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Abstract

The objective of this study was to determine the Vrn-1 allelic

composition of spring wheat germplasm from the Pacific Northwest

region of the USA. Individual plants from 56 spring wheat lines were

crossed to near-isogenic tester lines carrying the dominant allele Vrn-

A1, Vrn-B1 or Vrn-D1. F2 progeny were evaluated for growth habit in

the field and Vrn-1 allelic composition was determined through chi-

square analysis. Lines also were analysed with DNA sequence-based

Vrn-1 allele-specific markers. A majority of the germplasm carried the

dominant allele Vrn-A1a alone or in combination with Vrn-B1, Vrn-D1

or Vrn-B3 alleles. Vrn-B1 and Vrn-D1 were almost always associated

with other dominant Vrn-1 allele(s). Based on DNA sequence analysis,

a novel Vrn-B1 allele referred to as Vrn-B1b, which carried a single

nucleotide polymorphism (SNP) and a 36 bp deletion, was identified in

cultivar �Alpowa�. These results will be useful to wheat breeders for

choosing parents with different Vrn-1 alleles for crossing to maximize

diversity at the Vrn-1 loci with an expectation of identifying superior

Vrn-1 allelic combinations for cultivar improvement.

Keywords: Triticum aestivum — near isogenic line — vernali-
zation — spring growth habit — wheat breeding

Vernalization involves induction of flowering as a result of
exposing wheat (Triticum aestivum L.) plants to temperatures
between 4 and 6�C for 4–6 weeks (Porter and Gawith 1999).

Major genes for vernalization (Vrn) and photoperiod (Ppd)
response determine flowering habit in wheat. Winter-habit
wheat genotypes require vernalization to flower, whereas

spring types flower without vernalization either in the presence
of Ppd-1, the gene for photoperiod insensitivity, or once the
long day photoperiod requirement is met. In wheat, vernali-
zation requirement is primarily controlled by alleles at three

orthologous loci, Vrn-A1, Vrn-B1 and Vrn-D1, which are
located on the long arms of chromosomes 5A, 5B and 5D,
respectively (Law et al. 1975, Galiba et al. 1995, Dubcovsky

et al. 1998). Collectively, these three genes are referred to as
Vrn-1 loci. Dominant alleles of each locus are designated as
Vrn-A1, Vrn-B1, and Vrn-D1, whereas the recessive alleles are

designated as vrn-A1, vrn-B1, and vrn-D1. The presence of a
dominant Vrn-1 allele in any genome confers spring growth
habit, whereas the presence of recessive alleles in the homo-

zygous state across Vrn-1 loci confers winter growth habit.
Vrn-A1 eliminates vernalization requirement, and is epistatic
to Vrn-B1 and Vrn-D1, both of which have small residual

vernalization requirements (Pugsley 1971). Additional vernal-
ization-responsive genes, the Vrn-2 series located on chromo-
somes 4B, 4D and 5A, Vrn-B3 (located on chromosome 7BS)

and Vrn-D5 (located on chromosome 5D) have been identified
in wheat (Goncharov 2003, Kato et al. 2003, Yan et al. 2006).
These genes interact to bridge the link between responses to

cold and day length to regulate plant development (Trevaskis
et al. 2007). Allelic differences at Vrn-1 loci are the most
frequent source of variation in growth habit among all the Vrn
genes identified in cultivated wheat.

In recent years, the Vrn-1 alleles were cloned and charac-
terized at the DNA sequence level (Yan et al. 2003, 2004, Fu
et al. 2005). Various mutations in the Vrn-1 gene resulted in

expression of the dominant spring growth habit. At Vrn-A1,
three distinct mutations were reported to confer spring growth
habit: (i) insertions within the promoter region; (ii) deletions

within the promoter region; and (iii) large deletions in intron 1.
The dominant alleles at this locus, which are associated with
promoter insertions, deletions and the deletion in intron1, are

designated as Vrn-A1a, Vrn-A1b, and Vrn-A1c, respectively
(McIntosh et al. 2007). Large deletions within intron 1 of the
Vrn-B1 and Vrn-D1 genes also resulted in spring growth habit
(Fu et al. 2005). Dominant alleles at these loci, which are

associated with such mutations, are designated as Vrn-B1 and
Vrn-D1 (McIntosh et al. 2007). Based on DNA sequence data,
Polymerase chain reaction (PCR)-based markers were devel-

oped for each Vrn-1 allele. Yan et al. (2004) developed DNA
markers specific for Vrn-A1a and Vrn-A1b based on the
presence of insertions or deletions in the Vrn-A1 promoter.

They identified Vrn-A1a in 55% and Vrn-A1b in 6% of 132
spring wheat genotypes from Argentina, Canada, and the
U.S.A. The Vrn-A1a allele also was present in a high
proportion of spring cultivars from China (Zhang et al.

2008). Fu et al. (2005) developed DNA markers, specific for
the Vrn-A1c, vrn-A1, Vrn-B1, vrn-B1, Vrn-D1, and vrn-D1
alleles, based on the presence or absence of deletions in intron

1 in the dominant and recessive alleles, respectively. These
markers were used to determine Vrn-1 allelic compositions of
117 spring wheat genotypes from Argentina and California.

