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QUANTITATIVE DEMONSTRATION OF CELL
SURFACE INVOLVEMENT IN A PLANT-ANIMAL
SYMBIOSIS: LECTIN INHIBITION

OF REASSOCIATION

R. H. MEINTS anp R. L. PARDY
School of Life Sciences, University of Nebraska, Lincoln, Nebraska, 68588, U.S.A4.

SUMMARY

The freshwater hydra, Hydra viridis is normally associated with Chlorella-like, algal symbionts
which inhabit the host’s digestive cells. Under experimental conditions bleached hydra will
reassociate with algae harvested from green hydra, but not from our cultures of wild type
Chlorella or strain NC64A which when originally isolated from Paramecium bursaria was
symbiotically competent. Because of its demonstrated selectivity, the reassociation process is
hypothesized to involve a recognition interface whose active participants are the algae cell wall
and the digestive cell membrane. The data presented here confirm the hypothesis and suggest
some potential molecular characteristics of the interacting partners.

Concanavalin A (Con A), a plant lectin, used widely for similar studies in other systems
totally inhibits reassocistion; Wheat Germ Agglutinin (WGA), ricin and Lens culinaris lectin
do 80 to a lesser degree. These results are consistent with the hypothesis that glycoproteins on
the cells’ peripheries are involved in cell-cell recognition in this system.

INTRODUCTION

It is well established that the freshwater hydra, Hydra viridis, can acquire and
maintain eukaryotic algae as functional, hereditary endosymbionts. A key aspect of
the symbiosis is the ability to reassociate the host and symbionts experimentally
under controlled conditions and bring about a re-establishment of the symbiotic
relationship. Muscatine, Cook, Pardy & Pool (1975) present a thorough review of this
aspect of the association.

The work of Pardy & Muscatine (1973) showed that successful reproduction of the
symbiosis is a multistep process involving a high degree of specificity between the host
and putative symbionts. Moreover, they suggested that a recognition phenomenon
involving the contact of symbiotic algae with the host cells was the basis of the
observed specificity.

A growing body of literature in other systems has implicated a variety of biochemical
species, which are bound integrally to surface membranes, and which appear to be
crucial to cell-cell recognition phenomena. Surface related chemical sites which
mediate cell-cell, molecule-molecule and molecule—ell interactions are highly
specific and at least one of the interacting species has frequently shown to be a
glycoprotein (Oseroff, Robbins & Burger, 1973). These interacting or recognition
molecules have been characterized in a variety of animal and plant cells and develop-
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mentally regulated systems, i.e. embryonic cells (Moscona, 1974), the differentiating
cellular slime mould Dictyostelium discoideum (Rosen, Kafka, Simpson & Barondes,
1973), tumour cells (Burger, 1969), antigens in development (Edidin, 1976), the
immune reaction (Yahara & Edelman, 1972; Edidin & Weiss, 1972; Loor, Formi &
Pernis, 1972), hormone receptor sites (Cuatrecasas, 1973, 1974), and the location and
distribution of amino acid and carbohydrate transport sites (Inbar, Ben-Bassat &
Sachs, 1971).

A class of protein/glycoprotein molecules that shows a high degree of specificity in
binding to sites on cell surfaces are the plant and animal lectins. Derived primarily
from legume seeds, lectins display extensive abilities to interact with and bind to an
array of macromolecules. The binding is a result of the lectin’s specific affinities for
carbohydrates, generally limited to a few residues, terminal glycosides or sub-portions
thereof. Concanavalin A (Con A) prepared from the jackbean, Concanavalin ensiformis,
is a lectin which binds to a-D-glucopyranosyl, a-pD-mannopyranosyl, «-N-acetyl-p-
glycosamines (Goldstein & So, 1965; So & Goldstein, 1967), f-p-fructofuranosyl and
a-D-arabinofuranosyl residues (Sharon & Lis, 1972). Polysaccharides such as glycogen,
amylopectin, mannans, D-fructans, levans and arabinogalactans can all be bound to and
precipitated by Con A.

The experimental utility of plant lectins lies in their value as specific probes in the
analysis of cell surfaces. Cell surfaces from a variety of different kinds of cells depend-
ing upon their component glycosides, show varying degrees of reactivity to one or a
combination of lectins. Information with respect to this reactivity can be used to
assess the role(s) of cell surfaces in various biological processes, for example cell—cell
recognition and to provide a first-order description of some surface-binding moieties.

