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Quantitation of Aberrant Interlocus T-Cell Receptor
Rearrangements in Mouse Thymocytes and the Effect of

the Herbicide 2,4-Dichlorophenoxyacetic Acid

Geremy W. Knapp,1 R. Woodrow Setzer,2 and James C. Fuscoe1*
1Environmental Carcinogenesis Division, National Health and Environmental Effects
Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park,

North Carolina
2Experimental Toxicology Division, National Health and Environmental Effects

Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park,
North Carolina

Small studies in human populations have sug-
gested a correlation between the frequency of er-
rors in antigen receptor gene assembly and lym-
phoid malignancy risk. In particular, agricultural
workers exposed to pesticides have both an in-
creased risk for lymphoma and an increased fre-
quency of errors in antigen receptor gene assem-
bly. In order to further investigate the potential of
such errors to serve as a mechanistically based
biomarker of lymphoid cancer risk, we have devel-
oped a sensitive PCR assay for quantifying errors
of V(D)J recombination in the thymocytes of mice.
This assay measures interlocus rearrangements be-
tween two T-cell receptor loci, V-gamma and J-
beta, located on chromosomes 13 and 6, respec-
tively. The baseline frequency in four strains of
mice was determined at several ages (2–8 weeks
of age) and was found to be stable at �1.5 � 10-5

per thymocyte. Strain AKR, which has a high sus-

ceptibility to T-cell lymphomas, did not show an
elevated frequency of aberrant V(D)J events. We
used this assay to examine the effects of the herbi-
cide 2,4-dichlorophenoxyacetic acid (2,4-D) on
the frequency of these events. Female B6C3F1
mice, 27 days of age, were exposed to 2,4-D by
gavage at doses of 0, 3, 10, 30, and 100 mg/
kg/day for 4 successive days and sacrificed on
day 5. Thymus DNA was isolated and examined
for illegitimate V(D)J recombination-mediated gene
rearrangements. In addition, pregnant mice were
exposed to 2,4-D and thymocytes from the off-
spring examined at 2 weeks of age. No significant
increase in aberrant V(D)J rearrangements was
found, indicating that under these conditions 2,4-D
does not appear to effect this important mechanism
of carcinogenesis. Environ. Mol. Mutagen. 42:
37–43, 2003.
Published 2003 Wiley-Liss, Inc.†
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INTRODUCTION

Lymphoid malignancies are often characterized by chro-
mosomal translocations that activate oncogenes. Many of
these translocations are the result of mistakes made during
the assembly of antigen receptor genes by V(D)J recombi-
nation [Tycko and Sklar, 1990]. In fact, �35–50% of lym-
phoid malignancies contain translocations involving antigen
receptor genes [Lieber, 1993]. Despite the necessity of
V(D)J recombination for the generation of the antigen di-
versity needed for vertebrates to mount adequate immune
defenses, this recombination process is inherently danger-
ous because of the DNA double-strand breaks generated
with the accompanying potential for detrimental disorgani-
zation of the genome. Several laboratories have developed
assays for measuring errors in V(D)J recombination as
possible mechanistically based biomarkers of hematopoietic
cancer risk, including recombinase-mediated deletions of
the human HPRT gene [Fuscoe et al., 1991, 1997] and
t(14;18) [Liu et al., 1994; Ji et al., 1995; Fuscoe et al.,

1996]. In addition, Kirsch and colleagues [Lipkowitz et al.,
1990; Kirsch et al., 1994] have developed useful assays for
aberrant interlocus T-cell receptor (TCR) rearrangements in
humans. These latter assays in particular have been used in
small studies of human populations to show a correlation
between the levels of TCR interlocus rearrangements in
blood lymphocytes and lymphoid cancer risk [Lipkowitz et
al., 1990, 1992; Abdallah et al., 1995]. Recently, Lista et al.
[1997] have established a mouse model for measuring in-
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terlocus TCR rearrangements in thymocytes. This assay
measures interlocus rearrangements between two T-cell re-
ceptor loci, TCRG variable (V) region and TCRB joining
(J), located on chromosomes 13 and 6, respectively. In
addition, assays were developed to measure the normal
intralocus V-J rearrangements within the TCRG locus and
within the TCRB locus. With this system it is now possible
to adequately test hypotheses concerning the relationship
between interlocus TCR rearrangements and hematopoietic
cancer risk under controlled conditions. It is also possible to
test chemical and physical agents for their ability to influ-
ence the fidelity of V(D)J recombination.

