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Abstract

The literature estimating the economic value for water quality changes has grown considerably over the

last 30 years, resulting in an expanded pool of information potentially available to support national and

regional policy analysis. Using 131 willingness to pay estimates from 18 studies that use a similar definition

of water quality, we performed a meta-regression analysis and found mixed results. We find that WTP varies

in systematic and expected ways with respect to factors such as the size of the water quality changes, average

household income, and use/nonuse characteristics of respondents. As a whole, we conclude that our meta-

regression results provide a reasonable basis for estimating expected WTP values for defined changes in

water quality. However, despite a large number of existing economic valuation studies, relatively few could

be meaningfully combined through meta-analysis due to heterogeneity in the commodities being valued in

the original studies. Based on these findings, we provide recommendations for future research, including

suggestions regarding more standardized approaches for defining water quality and reporting information in

valuation studies.

# 2007 Elsevier B.V. All rights reserved.

JEL classification : Q2
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1. Introduction

Protecting and improving water quality in the U.S. has been a focal point of national

environmental policy for over 30 years, particularly since the passage of the Clean Water Act
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(CWA) in 1972. The overall goal of the CWA is to ‘‘. . . restore and maintain the chemical,

physical, and biological integrity of the Nation’s waters.’’ Although much has been accomplished

toward achieving this goal, policy makers continue to face the challenge of setting priorities and

implementing effective and efficient clean water programs. Evaluating the social welfare

implications of environmental policy options – now often required by executive order or statute –

has proven to be particularly challenging. However, recent efforts by federal agencies and

research organizations to synthesize and integrate the various natural, physical, and social

sciences used in such evaluations are beginning to show tangible progress (see, for example,

NRC/NAS, 2005).

In light of these challenges, this paper provides an assessment of the existing literature on the

economic value (‘‘benefits’’) of improvements in surface water quality. In particular, the purpose

of this research is to determine the usefulness of the literature for supporting environmental

benefit assessments and policymaking at the national level. Our approach involves two basic

questions: First, can we estimate a regression function(s) that represents societal preferences for

water quality contained in a collection of existing (primary) studies, which can then be used for

benefit transfer? Second, in what ways can the literature be augmented or adapted in the future to

best address the needs of national policy analysis?

We find that the existing body of research provides a potentially rich and diverse source of

secondary data for evaluating national water policy; however, this diversity presents both

opportunities and obstacles for benefit transfer. In practice, relatively few existing studies have

been actively used in benefit transfers to evaluate the benefits of national water quality policies.

One reason is that few of these studies are national in scope, and extrapolating values beyond the

spatial boundaries of a study area inevitably adds to uncertainty.

Another specific challenge in using the existing literature for national analysis is that, across

valuation studies, water quality is defined in a number of different ways.1 In many cases it is

difficult to match these definitions with those used to predict policy-related water quality

changes. For example, two alternative paradigms provide a useful illustration of the potential for

heterogeneity across the literature. One approach involves estimating the willingness to pay for

reductions in one or more specific pollutants (e.g., Bockstael et al., 1987), which can be viewed as

inputs in an ecosystem production function. The other approach involves estimating willingness

to pay for enhancements to ecosystem services (e.g., suitable for swimming (Carson and

Mitchell, 1993) or fish become safe to eat (Viscusi et al., 2004)), which can be viewed as outputs

of an ecosystem production function.

To quantitatively evaluate results from this literature, we use meta-analysis. This approach

allows us to synthesize information from selected studies in a systematic way and to test

hypotheses regarding the determinants of these estimates. It also allows us to explore a format for

predicting values, which is a critical component of any benefit transfer method. Although it has

evolved primarily in health sciences research, meta-analysis is increasingly being applied in

economics (Stanley, 2001), including nonmarket valuation research (Smith and Pattanayak,

2002). Recently, Johnston et al. (2003, 2005) also conducted meta-analyses involving value

G. Van Houtven et al. / Resource and Energy Economics 29 (2007) 206–228 207

1 This problem of commodity heterogeneity is not unique to water quality. In fact, it appears to be the norm in the

environmental valuation literature, making synthesis, meta-analysis, and benefit transfer difficult. See, for example,

McConnell and Walls (2005; open space), Poe et al. (2001; groundwater), Woodward and Wui (2001; wetlands), Boyer

and Polasky (2004; urban wetlands), Nunes et al. (2001; biodiversity), and Loomis and White (1996; threatened and

endangered species).



estimates for surface water quality improvements. Although similar in several respects to our

analysis, the two meta-analyses focus on water quality changes that specifically involve

improvements in fish habitat and Johnston et al. (2003) focuses mainly on nonuse value

estimates.

For our analysis, we identified and reviewed over 300 publications related to water quality

valuation; however, we selected values from a subset of these studies that were sufficiently

comparable for inclusion in a meta-analysis. To maintain comparability, we limited the meta-

analysis to stated preference studies conducted in the U.S. and to studies that described water

quality in terms that could be converted to a common 10-point scale.

Our investigation provides both good and bad news for policy analysis and benefit transfer.

On one hand, we find that WTP varies in systematic and expected ways with respect to factors

such as the size of the water quality changes, average household income, and use/nonuse

characteristics of respondents. These results show promise for benefit transfer because they

suggest that it may be possible to reliably predict WTP for appropriately selected changes in

water quality. On the other hand, despite the large number of existing economic valuation

studies, relatively few could be meaningfully combined through meta-analysis. The main

obstacle to including more valuation results is the heterogeneity in water quality descriptions

across studies, making it difficult to convert findings to a common scale for analysis. As a

result, information from a large number of studies could not be synthesized for use in policy

analysis. In addition, although the meta-analysis results provide a reasonable basis for

predicting WTP for broad water quality changes, they are more limited for explaining how the

characteristics of the affected population and the spatial variation in water quality changes

affect WTP.

Based on our review and analysis, we provide recommendations for future research that may

enhance the utility of the literature for national policy analysis. One of the main challenges is

developing definitions and characterizations of water quality changes that are both policy-

relevant and easily communicated and replicated across studies. We argue that the ‘‘designated

use’’ classifications, which are widely used to establish water quality standards across the

country, provide a particularly useful framework for standardization.

2. Overview of empirical water quality valuation research

To comprehensively evaluate the existing body of empirical water quality valuation research

and its applicability for assessing national water pollution control policies, we began by

identifying as many primary empirical studies as possible. In 2002 and 2003, we conducted

extensive literature searches using several literature databases and search engines,2 and we

identified additional candidate studies by scanning the reference lists from acquired studies.