Vrn-A1a/b was the predominant allele, either alone or in
combination with other Vrn-1 alleles, followed by Vrn-B1 and
Vrn-D1. Vrn-A1c was not identified in any of the 117

genotypes. Iqbal et al. (2007a) identified Vrn-A1a in 34 of 40

Plant Breeding doi:10.1111/j.1439-0523.2009.01681.x
� 2009 Blackwell Verlag GmbH

www3.interscience.wiley.com



Canadian spring wheat genotypes, followed by Vrn-B1 in 20
genotypes and Vrn-A1b in one genotype. Vrn-A1c and Vrn-D1
were not identified in any of the 40 genotypes.
Vernalization and photoperiod response genes play signif-

icant roles in geographical adaptation and yield potential of
wheat cultivars (Gororo et al. 2001). Several reports have been
published concerning Vrn-1 allelic composition of wheat

germplasm and its effect on grain yield. Stelmakh (1990,
1998) analysed a global collection of 647 spring wheat
genotypes, and reported that Vrn-A1 was present alone or in

combination with Vrn-B1 and/or Vrn-D1 in 81% of the
genotypes tested. Vrn-D1 was the predominant allele in spring
wheat genotypes adapted to regions closest to the equator. In
another survey of European genotypes, Stelmakh (1993)

reported that the average grain yield per plant across
environments was highest for spring wheat genotypes with
Vrn-A1 and/or Vrn-B1, whereas cultivars with all three

dominant alleles (Vrn-A1 Vrn-B1 Vrn-D1) gave the lowest
grain yields. If temperature and/or moisture stress occurred
during grain filling, the highest grain yields were reported for

photoperiod insensitive wheat genotypes with Vrn-D1 in
combination with either Vrn-A1 or Vrn-B1. van Beem et al.
(2005) concluded that Vrn-D1 was the most frequent allele in

globally important CIMMYT wheat genotypes, adapted to
tropical and sub-tropical regions. Iqbal et al. (2007b) reported
that the predominance of Vrn-A1a in Canadian spring wheat
genotypes resulted in early maturity, permitting avoidance of

late-season frost damage during the short growing season in
northern, high latitudes. However, a grain yield penalty was
detected for early maturing spring wheat cultivars (Iqbal et al.

2007b). Clearly, Vrn-allelic composition is involved in regional
adaptation and agronomic performance of wheat genotypes.
Therefore, optimizing Vrn-1 allelic composition for specific

production environments may offer possibilities for developing
spring wheat cultivars with higher yield potential.
Most of the annual precipitation in the Pacific Northwest

(PNW) region of the USA. occurs during the winter. This
region also is characterized by high latitude and a short
growing season. Winter wheat is the primary non-irrigated
field crop grown in the PNW, and has higher grain yield

potential than spring wheat grown in the same region.
However, spring wheat is a valuable component of conserva-
tion tillage systems for the region (Schillinger and Young

2004). The economic viability of spring wheat production
would be enhanced if grain yield potential was increased; this
might be achieved by manipulating allelic composition at the

Vrn-1 loci. Breeders often use diverse germplasm in crosses as
donors of genes for disease resistance and other useful traits.
Knowledge of the most appropriate Vrn-1 allelic combinations
in spring wheat genotypes for maximizing yield potential

adapted to the PNW will allow breeders to more rapidly select
the best Vrn-1 allelic combination using either marker-assisted
selection or phenotypic selection. The objective of this study

was to determine the Vrn-1 allelic composition of elite, adapted
spring wheat cultivars and advanced breeding lines from the
PNW that are used as parents for cultivar development

through genetic segregation and DNA marker analyses.

Materials and Methods

Plant materials: Fifty-six elite spring wheat cultivars and advanced

breeding lines from Washington State University (24 entries), Univer-

sity of Idaho (18), Oregon State University (eight) and two private

breeding companies [WestBred, LLC (five) and Northrup King (one)]

that were submitted for field testing in the 1994 Tri-State Nursery were

evaluated (Table 1). This germplasm will be referred to as �lines� in the

remainder of this report. Triple Dirk D (Vrn-A1 vrn-B1 vrn-D1), Triple

Dirk B (vrn-A1 Vrn-B1 vrn-D1), and Triple Dirk E (vrn-A1 vrn-B1 Vrn-

D1), near isogenic lines (NILs) for Vrn-A1, Vrn-B1 and Vrn-D1,

respectively, developed from the cultivar �Triple Dirk� (Pugsley 1972),

were used as homozygous testers to cross with each line to develop F2

populations for genetic segregation analysis. Individual plants from

Table 1: Fifty-six spring wheat lines evaluated for Vrn-1 allelic
composition by genetic segregation and/or DNA marker analyses

Line (accession no.1) Market class2 Origin/source

Alpowa (PI566596) SWS Washington State University
Calorwa (PI566594) Club
Edwall (PI477919) SWS
Penawawa (PI495916) SWS
Spillman (PI506350) HRS
Urquie (CItr17413) SWS
Wadual 94 (PI566595) SWS
Wakanz (PI506352) SWS
Wampum (CItr17691) HRS
Wawawai (PI574598) SWS
WA7764 HRS
WA7766 (PI574537) SWS
WA7778 HWS
WA7780 SWS
WA7798 HRS
WA7799 HRS
WA7800 HRS
WA7803 SWS
WA7804 SWS
WA7805 SWS
WA7806 SWS
WA7807 SWS
WA7808 SWS
WA7809 SWS
Centennial (PI537303) SWS University of Idaho
Copper (PI502644) HRS
Fielder (CItr17268) SWS
Idaho 377s (PI591045) HWS
Owens (CItr17904) SWS
Pomerelle (PI592983) SWS
Treasure (PI468962) SWS
Whitebird (PI592982) SWS
ID461 HRS
ID464 HRS
ID470 HWS
ID471 SWS
ID489 HRS
ID490 HWS
ID491 HRS
ID493 HWS
ID495 SWS
ID496 SWS
ORS85010 HRS Oregon State University
OR488348 HWS
OR488528 HWS
O4895019 HRS
O4895103 HRS
OR490041 HRS
OR491028 HRS
OR492002 HRS
Express (PI573003) HRS WestBred, LLC
Sprite (PI337605) SWS
Vanna (PI587199) SWS
Westbred 926 HRS
Westbred 936 (PI587200) HRS
Klasic (PI486139) HWS Northrup King

1Accession numbers are listed when available.
2Club, soft white spring club; HRS, hard red spring; HWS, hard white
spring; SWS, soft white spring.
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each of the three Triple Dirk NILs were crossed to three plants from

each of the 56 spring lines. F1 plants were grown in the greenhouse and

F2 seed was harvested separately from 2 to 5 F1 plants per line · tester

combination.