The assay described by Lista et al. [1997] uses radiola-
beled probes to detect PCR amplified interlocus TCR rear-
rangement junctions. The frequency is calculated from the
highest dilution of genomic DNA that gives a specific signal
upon hybridization with the radiolabeled probe. Here we
describe modifications of this assay which allow more pre-
cise quantitation of the rearrangements without the use of
radiolabeled probes.

2,4-Dichlorophenoxyacetic acid (2,4-D) has been widely
used for decades to selectively control broadleaf plants on
lawns, roadways, forests, and agricultural land [IARC,
1986]. There have been numerous studies on the health
effects of 2,4-D [IARC, 1986; Munro et al., 1992; EPA,
1994] and there has remained some controversy surround-
ing the potential linkage between exposure to 2,4-D and
hematopoietic cancer, with little evidence from toxicology
studies and suggestive evidence from epidemiology studies
[Ibrahim et al., 1991]. Although there is little evidence of
2,4-D genotoxicity [Charles et al., 1999a,b; Gollapudi et al.,
1999], Lipkowitz et al. [1992] found that the frequency of
interlocus TCR rearrangements is increased in agriculture
workers with environmental exposures to pesticides, includ-
ing 2,4-D. Using our newly developed assay, we assessed
the ability of 2,4-D to affect the frequency of interlocus
TCR rearrangements under controlled conditions in the
mouse.

MATERIALS AND METHODS

Mice and Chemical Exposures

Maintenance and treatment of all mice at the U.S. Environmental Pro-
tection Agency–Research Triangle Park animal facility conformed to in-
stitutional standards and all study protocols were approved by the Institu-
tional Animal Care and Use Committee. All mice were given a diet of
Purina rodent laboratory chow (Purina, St. Louis, MO) and water ad
libitum. Pregnant female mice from four genetic backgrounds (Balb/c,
AKR, C57BL/6, and C57BL/6 females mated with C3H males to obtain
B6C3F1 pups) were obtained from Charles River Laboratories (Portage,
MI) on day 14–16 of gestation. The resulting pups were randomly assigned
to three groups and killed by asphyxiation with carbon dioxide at 13–15
days (2 weeks), 28–32 days (4 weeks), or �60 days (8 weeks) of age.
Approximately equal numbers of males and females were included in each
group. B6C3F1 female mice were obtained from Charles River Laborato-
ries at 21 days of age. The mice were randomly assigned to exposure and

control groups and allowed to acclimate for 1 week. 2,4-Dichlorophenoxy-
acetic acid (2,4-D, CAS no. 94-75-7, Sigma, St. Louis, MO) was dissolved
in dimethylsulfoxide at 500 mg/ml. This stock solution was then further
diluted in corn oil so that administration of 0.2 cc to the animals resulted
in doses of 100, 30, 10, 3, or 0 mg of 2,4-D per kg body weight. Animals
were dosed by oral gavage on 4 successive days and were killed by
asphyxiation with carbon dioxide on the fifth day. There were three mice
per dose group. Additionally, timed-pregnant female C57BL/6 mice, mated
with C3H males, were obtained at day 9 of gestation from Charles River
Laboratories and randomly assigned to exposure and control groups. After
a 5-day acclimation period, these mice were also treated with 2,4-D
according to the previous dosing regimen on days 14–18 of gestation via
oral gavage. The offspring were then killed by asphyxiation with carbon
dioxide at 2 weeks of age.

The absorption, metabolism, distribution, and excretion of 2,4-D have
been reviewed by Munro et al. [1992]. 2,4-D is absorbed quickly from the
gastrointestinal tract (minutes to hours) and is distributed widely through-
out the body. In addition, 2,4-D has been found in the uterus, placenta,
fetus, and intrauterine fluid of rats and/or mice. It is almost entirely
excreted, mostly in unaltered form, within 24 hr. Kavlock et al. [1987] have
also shown that administration of 2,4-D to pregnant mice on days 8–12 of
gestation resulted in significantly reduced birth weight. We therefore chose
a dosing regimen that would expose thymocytes in adult mice to 2,4-D for
4 consecutive days and fetal thymocytes to 2,4-D during the developmental
window when the thymus is first active (days 14–18).