The study described here addresses the question of what mechanism(s) underlies
the specific interactions between partners in a symbiotic relationship. In addition we
describe a rapid and effective technique for analysing the experimental reassociation
of a hydra-algae symbiosis. The data presented are consistent with the hypothesis
that both partners bear specific surface recognition sites that can be totally inhibited
with Con A and to a lesser extent with other lectins and which play a key role in
symbiont reassociation.

MATERIALS AND METHODS
Experimental organisms

Mass cultures of hydra (Hydra viridis, Florida strain) were reared and maintained in M
solution according to the methods of Lenhoff & Brown (1971). The animals were fed daily on a
diet of freshly hatched nauplii from the brine shrimp, Artemia salina, and maintained in an
incubator at 20 °C with a r2-h photoperiod. Illumination was provided by a 40-W fluorescent
tube which emitted approximately 1-2 W m~* (YSI Model 65A Radiometer) as measured in
the centre of the incubator. Aposymbiotic (= algae free) hydra were prepared by photo-
bleaching (Pardy, 1976) and were cultured as described above for green hydra.

In some experiments symbionts from Paramecium bursaria (strain NC64A) were used.
These symbiotic algae were cultured in either nutrient broth or nutrient agar prepared from
Difco Chlorella broth. Slants and liquid culture of symbionts were maintained at room temper-
ature under Gro-Lux lamps providing continuous illumination of 3-0 W m~2,

Symbiotic algae used in experiments were harvested from daily fed mass cultures of green
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hydra. In practice, 150-300 hydra were homogenized in M solution using a tissue homogenizer.
Symbiotic cells were separated from the animal homogenate by low speed centrifugation using
an IEC clinical centrifuge.

Algal preparation

Algae and their interactions with hydra aposymbionts were studied in a variety of prepara-
tions. Algae isolated from freshly homogenized green hydra were treated twice (at 5§ min) with
o5 9% sodium dodecyl sulphate (SDS) in M solution followed by 3 washes in M. This treatment
rendered the algal cells essentially free of hydra tissue remnants as revealed by microscopic
observation and was used where indicated as the standard method of preparing symbionts.

Symbiont quantification

Historically, estimation of the quantitative relationship of symbiotic partners required
extensive microscopical analysis of aposymbiont tissues. These procedures are laborious, time
consuming and only analyse a small population of host digestive cells. We present here an
improved approach to these estimations based on the fluorescent emission of chlorophyll, the
functional molecule of algal photosynthesis. This molecule can be quickly and quantitatively
extracted from isolated algae, green hydra and from reconstituted aposymbionts. The method
is an elaboration of one originally suggested by Dr C. D’Elia (personal communication).

In practice any of the 3 forms were isolated, placed in 4 ml of analytical grade methanol and
extracted maximally, a period requiring minimally 30 min. Analysis was made directly using a
Turner Model no. 111 fluorimeter equipped with a red-sensitive photomultiplier developed
specifically for chlorophyll analysis, a band pass filter and an ultraviolet excitation source.
With this system, chlorophyll quantification of single green hydra or of a reconstituted apo-
symbiont is possible. Furthermore, theoretically, chlorophyll concentration from as few as 1000
isolated algae can be determined. The Turner fluorimeter exhibits a high degree of sensitivity
requiring modification of the instrument in our experiments. Because of the intense fluorescence
of some samples, the sensitivity of the instrument was reduced by the use of attenuation slits
of o-187 mm (slit 1) and 3-7 mm (slit 2) placed between the sample and the photomultiplier
tube. Moreover, the incident light was controlled in 1, 3, 10 and 30 times increments. This
procedure allowed ready application of the technique to a variety of algal concentrations. Full
sensitivity readings along with those from both slits showed linear correlations with chlorophyll
concentration.

Estimates of chlorophyll concentration based on fluorimetric analysis were correlated to
spectrophotometric measurements (MacKinney, 1941).

Experimental

Symbiotic reassociation was studied under a variety of conditions. Aposymbionts were fed
daily. ‘ Standard’ experimental animals, i.e. those with a single immature bud, were injected
with experimental algae 48 h after their last feeding. This time was chosen based on observa-
tions that maximal reassociation occurred under these feeding conditions. During the pre-
injection period and throughout the course of the experiment, animals were held under
controlled temperature and photoperiod conditions as already described.