Field experiment: When available, 200 seeds of each F2 family in each

line · tester combination were planted in a plot consisting of 4 rows

that were 6 m in length with 20 cm between rows. Up to four different

F2 families were evaluated per cross. Because of an unusually cold, wet

spring, the planting date was 7 June, 1996, at Spillman Agronomy

Farm, Pullman. Stand counts were recorded on June 18 and 27, 1996,

and phenotypic data for growth habit type was collected 97 days after

planting.

Genetic segregation analysis: Expected segregation ratios for growth

habit among individuals within F2 families differed depending on the

allelic compositions at Vrn-1 loci of the parents. Each line was assigned

to one of 11 genotypes. If the parents shared the same Vrn-1 allele, all

F2 progenies were expected to be spring type. To detect a single plant

with winter growth habit with an expected segregation ratio of 63 : 1

(P ‡ 0.05), 191 F2 plants needed to be evaluated; 47 plants were

required to recover one winter type when the expected ratio was 15 : 1

(P ‡ 0.05) (Sedcole 1977). Chi-square analysis was conducted to

determine the likelihood of agreement between observed and expected

phenotypic ratios. Homogeneous data within cross combinations were

pooled.

DNA marker analysis: Leaf tissues from 10 seedlings per line were

pooled and genomic DNA was isolated using the CTAB method

(Anderson et al. 1992). We used Vrn-A1 allele-specific markers based

on promoter or intron 1 mutations described by Yan et al. (2004) and

Fu et al. (2005). PCR primers were synthesized by MWG-Biotech

(High Point, NC, USA) and PCR was conducted according to Yan

et al. (2004) and Fu et al. (2005). Triple Dirk Vrn-NILs were included

as controls. Vrn-B3 allele-specific marker analysis was conducted

following Zhang et al. (2008). PCR amplified products were separated

in 2% agarose gels using 0.5· TBE buffer and visualized under UV

transillumination. Vrn-1 and Vrn-B3 allelic identities were determined

by comparing the size of the amplified DNA bands with the size of the

bands expected for each Vrn-1 allele. Amplification experiments were

repeated to confirm allelic composition results.

Determination of Vrn-1 allelic frequencies: The frequency of a dom-

inant allele at a particular Vrn-1 locus was determined using only those

lines where results for both DNA marker and genetic segregation

analyses were identical. The frequencies of Vrn-1 allelic haplotypes

were determined using only those lines where results for both DNA

marker and genetic segregation analyses were identical across the three

Vrn-1 loci.

Cloning and sequencing of Vrn-B1 allele specific DNA marker: The

DNA band amplified by the Vrn-B1 allele-specific primer pair was gel-

purified using the Wizard� SV Gel (Cat. No. A9281; Promega Corp.,

Madison, WI, USA) and PCR Clean-Up System, and the ligation

reaction was set up using pGEM�-T Easy vector (Cat. no. A1120;

Promega Corp.). Transformation was performed by electroporation

using ElectroMAXDH10BTM cells (Cat. no. 18290-015; Invitrogen

Corp., Carlsbad, CA, USA). Recombinant plasmids were extracted

from cultured white colonies selected on LB/ampicillin/IPTG/X-Gal

plates and plasmids were purified using Wizard� Plus SV Minipreps

DNA Purification System (Cat. no. A1330; Promega Corp.) followed

by quantification with DNA spectrophotometry. Insertion of the PCR

product into the plasmid was verified by restriction enzyme digestion

with EcoRI or NotI (New England BioLabs, Inc., Ipswich, MA 01938,

USA) and subsequent analysis by agarose gel electrophoresis (data not

shown). Four independent recombinant plasmids were sequenced at

the Molecular Biology Core Facility at Washington State University

on an ABI Prism 377 DNA sequencer using the dideoxy sequencing

method (Applied Biosystems, Foster City, CA, USA). Sequence data

for Vrn-B1 and vrn-B1 from Triple Dirk B and Triple Dirk C,

respectively, from the NCBI database (http://www.ncbi.nlm.nih.gov/

Genbank/index.html), were used for sequence comparisons with

BLAST (http://www.ncbi.nlm.nih.gov/blast).

Nomenclature of the dominant Vrn-A1 allele: Genetic segregation

analysis using Vrn-NILs was used to determine whether the Vrn-1

alleles were dominant or recessive. Possible dominant alleles at the

Vrn-A1 locus included Vrn-A1a, Vrn-A1b or Vrn-A1c depending on the

presence of the specific mutations, which could be determined only

through allele-specific DNA marker analysis. Therefore, Triple Dirk D

(Vrn-A1) was used as the tester to identify and designate any of the

three possible dominant Vrn-A1 alleles in genetic segregation results.

For DNA marker analysis, primers specific for Vrn-A1a, Vrn-A1b or

Vrn-A1c were used to determine which specific dominant Vrn-A1 allele

was detected.

