI [pH 7.5]
containing 5 mM MgCl, to produce a 20% (wt/vol) tissue homogenate. Tissue
homogenates were incubated with 100 units per ml of Benzonase nuclease
(Novagen, Inc., Madison, WI) at 37°C for 1 hour with constant agitation. An
equal volume of buffer was added to make a 10% (wt/vol) tissue homogenate
containing buffer A (10% [wt/vol] N-lauroylsarcosine in 10 mM Tris-HCI [pH
7.5], 100 mM NaCl, 1 mM EDTA, and 1 mM dithiothreitol). Tongues taken from
all animals and the brains from hamsters that did not develop clinical symptoms
were directly homogenized in buffer A.

Enrichment for PrPS¢ from brain, tongue, spleen, and lymph nodes was per-
formed as previously described (3-5). SDS-PAGE and Western blot were per-
formed as previously described using monoclonal anti-PrP antibody 3F4 hybrid-
oma supernatant at a 1:10,000 dilution (23) (gift of V. Lawson, National Institute
of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton,
MT) (16).

Immunohistochemistry. Immunostaining for PrPS¢ in brainstem was per-
formed as previously described (4, 23). Briefly, animals were intracardially per-
fused with paraformaldehyde-lysine-periodate fixative followed by postfixation in
paraformaldehyde-lysine-periodate fixative for 5 to 7 h. Paraffin-embedded tissue
sections (5 pwm) were subjected to antigen retrieval by treatment with formic acid
for 20 min, followed by a streptavidin-biotin blocking step. PrPS¢ was detected by
successive incubation with monoclonal 3F4 hybridoma supernatant, horse anti-
mouse immunoglobulin G biotin conjugate (Vector Laboratories, Burlingame,
CA), and streptavidin conjugated to horseradish peroxidase (Biosource, San
Diego, CA). Visualization of PrP5¢ staining was performed using 3-amino-9-
ethylcarbazole (0.5 mg per ml) in 100 mM sodium acetate (pH 5.0) and 0.01%
H,0,. Tissue was counterstained with hematoxylin. A minimum of three animals
per group and 15 tissue sections per animal were examined with a Nikon E600
microscope for each antibody staining procedure.
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TABLE 1. Incubation period of HY TME and DY TME agents in
hamsters following neural and extraneural inoculation

Mean time to onset of clinical signs

Inoculation route (days) = SEM

HY TME DY TME
Cerebrum 60 + 1 (5/5)¢ 168 £ 5 (5/5)
Sciatic nerve” 68 + 2 (6/6) 210 = 9 (5/6)
Tongue 79 = 2 (6/6) 262 = 7 (5/6)
Peritoneum 93 =19 (5/5) >500 (0/5)
Oral 122 =3 (5/5) >600 (0/5)

Submandibular lymph node 190 = 20 (3/3) >475¢ (0/3)

“ Number affected/number inoculated.

b Reference 3.

¢ One intercurrent death at 477 days and two others clinically normal at >690
days postinoculation.

RESULTS

Pathogenicity of the HY and DY TME agents by neural and
extraneural routes of inoculation. To investigate the role of
the LRS in prion neuroinvasion, hamsters were initially inoc-
ulated into the peripheral or central nervous system by the
intrasciatic nerve and intracerebral routes, respectively, with
the HY and DY TME agents (Table 1). All neural inoculation
groups were susceptible to prion disease, with the HY TME
agent-inoculated groups having a shorter incubation period
than the DY TME agent-inoculated hamsters, as reported
previously (5, 7). The HY and DY TME agents were also
inoculated into hamsters by several extraneural routes, includ-
ing intraperitoneal (i.p.), intratongue, intra-lymph node, and
per os. Animal groups inoculated with the HY TME agent all
developed clinical disease, with the intratongue route (79 * 2
days) having the shortest incubation period and the intralymph
node route the longest incubation period (190 = 20 days)
(Table 1). However, inoculation of the DY TME agent by
these peripheral routes only produced disease in the intra-
tongue group at 262 * 7 days postinoculation. At 475 to 600
days postinoculation, clinical signs of DY TME were not ob-
served in the i.p., intra-lymph node, and per os groups (Table
1). These findings suggest that DY TME agent neuroinvasion
is either delayed or absent following peripheral inoculation
with the exception of the intratongue inoculation group.