Tissue and DNA Preparation

Thymuses from the study animals were removed, teased apart, and
digested overnight at 55°C in digestion buffer (10 mM Tris pH 8.5, 25 mM
EDTA, 100 mM NaCl, 1.5% n-lauroylsarcosine) with 0.7 mg/ml proteinase
K. The digests were then sheared five times through a 21 gauge needle and
incubated with 0.2 mg/ml RNase at 55°C for 1 hr. An additional 0.7 mg/ml
of proteinase K was added, followed by at least another 1 hr of incubation
at 55°C. The DNA was extracted three times using an equal volume of
phenol:chloroform:isoamyl alcohol (25:24:1) and finally dialyzed against
TE (10 mM Tris HCl pH 8, 1 mM EDTA). DNA concentrations were
measured spectrophotometrically. Several DNA concentrations were also
determined or confirmed fluorometrically using Hoechst 33258 [Labarca
and Paigen, 1980] and/or PicoGreen DNA dyes (Molecular Probes, Eu-
gene, OR).

Detection of TCRG-TCRB Interlocus Rearrangements

A two-step nested PCR was used to detect the TCR rearrangements. The
primary PCR reaction mix used to detect TCRG-TCRB (GB) transloca-
tions consisted of �0.2–1 �g genomic DNA (representing 0.3–1.7 � 105

cells), PCR buffer (10 mM Tris pH 8.3, 50 mM KCl, 2.5 mM MgCl2,
0.01% gelatin), 0.2 mM dNTPs, 0.31 �M each of outer primers A305
(5�-TCTACTCCAAACTACTCCAG-3�) and A308 (5�-ACCATACACT-
GGTACCGGCA-3�) [Lista et al., 1997], and 2.5 units Platinum Taq DNA
Polymerase (Invitrogen, Grand Island, NY) in 30 �l total reaction volume.
The secondary PCR reaction mix consisted of 1.2–2.0 �l of primary
reaction products, PCR buffer (10 mM Tris pH 8.3, 50 mM KCl, 3.5 mM
MgCl2, 0.01% gelatin), 0.2 mM dNTPs, 0.31 �M each of inner primers
A306 (5�-GGTGGAAGCGAGAGATGTGAA-3�) and A309 (5�-AC-
CCCTACCCATATTTTCTTAG-3�) [Lista et al., 1997], 2.5 units Taq
polymerase (Promega, Madison, WI), and DNA loading dye (2.5% Ficoll,
0.005% xylene cyanole) in 30 �l total reaction volume. The use of the
Platinum Taq DNA polymerase resulted in a hot start in which the poly-
merase is activated only after incubation at the denaturing temperature. The
reactions were denatured at 94°C for 4 min, cycled 30 times through
94°C/15 sec; 55°C/15 sec; 72°C/60 sec, extended for an additional 5 min
at 72°C, and finally incubated at 4°C. The secondary PCR reaction did not
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employ hot start. Fifteen �l of the secondary reaction were loaded directly
onto a 2% agarose gel. PCR products, visualized with ethidium bromide,
indicated the presence of rearrangements. The position of the primers
within the genes has been described previously [Lista et al., 1997].

Detection of TCRB and TCRG Intralocus
Rearrangements

To detect TCRB (BB) rearrangements, �0.2–0.5 ng of genomic DNA
(representing 30–80 cells) along with outer primers A302 (5�-TGGTAT-
CAACAGACTCAGGGG-3�) [Lista et al., 1997] and A305 were used in
the primary reaction, and inner primers A303 (5�-TTCTCAGTCCAA-
CAGTTTGAT-3�) [Lista et al., 1997] and A306 were used in the second-
ary reaction. For TCRG (GG) rearrangement detection, �6–10 pg of
template DNA (representing 1–2 cells) along with outer primers A308 and
A311 (5�-TCATCACTGGAATAAAGCAG-3�) [Lista et al., 1997] were
used in the primary reaction, and inner primers A309 and A312 (5�-
GGTACTTACCGGAGGGAATT-3�) [Lista et al., 1997] were used in the
secondary reaction. All other reaction conditions and cycling parameters
were performed as indicated in the GB detection method. The position of
the primers within the genes has been described previously [Lista et al.,
1997].