Results
Vrn-1 allelic compositions based on genetic segregation

Vrn-1 allele composition was determined (P ‡ 0.05) for 35 of the

56 lines from segregation analysis of growth habit (Table 2).
Because of flooding of part of the field we were unable to obtain
segregation analyses on the other 21 F2 populations. By pooling

data across families within line x tester combinations, progeny
sizes of the 35 F2 populations were adequate for acceptable
statistical tests. AVrn-A1 allele was present in 29 of the 35 lines,

10 of which carried theVrn-A1 alone, and 19 carried the allele in
combination with other dominantVrn alleles. The remaining six
lines carried the recessive vrn-A1 allele. The dominant Vrn-B1

allele was not present alone in any of the 35 lines; however, it was
identified in combinationwith other dominantVrn-1 alleles in 11
lines. The recessive vrn-B1 allele was present in 24 lines. The
dominant Vrn-D1 allele was found alone in two lines, and was

identified in combinationwith other dominantVrn alleles in nine
lines. The recessive vrn-D1 allele was present in 24 lines. Only
two lines,Calorwa andWA7807, carried all three dominantVrn-

1 alleles.
Segregation ratios revealed the presence of an unknown

dominant Vrn allele in nine lines. We temporarily designated

this dominant allele as Vrn-X. Presumably it was one of the
other known vernalization genes (e.g. Vrn-B3 or Vrn-D4). Six
lines carried Vrn-X in combination with Vrn-A1 and three lines
carried Vrn-X with Vrn-D1. Vrn-B3 allele-specific marker

analysis was conducted on these nine lines to determine if Vrn-
X could be Vrn-B3. The Vrn-X allele in five lines (Fielder,
Idaho 377s, Pomerelle, Whitebird, and Vanna) was Vrn-B3.

Vrn-1 allelic compositions based on DNA marker analysis

All 56 spring wheat lines were evaluated using PCR-based Vrn-
1 allele-specific markers. Prior to evaluating the lines, we
verified the specificity of these PCR primers for each Vrn-1

allele using the Triple Dirk Vrn-NILs. All PCR primers
amplified bands in each of the Triple Dirk Vrn-NILs as
expected, from the original reports (data not shown). Allelic
identity results based on DNA marker analysis of the 35 lines

for which we obtained genetic segregation data (presented in
Table 2) were compared, and lines for which genetic segrega-
tion and marker analysis results at Vrn-1 loci did not align are

presented in Table 3. Vrn-1 allelic compositions of the 21 lines
determined solely on DNA marker analysis are given in
Table 4.

Genetic and molecular characterization of vernalization genes in wheat 3



Table 2: Segregation for growth habit in F2 populations from crosses of spring wheat lines and Vrn-1 near isogenic line (NIL) testers

Line NIL tester No. F1 families No. spring types No. winter types P (15 : 1) P (63 : 1) Allelic composition1

Calorwa Vrn-A1 4 376 0 0.00 0.01 Vrn-A1
Vrn-B1 4 578 0 0.00 0.00 Vrn-B1
Vrn-D1 4 352 0 0.00 0.02 Vrn-D1

Urquie Vrn-A1 4 333 0 0.00 0.02 Vrn-A1
Vrn-B1 3 120 7 0.73 0.00 vrn-B1

105 12 0.07 0.00
82 5 0.85 0.00

Vrn-D1 4 322 25 0.46 0.00 vrn-D1
Wawawai2 Vrn-A1 3 315 0 0.00 0.03 Vrn-A1

Vrn-B1 1 98 4 0.33 0.05 vrn-B1
Vrn-D1 4 410 24 0.54 0.00 vrn-D1

WA7764 Vrn-A1 4 519 0 0.00 0.00 Vrn-A1
Vrn-B1 2 202 16 0.51 0.00 vrn-B1
Vrn-D1 4 460 25 0.32 0.00 vrn-D1

WA7778 Vrn-A1 4 555 0 0.00 0.00 Vrn-A1
Vrn-B1 4 521 0 0.00 0.00 Vrn-B1
Vrn-D1 3 344 8 0.00 0.28 vrn-D1

WA77802 Vrn-A1 4 485 5 0.00 0.33 vrn-A1
Vrn-B1 4 454 10 0.00 0.30 vrn-B1
Vrn-D1 4 465 13 0.00 0.04 Vrn-D1

Vrn-X
WA7799 Vrn-A1 4 390 0 0.00 0.01 Vrn-A1

Vrn-B1 4 391 36 0.06 0.00 vrn-B1
Vrn-D1 3 272 20 0.67 0.00 vrn-D1

WA7800 Vrn-A1 4 493 0 0.00 0.01 Vrn-A1
Vrn-B1 3 397 0 0.00 0.01 Vrn-B1
Vrn-D1 4 381 10 0.00 0.11 vrn-D1

WA78042 Vrn-A1 4 498 0 0.00 0.00 Vrn-A1
Vrn-B1 3 392 11 0.00 0.06 vrn-B1
Vrn-D1 4 566 0 0.00 0.00 Vrn-D1

WA78052 Vrn-A1 4 508 0 0.00 0.00 Vrn-A1
Vrn-B1 4 520 10 0.00 0.55 vrn-B1
Vrn-D1 4 387 11 0.00 0.05 vrn-D1

Vrn-X
WA78062 Vrn-A1 3 282 0 0.00 0.03 Vrn-A1

Vrn-B1 3 295 11 0.06 0.00 vrn-B1
Vrn-D1 2 222 8 0.08 0.02 vrn-D1

WA78072 Vrn-A1 4 450 0 0.00 0.01 Vrn-A1
Vrn-B1 3 342 0 0.00 0.02 Vrn-B1
Vrn-D1 4 358 0 0.00 0.02 Vrn-D1

Centennial Vrn-A1 4 527 0 0.00 0.00 Vrn-A1
Vrn-B1 4 524 0 0.00 0.00 Vrn-B1
Vrn-D1 4 428 12 0.00 0.05 vrn-D1

Copper2 Vrn-A1 4 470 0 0.00 0.01 Vrn-A1
Vrn-B1 3 388 16 0.06 0.00 vrn-B1
Vrn-D1 2 219 15 0.92 0.00 vrn-D1