Since prion agent infection or disease is typically observed
following i.p. inoculation in rodent models of prion disease, we
tested the hypothesis that DY TME agent neuroinvasion is
blocked due to the inability of the DY TME agent to either
replicate in the LRS or spread from the LRS to the peripheral
nervous system. In a previous study DY TME agent infectivity
was not found in the spleen, sympathetic chain, or brain fol-
lowing i.p. inoculation (3).

To investigate whether the lymph nodes are a potential site
of DY TME agent replication, the medial iliac and mesenteric
lymph nodes as well as the spleen were collected from ham-
sters at 60 and 120 days after i.p. inoculation with the DY TME
agent. TME agent infectivity in these tissues was subsequently
measured by hamster bioassay. Lymph node and spleen ho-
mogenates from one mock-infected and two DY TME agent-
infected hamsters at each of the collection times postinocula-
tion were intracerebrally inoculated into hamsters. At 400 days
postinoculation none of the hamsters developed clinical symp-
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TABLE 2. TME agent infectivity in tissues from hamsters
intraperitoneally inoculated with the DY TME agent

Incubation period (days)

Time
Inoculation® postinoculation Medial iliac Mesenteric
(days) Spleen LN LN
Mock 1 60 >400 (0/4)b >400 (0/4) >400 (0/4)
DY TME 1 60 >400 (0/4)  >400 (0/4) >400 (0/4)
DY TME 2 60 >400 (0/4)  >400 (0/4) >400 (0/4)
Mock 2 120 >400 (0/4)  >400 (0/4) >400 (0/4)
DY TME 3 120 >400 (0/4)  >400 (0/4) >400 (0/4)
DY TME 4 120 >400 (0/4)  >400 (0/4) >400 (0/4)

“ Hamsters were intraperitoneally inoculated with 10** median lethal doses of
the DY TME agent or a normal brain homogenate (mock). The spleen and
lymph nodes (LN) were collected from two mock-inoculated and four DY TME
agent-inoculated hamsters at the indicated times postinoculation for animal
bioassay.

® Number affected/number inoculated.

toms of disease (Table 2). A control hamster group was intra-
cerebrally inoculated with a brain homogenate containing a
low dose of the DY TME agent (e.g., 10*? median lethal
doses) and they developed clinical disease at 204 = 1 day
postinfection. These findings indicate that the DY TME agent
does not replicate in the lymph nodes or spleen during the first
120 days following i.p. inoculation. Therefore, we propose that
prion neuroinvasion does not occur following peripheral inoc-
ulation as a result of the inability of the DY TME agent to
establish infection in the LRS.

The accumulation of the HY and DY TME agents in the
brain, LRS, and tongue of TME agent-infected hamsters at
clinical disease was investigated by PrPS° Western blot in order
to determine the sites of TME agent infection. Following in-
tracerebral and i.p. inoculation of the HY TME agent, PrPS¢
was found in the brain, submandibular lymph node, and spleen
of clinically ill hamsters (Fig. 1). For the DY TME agent, PrPS¢
was found in the brain following intracerebral inoculation but
was not detected in the spleen or submandibular lymph nodes
at the time of clinical disease. Following i.p. inoculation of the
DY TME agent, PrP5¢ was not found in the brain, spleen, or

Route: Intracerebral Intraperitoneal
Strain: HY DY HY DY
Tissue: Br Sp Sm Br Sp Sm Br Sp Sm Br Sp Sm

30 kDa—,
—

FIG. 1. Tissue distribution of PrPS¢ following inoculation of TME
agents by neural and extraneural routes. Hamsters were inoculated
with the HY TME or DY TME agent by either the intracerebral or
intraperitoneal route. Hamsters were sacrificed after the onset of clin-
ical disease and from clinically normal, aged DY TME agent-inocu-
lated hamsters at greater than 500 days after intraperitoneal inocula-
tion. The brain (Br), spleen (Sp), and submandibular lymph nodes
(Sm) were collected for PrPS¢ analysis. Brain homogenates, containing
0.15 to 0.25 mg equivalents of tissue, and PrP5*-enriched preparations
from the spleen and lymph nodes (25 mg equivalents) were prepared
as described in the text and analyzed by SDS-PAGE and PrP Western
blot. The positions of molecular mass markers are indicated to the left
of the panel in kilodaltons.