Algae, treated or untreated, were reduced to a dense slurry by centrifugation. This cell
suspension was injected directly into the gastric cavity of aposymbiotic hydra using a micro-
pipette as described by Pardy & Muscatine (1973). A modification of their procedure involved
use of breath-aspirated hand-drawn glass micropipettes rather than a syringe apparatus as
originally described. Under most conditions injected aposymbionts were held for 24 h before
analysis to allow reassociation to come to completion and to ensure that algae not taken up by
digestive cells were cleared from the gastric cavity. In those experiments requiring analysis at
times less than 24 h, non-associated algae were removed from the gastric cavity by slitting the
hydra and gently lavaging the host tissues free of contaminants.

Since hydra hosts are fed to repletion daily up to 48 h before injection they display minimum-
time reproductive turnover. Injected aposymbionts continue to produce buds which are found -
in various stages of development throughout the experimental period. Mature buds at injection
generslly remain free of algae while immature buds do not, but frequently remain attached at
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analysis time. T'o avoid contribution of these elements to the data set, all buds were surgically
excised immediately prior to analysis.

Algae treatments

The question of surface interactions is pivotal to this study. The first principle to be estab-
lished was the implication of these elements in algal-hydra reassociation. The primary tools
selected were specific lectins which would bind to theorized recognition molecules of cell wall
and cell membrane components of the symbiotic partners. Since quantitative application of
lectin to hydra cells is difficult to control, treatments were more routinely applied to the algal
partners. Experiments are presented which indicate that lectins applied to the digestive cell
membranes are also effective at low doses.

Con A was chosen as the primary probe since it has strong affinities for several molecules
implicated in cell wall and plasma membrane components of this system. Additionally, ricin,
wheat germ agglutinin and Lens culinaris lectin were also surveyed. Lectins prepared in M
solution were incubated with algal cell preparations for 1 h at 20 °C. Prior to injection, cells were
washed 3 times with M solution. The concentrations of cells and lectins are included in figure
and table legends. In those experiments involving the direct exposure of hydra digestive cells to
lectins, the animals were immersed in lectin solution prepared in M as well as injected with
M-containing lectin. After incubation for 1 h at 20 °C the animals were removed from the
lectin solution and the enteron was washed with several injections of M (lectin free) followed
by injection of freshly prepared algae.

RESULTS

The establishment of a simple, reproducible and quantitative technique for algae—
hydra reassociation was crucial to this study. Figs. 1—4 present data from the fluoro-
metric approach which was adopted. Fig. 1 presents data from the lowest sensitivity
setting we were able to achieve (slit 2, 1X incident light). Under this configuration
the fluorimeter was maximally attenuated and numbers of algae ranging between
o5 and 20 x 10° cells per 4 ml extraction could be easily measured. In Fig. 2, lower
numbers of algae, ranging between 10* and 5 x 10 per extraction, are also shown to be
linearly related when measured with slit 7 and 1X incident light. Fig. 3 relates the
fluorimetric measurements (slit 2, 1X) as arbitrary units to the measured concentra-
tions of chlorophyll as ug per algal cell extracted and thus Fig. 4 can be drawn
relating the amount of chlorophyll to cells ranging in number up to 20 x 10° cells.
Each of the slits employed in combination with several attenuations of incident light
has been calibrated on uniform algae preparations and thus by calculation each reading
at a given attentuation combination can be converted to all of the other combinations.

Using these techniques for subsequent studies the amounts of chlorophyll in
individual or multiples of hydra were measured. Fig. 5 summarizes these findings.
Curves 4 and B result from a regression analysis of 2 experiments which are the range
of the studies. Each line is based on measurements of 1, 2, 3, etc., up to 8 hydra per
extraction. Line C is the theoretical curve with a slope of 14-52 fluorescence units
(slit 7, 1X) based on the means of 11 different experiments in which individual green
hydra were measured (n = 87). Based on these experiments and data extrapolated
from Fig. 2 we conclude that on the average approximately 100000 algae exist in each
green hydra with a range of from 75000 to 250000. This average is slightly reduced
from estimates based on direct counts reported by Muscatine & Pardy (1973). Line
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Fluorescence units (Slit 2, 1X)
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Fig. 1. Chlorophyll content, as fluorescence units measured at low sensitivity,
contained in algae symbiotically associated with Hydra viridis. The cells after prepara-
tion were extracted in 4 ml methanol.