Fielder2 Vrn-A1 3 462 0 0.00 0.01 Vrn-A1
Vrn-B1 4 476 3 0.00 0.10 vrn-B1
Vrn-D1 3 374 7 0.00 0.67 vrn-D1

Vrn-X3

Idaho 377s2 Vrn-A1 4 660 0 0.00 0.00 Vrn-A1
Vrn-B1 4 556 3 0.00 0.05 vrn-B1
Vrn-D1 4 529 8 0.00 0.86 vrn-D1

Vrn-X3

Owens Vrn-A1 4 569 0 0.00 0.00 Vrn-A1
Vrn-B1 4 569 0 0.00 0.00 Vrn-B1
Vrn-D1 2 279 3 0.00 0.50 vrn-D1

Pomerelle2 Vrn-A1 4 450 0 0.00 0.01 Vrn-A1
Vrn-B1 4 382 8 0.00 0.44 vrn-B1
Vrn-D1 3 321 4 0.00 0.63 vrn-D1

Vrn-X3

Treasure2 Vrn-A1 3 370 0 0.00 0.02 Vrn-A1
Vrn-B1 3 223 14 0.83 0.00 vrn-B1
Vrn-D1 4 448 24 0.30 0.00 vrn-D1

Whitebird2 Vrn-A1 4 525 0 0.00 0.00 Vrn-A1
Vrn-B1 2 142 4 0.08 0.25 vrn-B1
Vrn-D1 3 242 5 0.01 0.56 vrn-D1

Vrn-X3

ID461 Vrn-A1 4 541 0 0.00 0.00 Vrn-A1
Vrn-B1 3 368 16 0.09 0.00 vrn-B1
Vrn-D1 4 127 5 0.24 0.04 vrn-D1

140 10 0.83 0.00
33 5 0.08 0.00
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DNA marker vs. genetic segregation results in 35 genotypes

Vrn-1 allelic compositions based on genetic segregation and
DNAmarker analyses across the threeVrn-1 loci (Vrn-A1,Vrn-

B1 andVrn-D1) (data not shown)were identical for 17 lines. The
results were not consistent for Vrn-B1 or Vrn-D1 loci in the
remaining 18 lines (Table 3). Among the 17 lines with consistent

results from genetic segregation and DNA marker analyses,
Vrn-A1awas present in 13 lines,Vrn-A1b in one line, and vrn-A1
was identified in three lines;Vrn-B1 and vrn-B1were identified in

10 and 7 lines, respectively, whereasVrn-D1was detected in four
lines and vrn-D1 was identified in the remaining 13 lines.

For the 18 lines with inconsistent results, Vrn-1 allelic
identities based on genetic segregation and DNA marker

analyses were considered separately for each Vrn-1 locus. At
Vrn-A1, allelic identity results based on both analyses matched
in all 18 lines (Table 3). Alleles Vrn-A1a and vrn-A1 were

identified in 15 and 3 lines, respectively.
At Vrn-B1, allelic identity results based on both analyses

matched only for WA7807 and Klasic. Among 16 lines, Vrn-
B1 was identified in 13 lines, and three lines (WA7804, Copper

and ID489) appeared to carry both Vrn-B1 and vrn-B1 based
on DNA marker analysis; however, based on genetic segrega-
tion data all 16 lines carried vrn-B1 (Table 3). The Vrn-B1

Table 2: Continued

Line NIL tester No. F1 families No. spring types No. winter types P (15 : 1) P (63 : 1) Allelic composition1

61 4 0.97 0.00
ID4892 Vrn-A1 4 415 0 0.00 0.01 Vrn-A1

Vrn-B1 3 310 22 0.78 0.00 vrn-B1
Vrn-D1 2 226 11 0.31 0.00 vrn-D1

ID493 Vrn-A1 4 543 0 0.00 0.00 Vrn-A1
Vrn-B1 3 306 0 0.00 0.03 Vrn-B1
Vrn-D1 3 419 6 0.00 0.80 vrn-D1

ID4962 Vrn-A1 4 496 0 0.00 0.01 Vrn-A1
Vrn-B1 4 501 12 0.00 0.16 vrn-B1
Vrn-D1 2 222 3 0.00 0.78 vrn-D1

Vrn-X
ORS850102 Vrn-A1 3 410 0 0.00 0.01 Vrn-A1

Vrn-B1 4 510 11 0.00 0.31 vrn-B1
Vrn-D1 2 248 0 0.00 0.05 Vrn-D1

OR488528 Vrn-A1 2 289 5 0.00 0.85 vrn-A1
Vrn-B1 2 297 0 0.00 0.03 Vrn-B1
Vrn-D1 4 543 0 0.00 0.00 Vrn-D1

O4895019 Vrn-A1 3 322 0 0.00 0.02 Vrn-A1
Vrn-B1 4 591 0 0.00 0.00 Vrn-B1
Vrn-D1 3 330 6 0.00 0.74 vrn-D1

O4895103 Vrn-A1 4 586 0 0.00 0.00 Vrn-A1
Vrn-B1 4 531 25 0.09 0.00 vrn-B1
Vrn-D1 2 259 16 0.77 0.00 vrn-D1

OR491028 Vrn-A1 4 632 0 0.00 0.00 Vrn-A1
Vrn-B1 3 423 0 0.00 0.01 Vrn-B1
Vrn-D1 4 589 7 0.00 0.44 vrn-D1

OR492002 Vrn-A1 4 486 29 0.56 0.00 vrn-A1
Vrn-B1 4 125 7 0.65 0.00 vrn-B1

123 9 0.79 0.00
110 4 0.23 0.09
84 15 0.00 0.00

Vrn-D1 4 472 0 0.00 0.01 Vrn-D1
Express Vrn-A1 4 114 3 0.10 0.38 vrn-A1

106 5 0.45 0.01
89 10 0.11 0.00
84 5 0.81 0.00

Vrn-B1 3 368 30 0.29 0.00 vrn-B1
Vrn-D1 4 327 0 0.00 0.02 Vrn-D1

Sprite2 Vrn-A1 3 291 9 0.02 0.04 vrn-A1
Vrn-B1 3 223 6 0.02 0.20 vrn-B1
Vrn-D1 3 260 0 0.00 0.04 Vrn-D1