J. VIROL.

Strain: HY TME DY TME
Tissue: Br To Sp SmCe Br_To Sp Sm Ce Mi

R

Mg €qi02525 25 2 202525 25 25 25 2

FIG. 2. Tissue distribution of PrP5¢ following intratongue inocula-
tion of the HY TME and DY TME agents. Hamsters were inoculated
in the tongue and sacrificed after the onset of clinical symptoms. The
brain (Br), tongue (To), spleen (Sp), submandibular lymph node (Sm),
cervical lymph node (Ce), and medial iliac lymph node (Mi) were
collected and prepared for PrPS¢ analysis and Western blot as de-
scribed for Fig. 1. Tissue amounts are indicated in milligram equiva-
lents (Mg eq).

submandibular lymph node in clinically normal hamsters at 500
days postinfection (Fig. 1), which was consistent with the ab-
sence of TME agent infectivity in lymph nodes or spleen (Ta-
ble 2).

Following intratongue inoculation of the HY and DY TME
agents, PrPS¢ was found in both the brain and tongue at clinical
disease, but PrP5¢ was only detected in the lymph nodes from
HY TME agent-inoculated hamsters (Fig. 2). DY PrPSc was
absent from the spleen and the submandibular, cervical, and
medial iliac lymph nodes from hamsters that developed clinical
signs of DY TME following intratongue inoculation, even
though up to 10-fold more lymph node tissue was analyzed
compared to HY TME agent-infected hamsters. These find-
ings indicate that DY PrP5¢ does not accumulate in the lymph
nodes and spleen, and this result is in agreement with the
bioassay data (Table 2), which indicate a lack of DY TME
agent infectivity in these tissues. Based on these studies, we
propose that prion neuroinvasion via the tongue does not re-
quire prior agent infection in the LRS.

PrP5¢ distribution in the nervous system following intra-
tongue inoculation of the TME agent. The initial sites of PrPS°
deposition in the central nervous system following intratongue
inoculation of the HY and DY TME agents were investigated
by PrPS¢ immunohistochemistry in order to determine the pri-
mary route of TME agent neuroinvasion. As previously de-
scribed, intratongue inoculation of the HY TME agent re-
sulted in detection of PrP5¢ in the hypoglossal nucleus at 2
weeks postinfection (4). In the current study there was a pro-
gressive increase in the amount of HY PrP5¢ deposition in the
hypoglossal nucleus following intratongue inoculation of the
HY TME agent, and PrP5¢ was found within the cytoplasm of
the hypoglossal motor neurons early after brainstem infection
(Fig. 3B). As TME agent infection progressed, the cytoplasm
became progressively filled with large PrPSc aggregates. At
later time points postinfection, PrPS¢ deposits were present in
the nucleus of the solitary tract and portions of the reticular
formation, as previously described (4). Neurons in these loca-
tions are known to synapse with the motor neurons in the
hypoglossal nucleus, and infection of these second-order neu-
rons is consistent with trans-synaptic spread of the HY TME
agent.

Following intratongue inoculation of the DY TME agent,
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FIG. 3. PrP5 deposition in the hypoglossal nucleus of hamsters following intratongue inoculation of the HY TME and DY TME agents.
Hamsters were inoculated by the intratongue route with the HY TME agent (B) or DY TME agent (C). Brain was collected from HY TME- and
DY TME agent-infected hamsters at 4 weeks (i.e., 35% of the HY TME agent incubation period had elapsed) and 23 weeks (i.e., 60% of the DY
TME agent incubation period had elapsed) postinfection, respectively, and prepared for immunohistochemistry as described in Materials and
Methods. PrPS® immunohistochemistry (red punctate signal) revealed staining in the hypoglossal nucleus that included intrasomata PrPS° deposits
in motor neurons in HY TME agent infection and neuropil PrPS¢ deposits with a paucity of intrasomata staining in DY TME agent infection.
Tissue was counterstained with hematoxylin (B and C). Nissl stain (A) of the hypoglossal nucleus from a mock-infected hamster illustrates somata
of motor neurons. Arrowheads indicate hypoglossal motor neurons. Bar, 20 pm.