Fluorescence units (Slit 1, 1X)

1 | 1

Py

3
Cell no. X 1075

Fig. 2. Chlorophyll content, as fluorescence units measured at high sensitivity,
contained in symbiotic algae. Extracts were performed in 4 ml methanol.
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Fluorescence units {Slit 2, 1X)
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Fig. 3. Chlorophyll content, as fluorescence units, contrasted to spectrophotometric
estimates from the same sample. All extracts of increasing cell numbers were extracted
in 4-ml volumes.
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Fig. 4. Based on Figs. 1 and 3 the amount of chlorophyll compared to cell
numbers may be extrapolated.
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D of this curve shows that aposymbionts maintained in our culture system are algae
free.

In order to establish the maximal level of algal uptake by aposymbionts, starved
animals were used as recipients. In Fig. 6, it i3 demonstrated that a 48-h starvation
peried is optimal for maximal uptake of algae by injected aposymbionts. In all
experiments reported in this study this starvation protocol was used. Since experi-
mental treatment of algae requires varying amounts of time, the ability to maintain
competent cells was determined for a 24-h period. Clearly only minimal reduction in
uptake of these cells when maintained in the dark in M solution at 4 °C was demon-
strated (Fig. 7).

The results presented above demonstrate the utility of fluorimetric techniques in
the analyses of host-symbiont reassociation experiments. Using these methods we
investigated a range of factors suspected to be important in the biology of hydra-
algae reassociation.
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[62]
o

N
(5]

Hydra no.

Fig. 5. Chlorophyll content, expressed as fluorescence units, for hydra ranging in
number from 1 to 8 animals. Lines 4 and B, representing individual experiments,
represent the range of 8 experiments (n = 87) of which C is the regression line,
Line D indicates the algae-free hydra contain no chlorophyll.

In an initial set of experiments we analysed the uptake of symbionts originally
isolated and cultured from Paramecium bursaria. These symbionts were cultured in
either nutrient broth or on nutrient agar slants prior to injection of aposymbiotic
hydra. Suspensions of cells from either broth or slants were injected into aposymbiotic
recipients and the animals analysed 24 h post injection. Table 1, Expt. 1 shows that
the animals acquired the NC64A symbionts though the amounts of fluorescence were
significantly (P < o-or) less than in hydra injected with native symbionts. There was
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no significant difference (P < o'o1) between symbionts obtained from either broth
or slant culture. Non-symbiotic Chlorella vulgaris was also injected; uptake of these
algae was also minimal.

Preliminary observations had shown that algae harvested from whole animal
homogenates contained particles of animal tissue and that this contamination, which

Fluorescence units (Slit 2, 1X)

] | 1
3 24 48 72
Time post-starvation, h

Fig. 6. Uptake of algae expressed as chlorophyll fluorescence, by hydra at various
intervals after the last feeding on brine shrimp. Individual hydra with buds removed
were extracted in 4 ml methanol.

48

36 I-

Fluorescence units (Slit 2, 1X)

1 I 1 1 1 1
4 8 12 16 20 24
Time held at 4°C, h

Fig. 7. Uptake of algae, expressed as chlorophyll flucrescence, by hydra after holding
algal preparations at 4 °C for various periods. Hydra were extracted in 4 ml methanol.
No significant change from control is demonstrated (P < o'or1).
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was difficult to control, might affect the total number of algae taken up by an aposym-
biont and/or the kinetics of reassociation. To solubilize and remove this debris, algae
isolated from green hydra were washed with SDS (Materials and methods) prior to
injecting aposymbionts. T'wenty-four hours post injection the animals were analysed
along with animals injected with unwashed algae. Table 1, Expt. 2, shows the results
of these experiments where it can be seen that the uptake of SDS-washed algae by
aposymbionts was more than double that of the unwashed symbionts. Moreover, the

Table 1. Effect of various algae types and treatments on reassociation with

aposymbionts (n = 8 or more replicates)

Fluorimetric
units, Significance,
Expt. Algae source Conditions Wash Slit 2(3X) P
1 Green hydra Standard culture SDS 3084 + 20°63
NC64A Agar slant — 113t 023 < 0001
NC64A Broth culture — 318t o071 < 0'001
NC64A Agar slant SDS 3-56 £ 323 < 0001
NC64A Broth culture SDS 172 £ 061 < 0°001
Chlorella vulgaris Agar slant SDS 129t 1°16 < 0-001
2 Green hydra Standard culture — 17-:08 £ 4-18 —
Green hydra Standard culture SDS 36:50+20°99 < o003

total number of algae acquired by aposymbionts after SDS washing approximated or
exceeded the value observed in normal, standard green hydra. Furthermore, aposym-
bionts injected with SDS-treated algae remained fully populated for up to 28 days
post injection. Pretreatment of Paramecium algae (NC64A) with SDS had no sig-
nificant effect on their uptake by hydra aposymbionts (Table 1, Expt. 1).