Vrn-X
Vanna2 Vrn-A1 2 250 4 0.00 0.99 vrn-A1

Vrn-B1 3 365 7 0.00 0.62 vrn-B1
Vrn-D1 4 482 0 0.00 0.01 Vrn-D1

Vrn-X3

Westbred 936 Vrn-A1 4 525 0 0.00 0.00 Vrn-A1
Vrn-B1 4 480 0 0.00 0.01 Vrn-B1
Vrn-D1 4 521 3 0.00 0.07 vrn-D1

Klasic2 Vrn-A1 4 547 0 0.00 0.00 Vrn-A1
Vrn-B1 2 325 4 0.00 0.61 vrn-B1
Vrn-D1 4 531 0 0.00 0.00 Vrn-D1

Homogeneous results for F1 families were pooled.
1Vrn-A1 could be Vrn-A1a, Vrn-A1b or Vrn-A1c, which can be distinguished only by marker analysis.
2Lines for which genetic segregation data did not agree with the prediction by allele-specific polymerase chain reaction analysis.
3Vrn-X was identified as Vrn-B3 based on allele-specific marker analyses.
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allele-specific marker (PCR-amplified 709 bp fragment) was
sequenced in 12 of the 13 lines and the resulting sequences

matched the published sequence. This indicated that the DNA
marker results were correct, and suggested that genotypes
deduced from the genetic segregation results were incorrect for

these lines. As leaf tissues from 10 individual seedlings of each
of the three lines (WA7804, Copper and ID489) were bulked
for DNA isolation for the original PCR analyses, individual
seedlings from each of the three lines were analysed. All three

lines were genetically heterogeneous for the Vrn-B1 locus.
In the case of the Vrn-D1 locus, allelic identity results based

on both DNA marker and genetic segregation analyses

matched in 14 lines; among them, five lines carried Vrn-D1
and nine lines carried vrn-D1. Marker analysis revealed that
ID496 carried Vrn-D1, whereas genetic analysis indicated that

the vrn-D1 allele was present. The PCR fragment amplified by
the Vrn-D1 allele-specific marker in ID496 was sequenced, and

it matched the published sequence. The remaining three lines
carried both Vrn-D1 and vrn-D1 based on marker analysis
(Table 3). Analyses of 10 seedlings in each of these three lines

confirmed genetic heterogeneity. Vrn-D1 allelic composition
obtained from DNA marker and genetic segregation analyses
agreed for 31 of the 34 lines.

DNA marker analysis results for 21 lines

Vrn-1 allelic compositions of 21 lines were determined solely
from DNA marker analysis (Table 4). Vrn-A1a, Vrn-A1b, and
vrn-A1 were identified in 12, six, and three lines, respectively.
Vrn-B1 was identified in 14 lines and vrn-B1 was present in six

lines. A unique Vrn-B1 allele identified in cultivar �Alpowa� will
be discussed below. Based on marker fragment size, the Vrn-
D1 and vrn-D1 alleles were detected in five and 15 lines,

respectively, whereas Edwall carried both Vrn-D1 and vrn-D1.
Marker analyses of individual seedlings showed that Edwall
was heterogeneous at this locus.

Vrn-1 allele frequencies in 35 spring wheat lines

Vrn-A1a was the most frequent allele present in spring wheat

lines developed by the three universities, whereas Vrn-D1 was
the most frequent allele in lines developed by private breeding
companies. Vrn-D1 was absent in the lines developed by the

University of Idaho. When lines from all four programmes
were considered together, Vrn-A1a was the most frequent
allele, followed by Vrn-B1 and Vrn-D1.

We analysed Vrn-1 allelic haplotypes in 17 of 35 lines for
which the Vrn-1 allelic composition results from DNA marker
and genetic segregation analyses were identical. Six of seven

possible haplotypes of Vrn-1 alleles were identified. The most
frequent haplotype �Vrn-A1a/b Vrn-B1 vrn-D1� was identified in
eight lines followed by �Vrn-A1a/b vrn-B1 vrn-D1� in five lines.
Each of the four remaining haplotypes was identified in one line

from each of the four breeding programmes. The haplotype
�vrn-A1 Vrn-B1 vrn-D1� was not detected in any of the 17 lines.

Table 3: Genotypes of 18 wheat accessions for which phenotypic segregation data and predictions based on marker analysis did not match

Genotype

Vrn-A1 allele composition based on Vrn-B1 allele composition based on Vrn-D1 allele composition based on

Marker analysis Genetic analysis Marker analysis Genetic analysis Marker analysis Genetic analysis