PrPS© was first detected in the hypoglossal nucleus at 12 weeks
postinfection; there was also evidence for PrPS¢ deposition in
the nucleus of the solitary tract and reticular formation at this
time point. This initial distribution of DY PrP*¢ in the brain-
stem following intratongue inoculation was similar to that for
the HY TME agent except that there was no obvious delay in
PrPS° deposition in the nucleus of the solitary tract after dep-
osition in the hypoglossal nucleus. PrPS°¢ deposits were not
found in the brainstem at 8 weeks following intratongue inoc-
ulation of the DY TME agent; time points between 8 and 12
weeks were not examined.

The most striking difference in the hypoglossal nucleus be-
tween the HY and DY TME agent strains was the pattern of
immunoreactivity. In both early and late DY TME agent in-
fection of the hypoglossal nucleus, PrP5¢ deposition was pri-
marily found in the neuropil or associated with glia, but PrPS¢
deposits were infrequently observed in the cytoplasm of motor
neurons (Fig. 3C). These deposits had a punctate staining
pattern, but large PrP5° aggregates in the somata were not
found in DY TME agent infection, unlike HY TME agent
infection. PrPS was not found in the spinal cord of either the
HY TME or DY TME agent-infected hamsters at the time of
initial PrP5¢ detection in the brainstem for each TME agent
(data not shown). This PrP5 distribution in the nervous system
was consistent with retrograde spread of the HY TME and DY
TME agents along the axons of the hypoglossal nerve to the
hypoglossal nucleus. In addition, for the DY TME agent, we
cannot exclude a role for spread along the axons of the chorda
tympani branch of the facial nerve or the glossopharyngeal
nerve, which both project from the tongue to the nucleus of the
solitary tract in the brainstem.

DISCUSSION

In this report we investigated the role of the LRS in prion
neuroinvasion in order to address a subset of prion diseases of
livestock where infection of the LRS either is restricted or does

not appear to be essential for neuroinvasion. We tested the
hypothesis that prion neuroinvasion by the DY TME agent is
independent of LRS infection following inoculation by several
extraneural routes, including the tongue. Intraperitoneal inoc-
ulation of the DY TME agent did not result in (i) TME agent
infectivity in lymph nodes or spleen, (i) PrP5¢ deposition in
lymph nodes, spleen or brain, and (iii) clinical disease. In a
prior study, DY TME agent infectivity was not detected in the
spleen, sympathetic chain, or brain of hamsters at 80 to 405
days postinoculation of the DY TME agent by the i.p. route
(3). Based on these findings, we conclude that the DY TME
agent does not replicate in the LRS.

To test whether the lack of DY TME agent replication in the
LRS was due to an inability of this agent to be transported to
the LRS, hamsters were directly inoculated in the submandib-
ular lymph node. These animals did not develop clinical TME
after 400 days postinoculation. The DY TME agent is the only
reported prion agent that fails to replicate in the LRS follow-
ing intraspecies inoculation of an immunocompetent host. Al-
though subclinical prion infection has been described in ro-
dents following extraneural inoculation, PrP5¢ or infectivity is
found in LRS tissues of these hosts. In mice the 87V scrapie
agent can establish a subclinical infection for the life span of
the host following i.p. inoculation, but scrapie infectivity was
detected in the spleen within weeks of inoculation (9, 12).
Other studies reported subclinical RML scrapie infection of
mice following oral ingestion, but scrapie infectivity was found
in lymph nodes and brain in these aged mice (32). These
subclinical infections are distinct from extraneural inoculation
with the DY TME agent, in which PrP¢ or DY TME agent
infectivity has not been found in LRS tissues. Based on our
studies we conclude that the DY TME agent can be used to
investigate the routes of prion neuroinvasion that are indepen-
dent of prion agent replication in the LRS.