For use as positive controls, GB, BB, and GG rearrangement PCR
products generated from a C57BL/6 mouse thymus with the assays (and
outer primers) described above were cloned into pCR2.1 (Invitrogen,
Carlsbad, CA). After transformation into E. coli INV�F’, the plasmids
were amplified and purified using a Qiagen (Valencia, CA) midiprep kit.
The plasmids were linearized with BamHI and quantified by spectropho-
tometry. The quantitation was confirmed by fluorometry using Hoechst
33258.

Quantitation of Rearrangement Frequencies

Rearrangement frequencies were calculated using a Poisson distribution
model as previously described [Fuscoe et al., 1998]. Frequencies were
estimated as -ln(1-p)/M, where p represents the fraction of PCR reactions
containing at least one rearrangement and M is the approximate cell
equivalents analyzed per PCR reaction. Ninety-five percent confidence
intervals for each data point were also calculated as previously described
[Fuscoe et al., 1998]. Briefly, the confidence limits were calculated by
replacing p in the above formula with confidence limits for the fraction of
replicates with at least one rearrangement, based on Mid-P exact confi-
dence limits as described previously [Vollset, 1993].

DNA Sequence Analysis of TCR Rearrangement
Junctions

PCR products were purified on Centricon 100 spin columns and quan-
titated by measuring the absorbance at 260 nm. Fifty-six to ninety ng of
purified PCR products were then labeled using the ABI Prism Big Dye
Terminator Cycle Sequence Kit and supplied protocol (Applied Biosys-
tems, Foster City, CA) along with primers A306, A303, or A312 (for GB,
BB, and GG, respectively) in a GeneAmp 9600 thermocycler (Applied
Biosystems). Sequencing and analysis of products were then performed on
an ABI 377 DNA Sequencer (Applied Biosystems).

RESULTS

In order to show that these PCR assays are capable of
detecting a single copy of the TCR rearrangements, multiple
replicate PCRs containing an average of one copy (BB and
GB) or 1.2 copies (GG) were performed. The Poisson
distribution was then used to predict the number of reactions
that received no copies of the translocation DNA. The
results are shown in Table I. Each of the assays was capable
of detecting a single copy of the translocation, with no
statistical difference between the expected frequency of
translocations and the observed.

Using the TCR interlocus assay, we measured the back-
ground frequency of interlocus GB rearrangements in three
strains of commonly used laboratory mice (B6C3F1, balb/c,
and C57BL/6) at 2, 4, and 8 weeks of age. Twenty to
thirty-five PCRs (average � 26) each containing 200–1,335
ng thymus DNA (average � 500 ng, representing 83,000
cell equivalents) from each of 10–22 mice (average � 14)
were performed at each time point. The results are summa-
rized in Figure 1. A two-factor ANOVA was used for
analysis of these data. The frequencies at the various times
within a given strain were not significantly different from
each other. The data at the various times was therefore
combined within each strain and a comparison was made
between strains. No significant difference was found be-
tween any of these three strains. Figure 2 illustrates GB
interlocus rearrangement PCR products following agarose
gel electrophoresis. The DNA fragments were �200 bp.

TABLE I. Quantitation of TCR Rearrangements

Rearrangementa
Average no. of

copies per PCRb
Observed P0

(negative/total)c Predicted P0
d P valuee

GB 1.0 0.40 (12/30) 0.37 0.71
BB 1.0 0.30 (9/30) 0.37 0.46
GG 1.2 0.23 (7/30) 0.30 0.55

aIntralocus rearrangement (BB and GG) and interlocus rearrangement (GB) junctions were cloned into pCR2.1 as described in Materials and Methods.
bPCR reactions were performed as described in Materials and Methods and included the indicated number of copies of linearized recombinant plasmids
containing the cloned rearrangements. Genomic brain DNA from a male C57BL/6 mouse was also included in the reactions (2 �g, GB; 10 ng, BB; 10
pg, GG).
cP0 is the fraction of PCRs with no detectable rearrangement. Numbers in parentheses show the number of null reactions/number of tested replicates.
dThe predicted P0 was calculated from the Poisson distribution with the indicated average number of rearranged molecules added to the reaction.
eTest of the null hypothesis that the observed fraction of negative PCRs is different from the predicted assuming a Poisson distribution with the mean
equal to the average number of copies added per PCR.