Wawawai Vrn-A1a Vrn-A1a Vrn-B1 vrn-B1 vrn-D1 vrn-D1
WA7780 vrn-A1 vrn-A1 Vrn-B1 vrn-B1 Vrn-D1 Vrn-D1
WA7804 Vrn-A1a Vrn-A1a Vrn-B1, vrn-B1 vrn-B1 Vrn-D1 Vrn-D1
WA7805 Vrn-A1a Vrn-A1a Vrn-B1 vrn-B1 vrn-D1 vrn-D1
WA7806 Vrn-A1a Vrn-A1a Vrn-B1 vrn-B1 vrn-D1 vrn-D1
WA7807 Vrn-A1a Vrn-A1a Vrn-B1 Vrn-B1 Vrn-D1, vrn-D1 Vrn-D1
Copper Vrn-A1a Vrn-A1a Vrn-B1, vrn-B1 vrn-B1 vrn-D1 vrn-D1
Fielder Vrn-A1a Vrn-A1a Vrn-B1 vrn-B1 vrn-D1 vrn-D1
Idaho 377s Vrn-A1a Vrn-A1a Vrn-B1 vrn-B1 vrn-D1 vrn-D1
Pomerelle Vrn-A1a Vrn-A1a Vrn-B1 vrn-B1 Vrn-D1, vrn-D1 Vrn-D1
Treasure Vrn-A1a Vrn-A1a Vrn-B1 vrn-B1 vrn-D1 vrn-D1
Whitebird Vrn-A1a Vrn-A1a Vrn-B1 vrn-B1 vrn-D1 vrn-D1
ID489 Vrn-A1a Vrn-A1a Vrn-B1, vrn-B1 vrn-B1 vrn-D1 vrn-D1
ID496 Vrn-A1a Vrn-A1a Vrn-B1 vrn-B1 Vrn-D1 vrn-D1
ORS85010 Vrn-A1a Vrn-A1a Vrn-B1 vrn-B1 Vrn-D1 Vrn-D1
Sprite vrn-A1 vrn-A1 Vrn-B1 vrn-B1 Vrn-D1 Vrn-D1
Vanna vrn-A1 vrn-A1 Vrn-B1 vrn-B1 Vrn-D1 Vrn-D1
Klasic Vrn-A1a Vrn-A1a vrn-B1 vrn-B1 Vrn-D1, vrn-D1 Vrn-D1

Differences are shown in bold script.

Table 4: Allelic identities at the Vrn-1 loci based on DNA marker
prediction for 21 spring wheat lines for which phenotypic segregation
data were not available

Line Vrn-A1 allele Vrn-B1 allele Vrn-D1 allele

Alpowa vrn-A1 Vrn-B1b1 vrn-D1
Edwall Vrn-A1b Vrn-B1 Vrn-D1, vrn-D1
Penawawa Vrn-A1b Vrn-B1 vrn-D1
Spillman Vrn-A1a vrn-B1 vrn-D1
Wadual 94 Vrn-A1a vrn-B1 Vrn-D1
Wakanz Vrn-A1b Vrn-B1 vrn-D1
Wampum Vrn-A1a vrn-B1 vrn-D1
WA7766 Vrn-A1a Vrn-B1 vrn-D1
WA7798 Vrn-A1a Vrn-B1 vrn-D1
WA7803 Vrn-A1a Vrn-B1 Vrn-D1
WA7808 vrn-A1 Vrn-B1 Vrn-D1
WA7809 Vrn-A1a Vrn-B1 Vrn-D1
ID464 Vrn-A1a vrn-B1 vrn-D1
ID470 Vrn-A1a Vrn-B1 vrn-D1
ID471 Vrn-A1b Vrn-B1 vrn-D1
ID490 Vrn-A1b Vrn-B1 vrn-D1
ID491 Vrn-A1a Vrn-B1 vrn-D1
ID495 Vrn-A1b Vrn-B1 vrn-D1
OR488348 Vrn-A1a Vrn-B1 vrn-D1
OR490041 vrn-A1 vrn-B1 Vrn-D1
Westbred 926 Vrn-A1a vrn-B1 vrn-D1

1New allele.
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Novel Vrn-B1 allele identified in �Alpowa�

A fragment, smaller than the predicted 709 bp for Vrn-B1 from
Triple Dirk B was detected in �Alpowa� (Fig. 1). Ten individual

seedlings of �Alpowa� were evaluated to confirm the presence of
this smaller DNA band. We cloned and sequenced the DNA
band amplified by theVrn-B1 allele-specific primers in �Alpowa�
to determine its exact size and sequence differences relative to
the band amplified by Triple Dirk B. The band from �Alpowa�
was 673 bp in length. A SNP (G–C) at position 1656 and a 36 bp
deletion from 1661 to 1696 bp was identified within the 673 bp

fragment from �Alpowa� when aligned with that from Triple
Dirk B. We designated this new allele as Vrn-B1b and the
sequence of this allele was deposited in GeneBank (http://

www.ncbi.nlm.nih.gov/Genbank/index.html; accession num-
ber FJ766015). The 36 bp deletion was located 314 bp down-
stream of the large deletion in intron 1 (1341–8190 bp), in the

Vrn-B1a (previously, Vrn-B1) sequence for Triple Dirk C
(Fig. 2).

Discussion
Discrepancies in Vrn-1 allelic composition

Vrn-1 allelic compositions of wheat lines in previous reports
were based on genetic segregation or DNA marker analyses.
Here, we determined Vrn-1 allelic combinations from both
genetic segregation and DNA marker analyses for 35 lines. An

additional 21 lines were genotyped by DNA markers. Nine
lines had a Vrn gene that was not a Vrn-1 allele. The gene in
five of the lines was identified as Vrn-B3 by marker analyses;

the gene in the remaining four lines was not identified.
Vrn-1 allele-specific markers used in our study were devel-

oped from known DNA sequence information. Therefore, we

expected the DNA markers to be 100% diagnostic for allele
composition at the Vrn-1 loci. We conclusively determined the

allelic compositions at Vrn-A1, Vrn-B1 and Vrn-D1 loci for 35,
19 and 31 lines, respectively. However, there were inconsis-
tencies in results between genetic segregation and marker
analyses for 13 lines at Vrn-B1 and for one line at Vrn-D1. The

possibility that these inconsistencies resulted from alternative
mutations in Vrn-B1 and Vrn-D1 alleles that disrupted
function was excluded by comparison of sequence data of

the allele-specific PCR-amplified DNA fragments from the
lines with that of the cloned genes. It is more likely that growth
habit was inaccurately phenotyped because of the late June

planting date, which reduced the likelihood of satisfying
residual vernalization requirements of the Vrn-B1 and Vrn-D1
alleles or epistatic interactions among Vrn-1 genes (Pugsley
1972, Stelmakh 1993). Some progeny possessing Vrn-B1 or

Vrn-D1 as heterozygotes might have been inaccurately scored
as winter growth habit because of the delayed flowering in the
very short growing season of that particular year.