In screening and selecting studies for additional analysis, we focused on empirical studies that

used primary data and used nonmarket valuation methods to estimate economic values for

defined changes in surface water quality for freshwater and saltwater bodies in the United States.

Studies addressing only groundwater or tap water quality were excluded, as were studies

addressing only water quantity issues. We included peer-reviewed publications from journals and
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2 These searches included the Environmental Valuation Reference Inventory (EVRI) (http://199.212.18.90/evri), the

Beneficial Use Values Database (BUVD (http://buvd.ucdavis.edu/index.htm), ENVALUE (http://www2.epa.nsw.gov.au/

envalue), ingenta, AGRICOLA (Agricultural Online Access) (http://www.nal.usda.gov/ag98), and ECONLIT.
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books, as well as articles from the grey literature (working papers, presentations, Master’s theses,

and PhD dissertations).

Based on these criteria, we identified 90 publications published between 1968 and 2002.

Many of these publications can be grouped with others as part of a common study (58 studies in

all). We then created a database of water quality value estimates by extracting information

reported in these studies. A total of 1014 value estimates are included in this database and each

value is characterized in various dimensions, including type of value, type of water quality

change, type of water resource, type of valuation methods used, and characteristics of the

population studied.3 To distinguish between numbers of studies, publications, and value

estimates, we use the notation Ns, Np, and Nv, respectively, in Table 1, and in the remainder of

the paper.

By summarizing some of the key characteristics of the publications and value estimates

included in this database, Table 1 provides an overview of the existing empirical water quality

valuation in the United States. The evidence from our literature search indicates that the rate at

which studies are being conducted and published has increased steadily since the late 1960s,

and a large number of them – 60 publications in our database – have been published in peer-

reviewed outlets.

The geographic coverage of existing research is broad, but there are gaps worth noting. For

example, a large portion of available value estimates (74 percent) are focused on water quality

changes at a local (sub-state) level. Although individuals are certain to place more value on

improvements in local water resources than on more distant waters, there is still relatively little

evidence about how distance to water systematically affects these values. Also, the geographic

distribution of values is relatively uneven, with roughly one-half of the available values estimated

for waters in the South region and less than 2 percent estimated for waters in the West. By

comparison, the available value estimates are rather evenly distributed across different types of

water resources. Roughly three-quarters of the value estimates are for freshwater bodies (rivers,

stream, lakes, reservoirs, etc.) and the remainder for saltwater bodies (estuaries and coastal waters).

The nonmarket valuation methods most commonly used to generate these value estimates

generally fall into one of three categories—stated preference, travel cost, or hedonic property

value. Travel cost studies related to water-based recreation provide the highest number of value

estimates (74 percent) in the database. Stated preference methods, in particular contingent

valuation, produced 21 percent of the value estimates. Hedonic methods provided 6 percent of the

value estimates.

The measures used to describe and evaluate water quality changes are among the most

heterogeneous aspects of the water quality valuation research compiled in our database. Due in

large part to the stated goals in the CWA of achieving fishable/swimmable waters in the United

States and following a precedent established by some of the earlier valuation studies (Mitchell

and Carson, 1986; Desvousges et al., 1987), stated preference studies often define water quality

in terms of their suitability for, or ability to support, specific recreational activities—e.g.,

boatable, fishable, and/or swimmable water quality. About 24 percent of the value estimates in

the database describe water quality in these general terms. Subjective ratings such as Likert scales

or poor/fair/good/excellent classifications are also used in stated preference studies, but these

G. Van Houtven et al. / Resource and Energy Economics 29 (2007) 206–228 209
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represent less than 5 percent of all the value estimates in the database. Generally speaking,

revealed preference studies rely on more specific indicators of water quality, with the expectation

that these indicators are directly related to the water quality services that individuals perceive and

value. For example, a large number of studies measure revealed preferences in relation to

pollutant concentrations and/or regulatory thresholds such as ambient water quality criteria

(AWQCs) or fish consumption advisories.

3. Data selection for meta-analysis

The results summarized in Table 1 provide a useful overview and synthesis of water quality

valuation research in the U.S.; however, the primary objective in compiling this database of water

G. Van Houtven et al. / Resource and Energy Economics 29 (2007) 206–228210

Table 1

Summary statistics for U.S. water quality valuation studies

Publications (Np = 90) Value estimates (Nv = 1014)

Number Percent Number Percent

Type of publication

Peer-reviewed journal/book 59 66 646 64

PhD/Master’s thesis 8 9 128 13

Other (working paper, report, etc.) 23 26 240 24

Year of publication

Before 1980 7 8 28 3

1980–1989 21 23 324 32

1990–1999 40 44 448 44

2000 or later 22 24 214 21

Type of water resource affected

Freshwater (lakes, rivers, streams, etc.) 69 77 752 74

Saltwater (estuaries, coastal waters, etc.) 26 29 330 33

Geographic extent of WQ change

National 3 3 12 1

Multistate 8 9 60 6

Single state 21 23 194 19

Local 62 69 748 74

Regions experiencing WQ change

National 3 3 12 1

Northeast 30 33 204 20

South 30 33 504 50

Midwest 31 34 281 28

West 3 3 13 1

Valuation method used

Stated preference 34 38 214 21

Travel cost and contingent behavior 53 59 749 74

Hedonic property value 10 11 57 6

WQ descriptor/indicator used

Recreation support (e.g., boatable/fishable/swimmable) 16 18 246 24

Rating scale (e.g., poor/fair/good/excellent) 8 9 45 4

Pollutant concentration 34 38 520 51

Secchi depth (for water clarity) 7 8 63 6

Fish consumption advisory 9 10 31 3



quality values was to determine whether these estimates could be systematically combined in a

common analytical framework. To most effectively analyze these data, it was necessary to

confront an inherent problem in meta-analysis—the tradeoff between expanding the meta-

sample to improve statistical estimation and reducing the sample to ensure comparability across

studies. To strike an appropriate balance, we used the following criteria to select studies for our

meta-sample.

First, it was essential to identify value estimates for water quality changes that can be

expressed in comparable terms. Therefore, as described in more detail below, we selected studies

that could be linked to a commonly defined water quality metric.

Second, it was also advantageous to select estimates derived from similar valuation methods

because it ensures a common value concept in the analysis. For this reason, we focused

specifically on values estimated with stated preference methods. Although we identified other

potentially convertible values estimated using travel cost methods (TCMs), we decided not to

include them in this meta-analysis for three reasons. First, statistical tests of pooling the two data

groups into a common regression tended to reject equality of the parameters across groups.