Effect of 2,4-D on V(D)J Recombination 39



DNA sequence analysis was used to confirm that the PCR
products generated with these assays were indeed TCR
rearrangements (Fig. 3). All PCR products examined from
these assays (10/10 from the GB assay, 3/3 from the GG
assay, and 4/4 from the BB assay) had the characteristics of
true V(D)J recombinase-mediated TCR rearrangements, in-
cluding cleavage at V(D)J recombinase recognition se-
quences, exonucleolytic “nibbling” of the joining ends, or
the presence of N nucleotides.

The AKR inbred mouse strain is susceptible to sponta-
neous T-cell lymphoma arising in the thymus [see, for
example, Haran-Ghera et al., 1995]. Figure 1 shows the
frequency of TCR interlocus rearrangements in the thymus
of this strain at 2 and 4 weeks of age. These data were added
to the data from the other three strains and analyzed as
described above. The only significant difference (P �
0.013) was found between the AKR strain (1.1 � 10-5) and
B6C3F1 (1.7 � 10-5).

In addition, the frequency of intralocus TCR rearrange-
ments was measured in the thymuses of the four strains of
mice at 2 weeks of age. The frequencies per cell are given
in Tables II (BB rearrangements) and III (GG rearrange-
ments). There were no statistically significant differences in
the levels of the specific normal rearrangements among the
strains using ANOVA (P � 0.3 for the BB rearrangement
and 0.16 for the GG rearrangement).

B6C3F1 adult female mice were exposed to 2,4-D at 0, 3,

10, 30, and 100 mg/kg as described in Materials and Meth-
ods for 4 successive days and sacrificed the following day.
DNA was extracted from the thymuses and the frequency of
GB interlocus rearrangements was determined. The exper-
iment was repeated and the results of the two experiments
were combined. The data are presented in Table IV. There
was no evidence for a 2,4-D dose effect on the frequency of
interlocus, aberrant TCR rearrangements under these con-
ditions.

In order to assess the possible effects of 2,4-D on aberrant
TCR rearrangements in the developing thymus, pregnant
B6C3F1 mice were exposed on days 14–18 of gestation as
described in Materials and Methods. The offspring were

Fig. 1. Mouse thymus DNAs were examined for TCRGB interlocus
rearrangements as described in Materials and Methods. The frequency and
95% confidence intervals for the population of mice in each group are
presented.

Fig. 2. Agarose gel electrophoresis of GB interlocus rearrangement-
specific PCR products from the thymus DNA of a C57BL/6 mouse. Lanes
1–10 are from PCRs containing 1.0 �g DNA and performed as described
in Materials and Methods. M, 200 ng �X174-HaeIII DNA.

Fig. 3. DNA sequence of TCR rearrangement junctions from the thy-
muses of 6-week-old C57BL/6 male mice. Germ line sequences are from
Lista et al. [1997]. N, non-templated nucleotides. PCR products obtained
with the GB assay are designated GB-1 to GB-10, those obtained with the
GG assay are designated GG-1 to GG-3, and those obtained with the BB
assay are designated BB-1 to BB-4. N, undetermined nucleotide.

TABLE II. Frequency of TCR BB Rearrangement Per Cell in
2-Week-Old Female Mice

Strain
Lower 95%

confidence interval Frequency
Upper 95%

confidence interval

AKR 0.016 0.022 0.030
B6C3F1 0.014 0.020 0.027
Balb/c 0.012 0.017 0.023
C57BL/6 0.0093 0.014 0.021
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sacrificed at 2 weeks of age and the frequency of aberrant
TCR GB rearrangements assessed. Two or three pregnant
mice were treated with 2,4-D at all doses except 100 mg/kg;
only one animal produced offspring at this dose. Three
offspring from each treated dam were evaluated (except for
two offspring from one of the 30 mg/kg group). The fre-
quency of aberrant TCR GB interlocus rearrangements is
shown in Table V. A one-sided trend test based on linear
regression [Tukey et al., 1985] was conducted. There was
no significant trend with increasing dose (P � 0.08).

DISCUSSION

A sensitive and specific PCR-based assay is described for
the quantitation of aberrant interlocus T-cell receptor rear-
rangements in the thymocytes of mice. In addition, assays
are described for the quantitation of normal intralocus rear-
rangements. Although these assays can be used to evaluate
V(D)J recombination in any tissue, we chose to examine the
thymus because this is the organ in which V(D)J recombi-
nation occurs and the frequency would not be influenced by
the positive and negative selection processes that thymo-
cytes undergo before they enter the general circulation.