The effect of symbiont uptake after pretreatment of algae or hydra with various
plant lectins is shown in Table 2. Lectins were incubated with algae or injected into
the enteron of the hydra, in the case of Con A (Expt. 4), for 1 h. The algae were
washed 3 times before injection into hydra and the hydra enteron was cleared of
Con A by injection of fresh M. All lectins surveyed depressed uptake below control
(untreated) levels. Symbionts treated with Con A in particular showed a pronounced
depression of uptake — almost zero (Expt. 5). Observed, but unanalysed variability,
perhaps of a seasonal nature, was noted in the uptake of algae by control animals in
some experiments. In order to determine whether cells were being taken up at all, in
one experiment hydra were examined microscopically using established maceration
techniques (David, 1973). Table 3 shows that uptake per cell was indeed diminished
severely and only 319, of cells screened had any algae at all.

To explore further the relationship between Con A and the reduction of algal
uptake by aposymbiotic hydra, a dose-response experiment was performed. SDS-
washed algae were exposed to 100, 500, 1000, and 2000 ug/ml Con A prior to injection
into aposymbiotic hydra. Data from this experiment are presented in Fig. 8 and show
that the degree of symbiont uptake decreases with increasing pre-injection concentra-
tions of Con A.
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Table 2. Effect of lectins on uptake of algae when applied either to Algae or to
Hydra (n = 8 or more replicates)

Fluorimetric
Treated Concentrations, units % of
Expt. subject Treatment ug/ml (Slit 2, 3X) P control
I Algae  Control — 4267t 1240 100
Algae  Lens culinaris lectin 1000 (10° cells) 19'00t12:35 < o-0r 49°1
2 Algae  Control — 827+ 4136 — 100
Algae Ricin lectin 2500 (10° cells) 19-7 £ 9 06 < o001 238
3 Algae  Control — 5075 2026 100
Algae WGA 2500 (10% cells) 28:35+18:64 < o002 5§50
Algae WGA sooo (10° cells) 2439t 1694 < oor 481
4 Hydra Control — 72'91 + 3814 — 100
Hydra Con A 10 3358 + 2026 — 57°3
5 Algae  Control — 26681757 100
Algae  Con A 100 (108 cells) 18501544 < 002 69-3
Algae Con A 2500 (108 cells) 175+ 1-28 < 0001 64
Table 3. Effect of Concanavalin A on algal uptake as measured by
microscopical analysts
% digestive
Concentration, cells with Algae/digestive
n Treatment rg/ml algae cell
50 Control — 100 10°92 £ 348
54 Con A 2500 (10° cells) 31 1°001 1°9gO
1-75
1-50
X
125
o~
£
£1-00
c
2
af
5075
g
[=]
2
* 050
g
-
025 -
| 1 | 1
1 5 10 20

ug/m! Con A, X 1072

Fig. 8. Uptake of algae, expressed as log fluorescent units, after treatment with
increasing doses of Con A. Hydra were individually extracted in 4 ml methanol.
Each point represents 8 replicate measurements.
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DISCUSSION

The underlying significance of the past studies of the effect of symbiotic algae on
the growth and development of their invertebrate hosts has been guided by 2 objec-
tives: (1) to establish a nutritional relationship between partners; and (2) to charac-
terize the chemical basis of this relationship (Muscatine, 1961).

The observation that symbiont partner surfaces play an important role in initiating
experimental reassociation confirmed by this study extends those objectives. Reported
inhibition of these complex uptake events by specific antibody (Pool, 1978) or studies
of uptake specificity (Pardy & Muscatine, 1973) can now be explained on the basis of
specific interaction of plant cell walil with hydra digestive membranes.

With the present study we have begun to elaborate on the initial events of reassocia-
tion. New methods are described in this study for quantitative demonstration of
recognition events. Based on chlorophyll’s fluorescent emissions after proper excita-
tion, this analysis is rapid, precise and reproducible. Furthermore, samples are
stable and analyses can be carried out after sampling for intervals of up to at least g6 h.