Second, a large majority of the TCM values came from the same study (Smith and Desvousges,

1986), meaning that it was difficult to distinguish whether differences in parameter estimates

were due to differences in, for example, the valuation method or to unobservable differences

associated with the particular study. Third, the value measures from TCM and CV are

fundamentally different (i.e., Marshallian consumer surplus versus Hicksian compensating

surplus); therefore, pooling these data might introduce conceptual inconsistencies. Smith and

Pattanayak (2002) suggest ‘‘structural meta-analysis’’ as a way of combining estimates from

different valuation approaches in theoretically consistent manner. However, this structural

approach, which often requires multiple nonlinear equations linked to a common preference

structure, is beyond the scope of this study and, to our knowledge, has not yet been fully applied

or demonstrated in the literature.

Based on these criteria, we identified and selected 131 value estimates from the literature to

include in the meta-analysis. These estimates are drawn from 21 publications (18 studies)

produced between 1977 and 2003, which are summarized in Table 2.

4. Determinants of WTP for water quality improvements

Eq. (1) broadly defines a ‘‘variation’’ or WTP function with respect to changes in water quality

from Q0 to Q1.

WTP ¼ VðQ0;Q1;P; Y ; BÞ (1)

The properties of this function, as described by McConnell (1990) and further explored by

Whitehead (1995), provide a conceptual guide for constructing and estimating a meta-regression

function of water quality values. This function also provides the basic conceptual foundation for

constructing a benefit transfer function, which can be used to predict values for defined changes

in water quality.

According to Eq. (1), the determinants of water quality value estimates can be grouped by: (1)

the characteristics of the water quality ‘‘commodity’’ (Q) and (2) characteristics of the study

population, including income (Y) and other socio-demographic variables (B) and price (P)

effects. In addition, the valuation approach used to estimate WTP and other study-specific

characteristics can have an effect on the resulting value estimates.

G. Van Houtven et al. / Resource and Energy Economics 29 (2007) 206–228 211
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Table 2

Summary of publications and value estimates included in meta-analysis (Np = 21, Ns = 18, Nv = 131)

Study

cluster

Publication name Geographic focus Resource

type

Water quality change evaluated Mean (number)

of WTP

estimatesa

1 Carson and Mitchell

(1993)

Nationwide Rivers,

lakes

(a) Avoid reduction to below-boatable levels, (b) improve from

boatable to fishable, and (c) improve from fishable to swimmable

$168 (3)

2 Croke et al. (1986) Chicago metropolitan area River Improve to allow for: (a) outings along the banks of a river,

(b) boating and outings, and (c) fishing, boating, and outings

$88 (6)

3 Desvousges et al.

(1987)

Monongahela River, PA River (a) Avoid reduction to below-boatable levels, (b) improve from

boatable to fishable, and (c) improve from fishable to swimmable

$55 (24)

4 Farber and Griner

(2000)

Loyalhanna Creek,

Conemaugh River, PA

River Improve from: (a) severely polluted to unpolluted, (b) severely

polluted to moderately polluted, and (c) moderately polluted to

unpolluted

$62 (10)

5 Gramlich (1977) Charles River, Boston, MA,

and nationwide

River Improve from 1973 status quo to a level of ‘‘clean enough for

swimming and wildlife’’ for: (a) rivers nationwide and (b)

Charles River

$167 (2)

6 Walsh et al. (1978) South Platte River Basin, CO River Avoid reduction in 3-point index $156 (6)

7 Lant and Roberts (1990) Rivers in Iowa and Illinois River Improve from: (a) poor to fair, (b) fair to good, and (c) good

to excellent

$61 (6)

7 Lant and Tobin (1989) Rivers in Iowa and Illinois River Improve from: (a) poor to fair, (b) fair to good, and (c) good

to excellent

$110 (9)

8 Nowak et al. (1990) Milwaukee, WI River, lake Improve to fishable/swimmable $87 (14)

8 Nowak et al. (1989) West Bend, WI River, lake Improve to excellent/good $26 (1)

9 Azevedo et al. (2001) Clear Lake, IA Lake Five scenarios with multiple water quality indicators: clarity,

frequency of algae blooms, color, odor, frequency of swimming

advisories, fish species diversity

$69 (5)

10 Cronin (1982) Potomac River, Washington, DC River Improvement on 5-level index describing 6 water quality attributes

(suitability for swimming, suitability for boating, fish habitat, odor,

appearance, ecology)

$41 (8)

11 Johnston et al. (1999) Wood-Pawcatuck Watershed, RI River, lake Improve one unit on 10-point index $124 (2)

12 Edwards (1984) Rhode Island Salt Ponds Estuary (a) Avoid reduction from swimmable to boatable, (b) avoid

reduction from swimmable to unusable for recreation, and (c)

an improvement from swimmable to shellfishable

$60 (6)

13 Binkley and Hanemann

(1978)

Boston-Cape Cod area beaches Fresh and

saltwater

(a) Reduced to ranking of 1 on a scale of 1–5 and (b) improved

to a ranking of 5 on a scale of 1–5

$149 (2)
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14 Bockstael et al. (1989) Chesapeake Bay area Estuary Improvement from ‘‘unacceptable for swimming’’ to ‘‘acceptable’’ $76 (2)

15 Hayes (1987) Upper Narragansett Bay,

Rhode Island

Estuary Programs that achieve WQ that is a) Safe for swimming b) Suitable

for shellfishing

$62 (16)

15 Hayes et al. (1992) Upper Narragansett Bay,

Rhode Island

Estuary Programs that achieve WQ that is: (a) safe for swimming and (b)

suitable for shellfishing

$331 (2)

16 Kaoru (1993) Martha’s Vineyard, Massachusetts Estuary Raise the WQ in 3 ponds so that they would be open for shellfishing

year round

$182 (1)

17 Wey (1990) Great Salt Pond, Block Island, RI Estuary (a) Improvement in 6-point index of perceived water quality and (b)

restrictions on access

$32 (1)

18 Lipton (2003) Chesapeake Bay Estuary Marginal change on a 4-point scale: very good, good, fair, and poor $77 (5)

TOTAL: $83 (131)

a In 2000 dollars.



4.1. The water quality ‘‘commodity’’

In Eq. (1), the commodity to be valued is defined simply as the change in water quality (Q1–

Q0). In practice, however, this commodity is inherently complex and, as shown in Table 1, can be

characterized in several dimensions.