Thus, the fidelity of this critical process can be assessed.
These assays are analogous to our previously described
assays for the quantitation of V(D)J recombinase-mediated
deletion of HPRT exons 2�3 [Fuscoe et al., 1997] and
t(14;18) chromosomal translocations [Fuscoe et al., 1996] in
peripheral blood cells of humans. Multiple replicate nested
PCRs were performed on thymocyte DNA from individual
mice and the presence or absence of rearrangement deter-
mined by agarose gel electrophoresis. The PCR conditions
are robust and sensitive enough that Southern hybridization
with radioactive probes is not required in order to detect the
rearrangements. As described previously [Fuscoe et al.,
1996], the Poisson relationship is used to calculate the
frequency of aberrant rearrangements based on the fraction
of PCR reactions that do not produce an assay-specific
fragment. Reconstruction experiments show that the assays
detect a single copy of the rearrangements. The specificity
of the reactions was demonstrated by DNA sequence anal-
ysis of PCR products. All PCR products analyzed (10 from
the GB assay, three from the GG assay, and four from the
BB assay) showed the expected rearrangement. We have
previously described statistical methodologies for this type
of assay that can be used to compute confidence intervals
for individual rearrangement frequencies [Fuscoe et al.,
1996]. These statistical considerations enhance the sensitiv-
ity to detect differences between exposed and control pop-
ulations.

Lista et al. [1997] were the first to describe assays for the
assessment of the absolute number of the GB, GG, and BB
rearrangements in mouse thymocytes. Using this assay, they
showed that irradiation of newborn severe combined im-
mune deficiency mice resulted in an increase in the levels of
the GB transrearrangement that correlated with an increase
in thymic lymphoma. Our assays make use of the primers
described by Lista et al. [1997] and may provide some
improvements. First, the specificity, sensitivity, and robust-
ness of our assays remove the need for Southern analysis
with radioactive probes. This saves time and avoids the
potential hazards associated with the use of radionuclides.
Second, we have developed statistical approaches for the
analysis of the data that allow computation of confidence
intervals on frequency estimates. This allows for robust
testing of hypotheses using our assays. Finally, the new
assays are also amenable to automation since they are based
on simple PCRs.

Our results show that the frequency of aberrant interlocus
rearrangements (GB) is remarkably stable in the thymocytes
of three widely used strains of mice (B6C3F1, balb/c, and
C57BL/6) during the 2–8-weeks of age development period
(Fig. 1). We also found no significant difference in the
rearrangement frequencies in 2- and 4-week-old AKR mice.
Thus, during this 4- or 6-week time period the rearrange-
ment frequencies do not change significantly. This stability
may allow increased sensitivity for hypothesis testing be-

TABLE III. Frequency of TCR GG Rearrangement Per Cell
in 2-Week-Old Female Mice

Strain
Lower 95%

confidence interval Frequency
Upper 95%

confidence interval

AKR 0.75 1.09 1.5
B6C3F1 0.67 1.00 1.39
Balb/c 0.63 0.91 1.22
C57BL/6 1.07 1.48 1.94

TABLE IV. Effect of 2,4-D on the Frequency of TCR GB
Rearrangements in Adult B6C3F1 Female Mice

2,4-D dose
(mg/kg)

Lower 95%
confidence interval

(� 10	5)
Frequency
(� 10	5)

Upper 95%
confidence interval

(� 10	5)

0 1.51 2.51 5.83
3 2.19 2.91 4.22
10 1.56 2.03 2.80
30 1.58 2.02 2.76
100 1.44 2.09 3.36

TABLE V. Effect of 2,4-D on the Frequency of TCR GB
Rearrangements in B6C3F1 Mice After Prenatal Exposure

2,4-D dose
(mg/kg)

Lower 95%
confidence interval

(� 10	5)
Frequency
(� 10	5)

Upper 95%
confidence interval

(� 10	5)

0 0.132 0.60 1.42
3 0.051 1.11 1.94
10 0.10 0.54 1.32
30 0.09 0.55 1.39
100 0.58 1.82 3.73
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cause of the relatively low rearrangement frequency vari-
ability due to age.