The pathogenicity of the DY TME agent following routes of
exposure that are known to be dependent on agent replication
in the LRS prior to neuroinvasion were compared to inocula-
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tion in the tongue, a densely innervated peripheral tissue. The
tongue was chosen as a site of inoculation for several reasons:
(i) it is in direct contact with the prion agent during oral
ingestion; (ii) lesions on the tongue increase the susceptibility
of hamsters to HY TME agent infection when the agent is
directly applied to the tongue (4); (iii) infections or lesions in
the oral cavity and tongue are common in ruminant species;
and (iv) prion infection of the tongue has been reported in the
tongue of scrapie-infected sheep (2, 11) (R. A. Bessen, unpub-
lished data). Hamsters were susceptible to DY TME disease
following intratongue, intracerebral, and intra-sciatic nerve in-
oculation but not following i.p., intra-lymph node, or per os
inoculation. In the intratongue, intracerebral, intra-sciatic
nerve, and i.p inoculation groups, DY PrP5° was not found in
lymph nodes or spleen and DY TME agent infectivity in the
LRS, sympathetic chain, or brain was not detected following
i.p. inoculation (3, 5).

It is possible that intratongue inoculation, unlike i.p. inocu-
lation, of the DY TME agent could result in replication in the
LRS. This outcome is unlikely since HY PrP5¢ was found in the
LRS of hamsters following neural and extraneural inoculation
(3-5) but there was no evidence for DY TME agent infection
in the LRS following inoculation by similar routes. Based on
the lack of DY TME agent infectivity and PrPS¢ in LRS tissues
following i.p. inoculation and the absence of DY TME agent
disease following several extraneural routes of inoculation, we
conclude that neuroinvasion following intratongue inoculation
of the DY TME agent is not dependent on prion agent repli-
cation in the LRS. This conclusion is consistent with a previous
study using transgenic mice that express PrPC under the con-
trol of the neuron-specific enolase promoter, in which these
mice were susceptible to scrapie following extraneural prion
agent inoculation (26).

DY TME agent neuroinvasion via the tongue is consistent
with axonal transport along cranial nerves. Detection of PrP5¢
in the brainstem at 12 weeks postinfection following intra-
tongue inoculation of the DY TME agent was at a time when
DY TME agent infectivity was not detected in lymph nodes or
spleen following i.p. inoculation. The initial sites of DY PrPS¢
deposition in the central nervous system following intratongue
inoculation were the hypoglossal nucleus and nucleus of the
solitary tract. This distribution is consistent with retrograde
spread of the DY TME agent within the axons of the hypo-
glossal nerve to the hypoglossal nucleus, and the chorda tym-
pani branch of the facial nerve and/or glossopharyngeal nerve
to the nucleus of the solitary tract in the brainstem. In order to
determine the principal route of DY TME agent neuroinva-
sion from the tongue, additional analysis between 8 and 12
weeks postinfection is necessary to determine the initial
sites(s) of entry of the DY TME agent into the brainstem.

For the HY TME agent, following initial PrP5¢ deposition in
the hypoglossal nucleus there was a longer delay before PrPS¢
appeared in the nucleus of the solitary tract compared to the
DY TME agent, suggesting that the HY TME agent spread to
the nucleus of the solitary tract via fibers that originate in the
nucleus of the solitary tract and terminate on the hypoglossal
motor neurons (4). This spread to the nucleus of the solitary
tract across synapses is consistent with trans-synaptic spread of
pseudorabies and rabies virus transneuronal tracers following
intratongue inoculation (14, 33, 34).

J. VIROL.

Direct prion neuroinvasion from extraneural tissues has im-
plications for BSE and atypical scrapie in which there appears
to be a reduced role for the LRS in neuroinvasion. Our find-
ings indicate that infection of peripheral tissues that are
densely innervated, such as the tongue, can result in direct
neuroinvasion via cranial nerves without LRS infection. The
tongue is a unique tissue in that it receives dense sensory and
motor innervation from four cranial nerves. In fact, the density
of motor innervation of the tongue is much greater than the
density of motor innervation of other muscle groups (27).
Exposure of the tongue to the prion agent during oral ingestion
makes it a potential site of agent entry and neuroinvasion,
especially if lesions have disrupted the mucosal epithelium (4).
Although there are no epidemiological data that indicate this is
a common route of prion agent entry, the tongue is a highly
innervated peripheral tissue that may be a relevant site of
neuroinvasion for a subset of prion diseases of livestock in
which evidence for LRS infection is lacking.
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