To convert the specified water quality changes into a common metric, we constructed a 10-

point water quality index, WQI10. This index is based in part on the water quality ladder (WQL)

developed by Vaughan (1986) as a way of conveying water quality to the lay public, particularly

survey respondents.4 Vaughan defined the ladder such that, for example, a water quality index

value of 2.5 (out of 10) was ‘‘boatable’’, 5.1 was ‘‘fishable’’, and 7.0 was ‘‘swimmable’’.

Subsequently, Mitchell and Carson (1986) and others (e.g., Desvousges et al., 1987) have used

Vaughan’s WQL to obtain willingness to pay estimates for changes in the ‘‘steps’’ of the ladder.5

This approach to defining water quality combines features of ‘‘class-based’’ and ‘‘use-based’’

methods used by EPA and states to establish water quality standards. A typical class-based

description of water quality maps a set of pollutants and their concentrations to a linear scale used

to define general water quality according to several quality levels (e.g., Class I, Class II, Class III,

etc.).6 This approach is simple, but the mapping of pollutants to quality levels is nonspecific, and

generally downplays the importance of certain pollutants to certain uses (services). A use-based

description of water quality addresses this issue directly, by mapping specific pollutants to

specific uses.7 For example, pathogens and fecal coliforms are associated with human health

exposure from swimming (primary contact recreation), mercury and PCBs are associated with

human health exposure from fish consumption, and nutrients (nitrogen and phosphorous) are

associated with the overall health of an aquatic ecosystem and the abundance of fish.

By combining the two approaches, the WQI10 combines the simplicity of the class-based

approach with its use-specific quality steps, and it provides a basis for linking in-stream chemical,

physical, and biological characteristics to human-based economic value estimates. Because the

general public (and the typical survey respondent) lacks the technical expertise required to

interpret the significance of these ecosystem attributes to services that people value, this linear

quality scale and use-specific levels provides a means for defining water quality in broadly

understandable terms. From a policy analyst’s perspective, this approach is particularly valuable

because it provides a consistent basis for relating water quality changes to the Clean Water Act’s

‘‘fishable–swimmable’’ goals, and has formed the conceptual foundation for research and policy-

making for over 30 years. As a result, it is the definition of water quality that is most commonly

used in the stated preference literature, and thus provides the best opportunity for estimating a

meta-regression function.8

G. Van Houtven et al. / Resource and Energy Economics 29 (2007) 206–228214

4 In addition, the ladder was linked to McClelland’s (1974) National Sanitation Foundation water quality index, which

incorporates nine indicators of water quality into a single 10-point index. The indicators include: biological oxygen

demand (BOD), dissolved oxygen (DO), fecal coliforms (FC), nitrogen (N), phosphorous (P), total suspended solids

(TSS), turbidity, pH, and temperature. See http://www.nsf.org/consumer/earth_day/wqi.asp for a more recent description

of the NSF WQI.
5 For examples of regulatory analyses in which this approach was used, see: http://www.epa.gov/waterscience/guide/

construction/C&D_econ_proposed.pdf and http://www.epa.gov/npdes/pubs/cafo_natl_ecobenefit_p1.pdf.
6 For example, see Connecticut’s water quality standards at http://dep.state.ct.us/wtr/wq/wqs.pdf.
7 For example, see Ohio’s water quality standards at http://www.epa.state.oh.us/dsw/wqs/wqs.html.
8 Note that it is increasingly common for researchers and policy-makers to use a use-based definition of water quality.

See Viscusi et al. (2004) for an example.

http://www.epa.state.oh.us/dsw/wqs/wqs.html
http://www.epa.state.oh.us/dsw/wqs/wqs.html
http://www.epa.state.oh.us/dsw/wqs/wqs.html
http://www.epa.gov/npdes/pubs/cafo_natl_ecobenefit_p1.pdf
http://www.epa.state.oh.us/dsw/wqs/wqs.html
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In selecting water quality value estimates from the literature, we identified and included

estimates for water quality changes that were described using comparable recreational support

descriptions. These descriptions were mapped to the WQI10 scale using the Vaughan mapping

described above. We also identified and included value estimates for water quality changes that

were described using categorical or ordinal rating scales (e.g., a 5-point Likert scale of water

quality or poor/fair/good/excellent water quality categorization). Each of these measures was

rescaled to fit a 10-point index.9 Although every attempt was made to use a consistent set of

criteria for converting these measures and descriptions to the WQI10, the process of converting

diverse characterizations of water quality to a single metric inevitably required subjective

judgments and involved uncertainty. Table 2 provides summary descriptions of how water quality

changes were characterized in each publication. The last column includes the number and

average value of the WTP estimates drawn from each publication.

Definitions of relevant water quality changes are further complicated by spatial (and temporal)

variations in water quality. For example, both baseline and changes in water quality may vary

considerably from one waterbody to another, and this spatial pattern may influence WTP.

Preferences for water quality changes may also be influenced by other characteristics of surface

waters, including the type and location of the resource.

4.2. Study population characteristics and prices

Individual values for water quality changes should reflect both their willingness and their

ability to pay. Willingness to pay relates primarily to individuals’ preferences, which are

determined at least in part by personal characteristics. In particular, individuals who are active

recreational users of water resources are also likely to have stronger preferences for improving

freshwater quality. Thus, we would expect users to also place higher values on water quality

changes than nonusers, all else equal.

The economic conditions that affect an individual’s perceived ability to pay for water quality

changes can be captured (at least in part) through personal or household income. If water quality

is a normal good, then income is expected to have a positive effect on WTP. Similar to scope

effects in meta-analysis, the finding of a positive income effect provides evidence of theoretical

consistency across nonmarket value estimates (Poe et al., 2001). However, higher income may

also entail a higher opportunity cost of time for travel to surface water sites, which may create a

countervailing price effect, whereby increases in income have a partially dampening effect on

WTP for use-related water quality improvements.

4.3. Valuation method

The magnitude of the value estimates for water quality changes is also expected to depend on

the way in which the estimates are derived. All of the WTP estimates included in our analysis are

based on SP methods (either the contingent valuation method [CVM] or conjoint analysis). Even

so, a number of methodological differences have the potential to influence WTP.