Results reported here demonstrate that the amount of emission measured from
algal samples with increasing cell numbers is linear in response and directly pro-
portional to cell numbers. These studies using large samples of algae taken from
standard normal green animals assume a standard random amount of chlorophyll per
each cell. They do not recognize various possibilities of different developmental or
metabolic states for each alga nor any type of population dynamics. These would have
to be controlled in individual subsequent experiments.

The samples measured fluorimetrically can also be measured spectrophoto-
metrically permitting a direct calibration of fluorimetric emission to total amounts of
chlorophyll. Thus the numbers of algae and amount of chlorophyll in green hydra may
be estimated. These studies show that a sample as small as a single green hydra can
be measured and that fluorimetric emission shows a linear response with increasing
numbers of these hydra per sample.

The demonstration that algal cell surfaces and hydra digestive cell membranes play
an active role in initial recognition has been hypothesized for some time. This general
conception of active recognition versus random association followed by phagocytosis
is predicated upon early observations that not all algae were equally competent in
symbiotic reassociations. Karakashian (1975) has extensively surveyed reassociation
in the algal-paramecium system. Clearly different strains and variously treated native
symbionts are different in their ability to form long-term maintenance of the partner-
ship. The success ranges from complete and persistent reassociation with native algae
to much reduced or no reassociation with wild type chlorella or heat-treated native
forms. The major question left unanswered by their studies is whether the ‘success’
or lack thereof is a property of the cell surface in terms of recognition or whether this
phenomenon occurred internally as the result of other ‘decision making’ processes
after random (= uncontrolled) phagocytosis. The later hypothesis includes the
requirement of the algae to synthesize or transport small molecules such as maltose
for long-term maintenance.

17 CEL 43
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Recently Pool (1979) has provided critical evidence that uptake of symbionts by
the digestive cells can be inhibited by pretreatment of native symbionts with antibody
specifically elicited to living algal symbionts. Cross-reacting antigenic determinants
are not shared by tn witro cultured algae of strains (NC64A) originally derived from
Paramecium but which have some reduced capability of uptake by hydra. On the other
hand once the reduced uptake results in successful reassociation antigenic sites are
induced on NC64A algae during residence in the hydra digestive cells.

The present study provides evidence for successful symbiont reassociation using yet
another probe for cell surface function. Lectins specific for a variety of cell surface
sites have been widely used for demonstration of surface activity. One such lectin,
Con A characteristically binds several sugar moieties common to a variety of cell
surface glycoproteins. We have found that Con A, as well as WGA, Lens culinaris
lectin, or ricin, is successful in blocking symbiont uptake. Several algal cell wall
surface carbohydrates along with arabinosides of cell wall glycoprotein are putative
candidates for successful binding of lectins to the symbiont. Using radiolabelled
Con A (unpublished results) we have shown strong binding of lectin to these cells.

The data of our study show that with increasing concentrations, Con A progressively
inhibits the uptake of algae by hydra to minimal levels at high concentrations. These
concentrations are considerably higher than those typically studied on animal cells
suggesting that many more binding sites may be present. Even though we suppose
that the lectin is binding to specific sites on the algae, we cannot deny potential
adsorption of the molecules to the algae and the actual subsequent action of lectin on
the digestive cell of the hydra. As is conspicuously the case, much lower concentra-
tions of Con A (in the range of 100 xg/ml) typically inhibit animal cell membrane
activities. In preliminary studies we are able to inhibit uptake by concentrations
one-tenth this level by application of Con A through injection, to the digestive cell
membrane and before injection of the algae into the hydra enteron. Thus we must
conclude that sites on both algae and host digestive cells are inhibitable by Con A.

The actual mechanism for inhibition is not fully elucidated by this study. While we
would like to believe that Con A binds directly to a specific site located on competent
native algae, neither these results nor we believe those of Pool (1979) can be un-
equivocally interpreted in this way. We recognize that both lectins and antibodies
could act by masking the recognition sites. As the result of extensive molecular
binding, recognition sites cryptic on either algae or digestive cell would be sterically
out of reach of the reaction sites of the other partner. On the other hand, it can be
argued that even if surface binders act by a masking effect, one may infer surface
recognition sites, capable of being masked. While we cannot definitely argue that
glycans or glycoproteins from the surface are specific for recognition, our data are
compatible with this hypothesis. Studies are presently underway which will further
examine specific recognition mechanisms and determine whether specific molecular
structures are involved in the process.
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