In addition to the time-dependent stability of the aberrant
GB rearrangement frequency within each strain, there is
also a relatively constant frequency across strains. There
was no significant difference in the frequency of the GB
rearrangement in thymocytes between the B6C3F1, balb/c,
and C57BL/6 strains (�1 � 10-5). The frequency in the
thymocytes from AKR mice was significantly lower than
that from thymocytes from B6C3F1 mice and did not differ
significantly from the other two strains. Thus, the error-
prone component(s) of V(D)J recombination that generates
these interlocus TCR rearrangements appears to be con-
served in all four strains. There were also no significant
differences in the frequencies of the normal BB and GG
intralocus rearrangements among the strains at 2 weeks of
age (Tables II, III). The frequencies of the normal BB and
GG rearrangements were �1 per 100 thymocytes and 1 per
thymocyte, respectively, which is similar to the frequency
found by Lista et al. [1997].

AKR mice spontaneously form thymic lymphomas at a
high frequency (
90%) and this has been shown to be due
to endogenous, genetically transmitted viruses [Rowe,
1972; Fischinger et al., 1975; Hartley et al., 1977; Chatto-
padhyay et al., 1980]. We tested the hypothesis that in-
creased levels of aberrant V(D)J recombination played a
role in the increased sensitivity of the AKR strain to T-cell
lymphoma. Our finding that the frequency of aberrant V(D)J
recombination, as reflected in the levels of interlocus TCR
rearrangements, is not significantly different from strains
without this high level of lymphoma suggests that this
potential mechanism of tumorigenesis is not a factor in the
etiology of these tumors. In fact, it appears that the sensi-
tivity of the AKR strain to T-cell lymphomagenesis is the
direct result of endogenous and recombinant viral proteins,
since antibodies to these proteins suppressed the frequency
of spontaneous tumors [Haran-Ghera et al., 1995].

Because of the reported epidemiological suggestions of
an association between exposure to 2,4-D and hematopoi-
etic cancer [Hoar et al., 1986; Zahm et al., 1990], there has
remained some concern over the potential carcinogenic ef-
fects of this herbicide, despite little evidence from toxicol-
ogy studies [Ibrahim et al., 1991; Charles et al., 1996].
Interestingly, Garry, Kirsch, and co-workers [Lipkowitz et
al., 1992; Garry et al., 2001] found evidence that aberrant
V(D)J recombination occurs in peripheral blood lympho-
cytes of agriculture workers with exposures to pesticides,
including 2,4-D, suggesting a mechanism of genomic insta-
bility by which tumors may arise. Using our newly devel-
oped assay for the quantitation of the analogous aberrations
in mice, we tested the hypothesis that exposure to 2,4-D
would increase the levels of aberrant V(D)J recombination
as reflected in interlocus TCR rearrangements. Two exper-
iments were carried out. The first was on 4-week-old female
mice that were given 2,4-D by daily gavage for 4 successive

days and then sacrificed on the following day. Doses were
chosen to cover a wide range of exposures, with the highest
dose being about one-third of the LD50 [IARC, 1977] and
the lowest being about 1% of the LD50. Under these exper-
imental conditions, no significant increase in the frequency
of interlocus TCR rearrangements was observed, suggesting
that 2,4-D does not effect fidelity of V(D)J recombination in
adult mice and lead to genomic instability.

In the second experiment, we assessed the ability of
2,4-D to cause these aberrant rearrangements in the devel-
oping thymus. Pregnant C57BL/6 mice were exposed to
2,4-D by gavage on days 14–18 of gestation and thymo-
cytes from the pups were examined at 2 weeks of age for
aberrant interlocus TCR rearrangements. Again, the doses
spanned a wide range, approaching one-third of the LD50

dose. No statistically significant increase in the frequency of
the aberrant rearrangements was found. Thus, under these
conditions 2,4-D does not appear to effect this important
mechanism of carcinogenesis.

Chromosomal translocations mediated by aberrant V(D)J
recombination are a major mechanism for activation of
oncogenes in hematopoietic tumors [Aplan et al., 1990;
Brown et al., 1990; Croce, 1993; Rabbitts, 1994]. In addi-
tion, it has been reported that illegitimate V(D)J recombi-
nation was responsible for inactivation of tumor suppressor
genes in lymphoid leukemia [Cayuela et al., 1997; Kitagawa
et al., 2002]. Until recently, however, a model system has
not been available for the controlled testing of medical,
occupational, and environmental chemicals to influence the
fidelity of this critical process [Lista et al., 1997]. The
improvements to this in vivo mouse assay described here
should allow the efficient evaluation of chemicals for this
property.
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