One potentially significant difference is the type of value elicitation format used–open-ended

(OE) or dichotomous choice (DC). Carson (2000), for example, argues in favor of the DC format
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based on findings that individuals will tend to understate their WTP with the OE format because

respondents do not have the incentive and are not accustomed to conditions where they have to

‘‘find’’ their maximum point. However, if respondents are answering questions strategically (e.g.,

as free riders), OE responses may overstate or understate WTP (Smith, 2000). The expected

direction of this effect is indeterminate, but meta-analysis offers an approach for testing whether

systematic differences exist between DC- and OE-based estimates of water quality values.10

WTP may also be influenced by whether the SP survey is conducted in person, over the phone,

through a mailed questionnaire, or in another format. It is difficult to specify strong priors for how

differences in these methods will affect WTP, though—in-person surveys may allow for more

carefully considered responses on the part of respondents, which may reduce upward bias in

WTP, but they may also encourage yea-saying on the part of respondents, which would have the

opposite effect.

4.4. Other study characteristics

WTP estimates may also be influenced by the overall quality of the methods and results of the

study. Two potential indicators of study quality are the survey response rate and the publication

outlet. Higher response rates and publication in peer-reviewed outlets are generally considered to

reflect better quality studies. However, the publication selection process may result in estimation

bias if, for example, reviewers and editors are more inclined to accept higher value estimates or if

analysts are less likely to submit lower estimates (Stanley, 2001). Thus, while the expected effect of

these characteristics on WTP is indeterminate, it is important to control for them in meta-analysis.

In a recent review of meta-analyses in nonmarket valuation, Rosenberger and Stanley (2006) find

that, in most of the studies they review, publication has a negative effect on valuation estimates.

5. Data summary

As described above, our main criteria for selecting value estimates from the literature to

include in the meta-analysis were that: (1) they were estimated using stated preference methods,

(2) they focused on water quality changes in the U.S., and (3) the water quality commodity being

valued could be converted to the 10-point linear scale. Based on these criteria, we selected 131

value estimates from the 18 studies described in Table 2.

Table 3 lists and describes the main variables used in the meta-analysis. Table 4 provides

summary statistics for each of these variables. The two primary variables of interest are WTP2000,

which is the estimated mean household/individual WTP for a defined change in water quality

(converted to 2000 dollars using the consumer price index), and WQI10CHANGE, which captures

the corresponding change in water quality in terms of the WQI10. WTP2000 varies from $4 to $336

(mean = $83) and WQI10CHANGE varies from 1 to 8.9 units, with a mean of 3.4 units, such that the

average value per unit of water quality change varies from $2.6 to $155, with a mean of $30.6.

The variables WQI10BASE and WQ_REC_USE were included to further characterize the

water quality changes corresponding to each estimate. WQI10BASE defines the level from which

water quality is described to improve. The dummy variable WQ_REC_USE equals 1 if the

survey’s description of water quality change includes a reference to specific recreational
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activities that would be supported with improved water quality (e.g., ‘‘from boatable to fishable’’

in Carson and Mitchell, 1993) then WQ_REC_USE equals 1. Roughly two-thirds of the

estimates fall into this category.

The dummy variable LOCAL_FWATER identifies water quality changes affecting only local

(i.e., those within a metropolitan area or a small portion of a state) freshwater bodies, which

applies to 43 percent of the value estimates. Including this variable in the meta-analysis provides
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Table 3

Meta-analysis variable descriptions

Variable Description

WTP2000 Annual WTP for water quality change (in 2000 dollars)

WQI10CHANGE Water quality change (10-point WQI)

WQ_REC_USE =1 if the water quality change described in the study includes a reference to

recreational use support (e.g., suitable for recreational fishing)

WQI10BASE Baseline level of water quality from which water quality improves

ESTUARY =1 if the water quality change occurs in an estuary

LOCAL_FWATER =1 if the water quality change is restricted to freshwater in the local area

(i.e., within a single waterbody, county, or metro area)

MIDWEST =1 if the affected waterbodies are in the Midwest region of the U.S.

SOUTH =1 if the affected waterbodies are in the Southern region of the U.S.

INCOME2000 Average household income (in thousands of 2000 dollars)

INCOME_APPROX =1 if average household income was not reported in study (approximated based on

local Census data)

PERCENT_USER Percent of the sample population that are users of the affected water resource

PUBLISHED =1 if value is published in a peer-reviewed book or journal

OPEN_ENDED =1 if the value was estimated from an OE valuation question

RESPONSE_RATE Response rate for the survey used in the study (%)

IN_PERSON =1 if the survey used in the study was administered with an in-person interview

STUDY_YR73 =Year SP survey was fielded (minus 1973)

NUM_PERSON Number of respondents in WTP estimation sample

Table 4

Summary statistics for meta-regression variables (Nv = 131)

Variables Mean Standard deviation Min Median Max

WTP2000 82.77 57.81 4.0 67.9 336.4

WQI10CHANGE 3.39 1.93 1 2.5 8.9

WQ_REC_USE 0.68 0.47 0 1 1

WQI10BASE 2.80 2.15 0.1 2.5 10

ESTUARY 0.27 0.44 0 0 1

LOCAL_FWATER 0.43 0.50 0 0 1

MIDWEST 0.32 0.46 0 0 1

SOUTH 0.12 0.32 0 0 1

INCOME2000 50.26 12.34 37.0 48.9 120.7

INCOME_APPROX 0.26 0.44 0 0 1

PERCENT_USER 62.74 37.85 0 63 100

PUBLISHED 0.51 0.50 0 1 1

OPEN_ENDED 0.60 0.49 0 1 1

RESPONSE_RATE 58.02 21.42 14.0 61.7 86.6

IN_PERSON 0.31 0.46 0 0 1

STUDY_YR73 11.63 6.83 0 12 27

NUM_PERSON 266.56 354.13 7.0 160.0 1432.0



a simple but useful test for whether WTP is sensitive to the spatial scope of the water quality

change. The MIDWEST and SOUTH dummy variables were included to control and test for

broad regional variations in water quality values.

To capture how the characteristics of the study populations affect the value estimates, we

included a household income variable INCOME2000. Most studies report a measure of average

or median annual income; however, in some cases, it is only available for the full study sample

rather than for a specific subsample corresponding to the value estimate. When average income

was not reported at all in the study, it was approximated using Census data based on the location

and year of the study. The dummy variable INCOME_APPROX identifies these observations,

which account for 26 percent of the value estimates in the meta-sample. Other household

characteristics that may serve as explanatory variables, such as average age, education, wealth,

household size, and employment status, were only sporadically reported in the selected

publications, so they were not included in the meta-analysis.