Of the 56 lines evaluated in this study, 16 were previously
characterized for Vrn-1 allele identity exclusively based on
marker analyses (Yan et al. 2004, Fu et al. 2005), and our

results aligned with previously reported results in 15 of 16 cases.
For the cultivar �Calorwa�, we identified Vrn-A1a, Vrn-B1 and
Vrn-D1, whereas Fu et al. (2005) reported Vrn-A1a, vrn-B1 and

vrn-D1. As different seed sources were used the possibility of
genetic heterogeneity between sources cannot be excluded.

Heterogeneity at Vrn-1 loci

We detected heterogeneity within several lines at Vrn-1 loci
based on marker analyses of 10 individual seedlings from each

population, whereas genetic segregation analysis on three
plants failed to detect such heterogeneity. Although wheat
cultivars are often assumed to be homozygous and homoge-

neous because of the self-pollinating nature of the species,
residual heterogeneity within cultivars is highly likely because
of the selection strategies used in early population advance-

ment (Knott 1987). Detection of such heterogeneity based on
genetic segregation analysis is difficult when phenotypic
variation is not obvious. Functional markers are useful for
detecting such heterogeneities as many individuals can easily

be analysed in an efficient manner. Therefore, to accurately
determine Vrn-1 alleles at the cultivar population level it is
important to analyse individual seedlings in instances where

bulk DNA samples are heterogeneous for the marker.

Vrn-1 allelic composition and spring wheat cultivar improvement

Frequencies of dominant Vrn-1 alleles were different in spring
wheat lines developed by different breeding programmes in the
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Fig. 1: Polymerase chain reaction amplification with Vrn-B1 allele-
specific primers Intr1/B/F and Intr1/B/R3 in Triple Dirk B and six
spring wheat lines. The amplified DNA product in �Alpowa� was
smaller than the amplified products in other lines

vrn-B1

Vrn-B1

Vrn-B1b

10
541

13
41

81
91

85
04

86
06

85
40

III

13
14

1

P1

P3

P2

22
02

Fig. 2: Schematic representation of vrn-B1 from Triple Dirk C, Vrn-B1a from Triple Dirk B, and Vrn-B1b from �Alpowa�. The Vrn-B1 allele-
specific primer pair Intr1/B/F (P1) and Intr1/B/R3 (P2) amplified 709 bp and 673 bp bands in Triple Dirk B and �Alpowa�, respectively. The vrn-
B1 allele-specific primer pair Intr1/B/F (P1) and Intr1/B/R4 (P3) amplified a 1149 bp band in Triple Dirk C. The large deletion in intron 1 (I) and
the novel 36 bp deletion in Vrn-B1b (II) are indicated by dashed lines. Sequences of vrn-B1 (Accession no. AY747604.1) and Vrn-B1
(AY747603.1) were from the NCBI database (http://www.ncbi.nlm.nih.gov/Genbank/index. html). Nucleotide numbers are based on the
sequence of vrn-B1
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PNW. Vrn-A1a was the most frequent allele, either alone, or in
combination with other Vrn alleles in lines from three of the
four programmes, whereas Vrn-B1 and Vrn-D1 were rarely
found alone, agreeing with other reports (Stelmakh 1998, Yan

et al. 2004, Fu et al. 2005, Iqbal et al. 2007a). Higher
frequencies of Vrn-D1 were found in lines developed by
private companies and at OSU compared with those from

WSU and UI. This may be related to the greater use of
parental lines from CIMMYT by private companies and OSU.
CIMMYT lines have a high frequency of Vrn-D1 (van Beem

et al. 2005). The presence of the dominant Vrn-A1a/b allele
results in complete elimination of vernalization, whereas the
presence of Vrn-B1 or Vrn-D1 allele alone is associated with
some residual vernalization response and later flowering

(Stelmakh 1993, 1998). Spring wheat lines carrying Vrn-A1a/
b together with Vrn-B1 may provide optimum flowering time
and yield potential in PNW production environments as this

combination of dominant Vrn-1 alleles was the most frequently
identified in this study. However, spring wheat lines carrying
Vrn-D1, which causes late flowering, may have a yield

advantage in production environments like southern Idaho
and Oregon where the growing season is longer. Our results
will be useful to wheat breeders for identifying parents

carrying different Vrn-1 alleles and for generating genetic
diversity at these loci with an expectation of identifying
superior Vrn-1 allele combinations for spring cultivars targeted
to specific production environments.

Novel Vrn-B1 allele

We did not find the Vrn-B1 allele alone in any of the 56 spring
wheat lines evaluated, supporting previous reports (Stelmakh
1990, 1998). However, we identified a novel Vrn-B1 allele, Vrn-

B1b, in the cultivar �Alpowa�. This novel allele was associated
with a SNP (G–C), a unique small deletion within intron 1,
and a large deletion shared with Vrn-B1a (Fu et al. 2005). As

the nucleotide at this SNP site was the same in both Vrn-B1 of
Triple Dirk B (spring growth habit) and vrn-B1 of Triple Dirk
C (winter growth habit), it is unlikely that the change is
associated with vernalization response. The unique 36 bp

deletion (8504–8540 bp) detected in Vrn-B1b (Fig. 2) is likely
to result in spring growth habit type as �Alpowa� carries winter
habit alleles vrn-A1 and vrn-D1. It would be interesting to test

whether Vrn-B1b influences flowering time in a different
manner to other Vrn-B1 alleles.
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