The other potentially important characteristic of the study population is the level of use of the

water resource in question, represented by the variable PERCENT_USER. Roughly 20 percent of

the WTP values were specifically estimated for nonusers (PERCENT_USER = 0) and almost 40

percent were specifically estimated for users (PERCENT_USER = 100). PERCENT_USER for

the other values varies between 47 and 85 percent.

Additional variables were created to describe potentially influential study characteristics. To

account for differences in the SP methods used, we included the dummy variables

OPEN_ENDED and IN_PERSON. The variable RESPONSE_RATE, which was included as

a general quality indicator, varies from less than 15 percent to over 85 percent, with a mean of 61

percent.11 Roughly one-half of the estimates were published in peer-reviewed outlets, which is

captured by PUBLISHED. To test for a potential systematic trend in the WTP estimates, the

variable STUDY_YR73 was also included which captures the year in which the survey was

conducted. A large majority of the WTP estimates included in the meta-analysis are from SP

surveys conducted in the 1980s.

6. Meta-regression models

Table 5 reports regression results for several model specifications, all of which share the same

basic structure. We included a measure of WTP in all models as the dependent variable. Changes in

water quality, as measured by the WQI10, were included in each regression. Additional explanatory

variables include descriptorsof the affected waters, studypopulations, studydesign, and publication

outlet. To evaluate the robustness of model results, we varied the functional form across speci-

fications, but we used a similar weighted regression and panel data estimation approach in each case.

6.1. Functional form specification

Results for three functional form specifications are reported in Table 5—linear, semi-log, and

log-linear.12 Although all three of these forms are reasonable for approximating the relationship
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terms into logarithmic form, but leaves the other (mostly dichotomous) variables in linear form.
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Table 5

Meta-regression results (weighted least squares; Nv = 131)

Model specification

Linear Semi-log Log-linear

WTP2000a Ln(WTP2000)a Ln(WTP2000)a

Explanatory variables Coef.b tc Coef.b tc Coef.b tc Coef.b tc Coef. tb Coef. tb

WQI10CHANGE 7.21 1.48 4.44 0.94 0.145* 1.95 0.109 1.39

WQI10CHANGE �WQ_REC_USE 6.84 1.45 10.39** 2.49 0.112 1.73 0.137** 2.26

Ln(WQI10CHANGE) 0.343 1.20 0.358 1.37

Ln(WQI10CHANGE) �WQ_REC_USE 0.414* 1.90 0.465** 2.65

WQI10BASE 2.49 0.95 1.93 0.90 0.113* 1.78 0.085 1.45 0.091 1.43 0.080 1.37

ESTUARY 20.09 0.57 0.031 0.10 0.025 0.08

LOCAL_FWATER �12.70 �0.51 �0.067 �0.24 �0.110 �0.38

MIDWEST 27.33 0.93 0.520 1.66 0.329 1.12

SOUTH 7.97 0.31 0.148 0.47 �0.052 �0.16

INCOME2000 1.30** 2.25 1.29** 2.40 0.014 1.75 0.012 1.57

INCOME2000 � INCOME_APPROX �0.44 �1.05 �0.001 �0.25

Ln(INCOME2000) 0.964* 1.85 0.897* 1.85

Ln(INCOME2000) � INCOME_APPROX �0.008 �0.11

PERCENT_USER 0.51** 4.49 0.55** 4.62 0.011** 9.58 0.011** 7.80 0.011** 9.81 0.011** 7.85

PUBLISHED 61.75** 2.25 58.94** 2.71 0.971** 4.07 0.845** 3.76 0.960** 4.08 0.898** 3.98

OPEN_ENDED �4.39 �0.31 0.054 0.29 0.051 0.25

RESPONSE_RATE �1.03 �1.30 �1.32** �2.73 �0.014 �1.35 �0.012 �1.60 �0.014 �1.26 �0.013* �1.86

IN_PERSON 36.15 1.26 46.04* 1.95 0.460 1.33 0.499* 1.90 0.315 0.77 0.430 1.65

STUDY_YR73 �2.96** �2.11 �2.83** �3.26 �0.041** �2.34 �0.027** �3.64 �0.041** �2.49 �0.029** �3.74

CONSTANT 11.16 0.19 28.55 0.54 2.392** 3.06 2.631** 3.66 �0.399 �0.20 �0.227 �0.13

R2 0.60 0.57 0.64 0.61 0.64 0.59

p-Value for restricted modeld 0.93 0.47 0.60

a Dependent variable.
b Level of statistical significance represented by: *p = 0.10 and **p = 0.05.
c Based on Huber–White robust standard errors with clustering by study (Ns = 18 studies).
d F-test of joint restriction that coefficients of excluded variables are equal to zero.



between WTP and the other variables, the log-linear approach has at least two conceptual

advantages. First, it implies that, as changes in water quality approach zero, WTP also

approaches zero. Second, it implies that the marginal effect of a water quality change on WTP

depends on income. The semi-log model shares this second advantage; however, it also implies

that if WTP increases with larger improvements in water quality, then it does so at an increasing

rate (positive second derivative).13

6.2. Regression weights

Two weighting factors were combined in the analysis. First, treating each value estimate

equally in the meta-regression is not statistically efficient because it fails to account for the fact

that some values are estimated with relatively more precision than others and therefore contribute

more information to the analysis. To maximize statistical efficiency of the meta-analysis, each

estimate would ideally be weighted by the inverse of its variance (Lipsey and Wilson, 2000;

Hedges and Olkin, 1985). Unfortunately, relatively few of the included studies report standard

errors or confidence intervals for their WTP estimates. As an approximation of these relative

weights, we instead weighted each (secondary) observation in direct proportion to its sample size

(NUM_PERSON in Tables 3 and 4).

Second, the meta-data set contains some value estimates that are measured for the same water

quality change and sample population (but, for example, using a different WTP estimation

method).14 Failing to account for this feature would effectively allow publications with more

reported values of this type to exert a disproportionate influence on the overall statistical results

(Mrozek and Taylor, 2002). To address this issue, a second variable (INVGRPNUM) was created,

which is the inverse of the number of estimates in this type of group. INVGRPNUM equals 0.5

for 51 percent of the meta-sample and 1 for the rest. All regression results reported in Table 5

were estimated using a combined weighting factor, equal to the product of NUM_PERSON and

INVGRPNUM.15

6.3. Panel data modeling

To account for the panel nature of the meta-data, we estimated all of the models using

clustered robust regression (Rogers, 1993). Because the data used in the analysis are

characterized by multiple observations from individual studies, they are likely to violate the

ordinary least squares assumptions of independent and identically distributed errors. Therefore,

we used the Huber–White method to correct the standard error estimates for potential error

correlation within study clusters and unequal variance of errors across clusters (Williams, 2000;

Froot, 1989). Alternative approaches to modeling the panel data were also explored. For

example, following Rosenberger and Loomis (2000), we evaluated fixed and random effect

models. Because several of the explanatory variables included in our analysis only vary across
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neither weight was used, the regression results did not change substantially.



(not within) study clusters, it was not feasible to effectively distinguish between these factors and

study level fixed effects. Moreover, 18 fixed effects dummies would cause degrees of freedom

problems in a 131 observation data set. However, we were able to estimate random effects models

using the regression specifications reported in Table 5. The regression results were not

appreciably different from those reported in Table 5, but Breusch–Pagan tests consistently

rejected the random effects model in favor of the models without random effects.16

7. Meta-regression results

Table 5 reports results for six meta-regression equations. For each of the three functional

forms – linear, semi-log, and log-linear – two similar model specifications are reported. The first

is a full model with all of the main explanatory variables included, while the second is a restricted

model using a more parsimonious specification.

The models all provide a reasonably good fit to the data, with R-squared statistics between

0.57 and 0.64. The sign and statistical significance of the explanatory variables are relatively

consistent across the linear, semi-log, and log-linear specifications. The restricted models

exclude variables that are not individually significant at 0.10 level or less (based on t-statistics). In

all three cases, the dropped variables include ESTUARY, LOCAL_FWATER, MIDWEST,

SOUTH, OPEN_ENDED, and the interacted variable for INCOME2000 and INCOME_AP-

PROX. In all three cases, these restrictions cannot be rejected at a 0.05 level using an F-test. Due

to their conceptual and economic importance in the model, all water quality variables are retained

in the restricted models regardless of their statistical significance. The variables RESPONSE_-

RATE and IN_PERSON are also retained because restricted models excluding these variables

can be rejected at a 0.05 level.

Most importantly, the results indicate that the WTP estimates are sensitive to scope when

water quality changes are characterized using recreational use descriptions (which is the case in

over two-thirds of the WTP observations). Although the coefficient for WQI10CHANGE (and its

log form) is not statistically significant, the combined effect of WQI10CHANGE and the

interacted term WQI10CHANGE �WQ_REC_USE is always positive and statistically different

from zero at a 0.05 level. In the restricted models, the interacted variable is also individually

significant. This result indicates that the effect of water quality change on WTP is significantly

greater when water quality changes are characterized using recreational use descriptions. The

results of the linear specifications suggest that each unit increase on the WQI10 scale that includes

a recreational use description increases WTP by an average $14. The log-linear models indicate

an increase of about 8 percent in WTP for each 10 percent increase in the water quality scale. The

analysis also finds that WTP for water quality improvements is not strongly associated with

baseline water quality levels. The coefficient for WQI10BASE is estimated to be positive but is

only statistically significant at a 0.10 level in the restricted semi-log specification. The WTP

estimates also show limited sensitivity to the spatial scope of the change in water quality. The

coefficient for LOCAL_FWATER is consistently negative but not statistically significant.

Characteristics of the study population are also found to influence WTP. PERCENT_USER

has a consistently positive and significant effect on WTP across all specifications. According to

results in the linear (log-linear) specification, users are on average willing to pay roughly $60
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(three times) more than nonusers for improvements in freshwater quality.17 This estimated ratio

between use and nonuse values is similar, but somewhat larger, than the results reported by

Johnston et al. (2003).18

In accordance with expectations, the sign of the main income effect is also consistently positive

and for the most part statistically significant across specifications. Moreover, in the log-linear

models, the size of the income elasticity is very close to 1. The interaction of income with the

income approximation dummy variable is consistently negative but not statistically significant.

The variables IN_PERSON and RESPONSE_RATE are both statistically significant at a 0.10

level in two of the three restricted models. The effect of IN_PERSON on WTP is found to be

positive in all cases, which is consistent with the hypothesis that in-person interviews encourage

yea-saying by respondents. The effect of RESPONSE_RATE is negative in all models. Although

there are no strong priors for how response rates should affect the magnitude of WTP estimates,

these results suggest that surveys with lower response rates tend to exclude individuals with lower

average WTP for water quality improvements.

The only other variables found to have statistically significant effects on WTP are

PUBLISHED and STUDY_YR73. In contrast to the findings discussed in Rosenberger and

Stanley (2006), PUBLISHED has a large, positive and significant coefficient estimate in all 6

specifications. Results from the log-linear model indicate that values from published studies are

higher by a factor of roughly 2.5.19 One interpretation of this result is that publication is an

indicator of study quality, and therefore higher quality studies tend to produce higher WTP

estimates. However, if PUBLISHED is interpreted as a filter that favors larger, statistically

significant values, then this result suggests the presence of publication bias. The negative effect of

STUDY_YR73 indicates that, controlling for income and price effects, estimates of average real

WTP for water quality improvements has declined over time at roughly 2–3 percent per year. It is

possible that this decline reflects changes in preferences over time; however, it may also be the

result of other factors, such as possible changes in publication selection processes (e.g., by

authors or editors) or in estimation methods, that tend to favor lower WTP estimates.

8. Implications for benefits transfer and policy analysis

In a recent summary and evaluation of meta-analysis applications in nonmarket valuation,

Smith and Pattanayak (2002) argue that meta-analyses in this field have generally served three

main purposes: research synthesis, hypothesis testing, and prediction. The previous sections of

this paper have addressed the first two objectives, while this section addresses the third objective

by exploring the implications of the meta-regression results for predicting WTP. A main purpose

of WTP prediction is to support policy analysis. It allows one to evaluate the benefits of policy

related changes in water quality by transferring estimates that are based on the existing valuation

literature. A key issue, though, is whether the estimated equations can provide reliable benefit

transfer functions for predicting WTP for specified water quality changes.

To explore and illustrate the implications of the meta-regression results for benefit transfer, we

chose the linear and log-linear specifications as benefit transfer functions and used them to
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predict WTP for selected scenarios. For these two specifications, we selected both the full and

restricted models from Table 5.

The predicted mean WTP estimates (and corresponding 95% confidence intervals) are

reported in Table 6. As shown in the table, we specified three different changes in freshwater

quality levels (1, 3, and 6 unit changes on the WQI10) in each case assuming WQ_REC_USE

equals 1. Using the four functions, we then separately predicted mean WTP for users and

nonusers. For all WTP predictions, income was set at average U.S. household income in 2003

($55,280 in 2000 dollars), PUBLISHED was set at 0.5 (due to the uncertainties regarding

whether this variable reflects study quality or publication bias) and the study year was assumed to

be 2003. All other variables were set at their sample means.

With the linear function, the predicted mean WTP estimates for a one-unit change in water

quality varies from $3–5 for nonusers to $56–58 for users. For a six-unit change, the predicted

values are all greater by $70–74. For all water quality changes, the difference between estimates

for users and nonusers is $51–55. The invariance of this difference with respect to the size of the

water quality change is one of the inherent limitations of the linear model as a benefit transfer

function.

With the log-linear function, the predicted mean WTP estimates for a one-unit change in water

quality varies from $11–13 for nonusers to $32–37 for users.20 For a six-unit change, the

predicted values are all greater by a factor of roughly 4. The WTP estimates for users are greater

than for nonusers by a factor of 3.

To further evaluate these meta-regression equations as benefit transfer functions, it is useful to

also compare the results with estimates based on other benefit transfer approaches. Perhaps the most

commonly used and cited benefit estimates for national water quality changes come from Carson

and Mitchell (CM, 1993), which is one of the studies (three value estimates) included in our meta-

analysis. Based on a nationwide CV survey conducted in the early 1980s, this study presented

respondents with national water quality increments (e.g., boatable-to-fishable and fishable-to-

swimmable) that were mapped to the WQL. Using results from their sample of 564 households,
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Table 6

Predicted mean annual WTP for selected water quality improvement scenarios using alternative model specifications

Water quality improvement Users Nonusers

Full model Restricted model Full model Restricted model

Linear transfer functionsa

WQI10CHANGE = 1 $56 (�$1–112) $58 ($56–142) $5 (�$57–67) $3 (�$45–50)

WQI10CHANGE = 3 $84 ($32–136) $87 ($87–164) $33 (�$26–92) $32 (�$7–72)

WQI10CHANGE = 6 $126 ($71–181) $132 ($135–244) $75 ($13–138) $77 ($30–124)

Log–linear transfer functionsb

WQI10CHANGE = 1 $32 ($5–60) $37 ($16–60) $11 ($1–21) $13 ($0.4–44)

WQI10CHANGE = 3 $74 ($26–122) $93 ($65–120) $24 ($8–40) $31 ($9–77)

WQI10CHANGE = 6 $125 ($37–213) $164 ($94–234) $41 ($14–68) $55 ($23–131)

a 95% confidence intervals estimated using STDP command in STATA.
b 95% confidence intervals estimated using asymptotic standard errors.

20 To appropriately transform the model prediction of mean ln(WTP) to mean WTP in nonlogarithmic form, we applied

a smearing factor to the model-predicted values (Duan, 1983). The smearing factor is equal to the average of the

exponentiated residuals for the 131 observations in the estimation sample.



they estimated a WTP function with respect to the water quality scale, household income,

household participation in freshwater recreation, and the respondent’s rating of the importance of

national water protection goals. Applying this function using: (1) average U.S. household income in

2003 ($55,280 in 2000 dollars) and (2) sample averages from CM for freshwater recreation

participation (59 percent) and importance rating (0.65), their data and model would predict WTP

for the boatable-to-fishable and fishable-to-swimmable increments to be $181 and $132,

respectively (in 2000 dollars). For similar increments in water quality (2.5 points for the boatable-

to-fishable increment and 2 points for the fishable-to-swimmable increment), our parsimonious

linear meta-regression equation predicts annual average WTP of $111 (95% C.I. = $89–132) and

$113 (95% C.I. = $92–134), respectively (for PCT_USER = 59 and INCOME2000 = 55.28). Our

log-linear equation predicts WTP of $91 (95% C.I. = $67–114) and $89 (95% C.I. = $63–116),

respectively. Therefore, for the fishable-to-swimmable increment, the linear meta-regression

equation generates estimates that are similar to the CM transfer function estimates. Otherwise the

meta-regression equation estimates are lower by as much as 50 percent, particularly for the

boatable-to-fishable increment. In contrast to the meta-regression results, the CM function predicts

declining WTP with respect to baseline water quality and, therefore, substantially higher values for

improvements that start from the lower baseline level of boatable water quality.

9. Conclusions and recommendations

The number of empirical studies applied to water quality valuation has expanded steadily since

the mid-1970s. The resulting body of literature provides a potentially rich source of secondary data

for evaluating national and regional water policy; however, the heterogeneity of the commodities

used to define water quality presents a challenge for policy analysis. This paper explores how this

literature can be used to systematically estimate the benefits of national and regional water quality

changes, and identifies potential solutions to the challenges presented by its shortcomings.

Using meta-analysis, we analyze results from 18 stated preference studies conducted in the

U.S. We find evidence of a systematic and theoretically consistent pattern in WTP estimates. In

particular, the value estimates are positively related to the size of the water quality change—i.e.,

they ‘‘pass’’ the scope test when water quality changes are expressed using references to

recreational uses. As expected, we also find that these values are systematically lower for

nonusers of the affected resources, as well as evidence of a positive relationship between average

WTP and average income. The goodness of fit of these regressions, as measured by the R-squared

statistics, is also reasonable for a cross-sectional data set.21

The results of our review and analysis of water quality valuation estimates have mixed

implications for national policy analysis using benefit transfer. Although the existing empirical

literature in this area is extensive, only a small subset of these values could be meaningfully

combined through meta-analysis. One major reason for this limitation is that water quality is

defined and characterized in a variety of ways across studies.

Thus, on the one hand, our meta-regression results provide a reasonable basis for predicting

how average WTP varies for broad changes in water quality, and can be used as a benefit transfer

G. Van Houtven et al. / Resource and Energy Economics 29 (2007) 206–228224

21 R-square statistics from analyses of meta-data are typically higher than from cross-sectional analysis in the same way

that macroeconomic regressions generally perform better than micro-economic regressions because individual hetero-

geneity is averaged out. The screening process (131 observations from a potential base of more than 1000 observations)

has also imposed more homogeneity on the meta-data.



function. On the other hand, some of the main limitations of these models as benefit transfer tools

for national policy analysis are a consequence of the variation in WTP that is not explained by the

meta-regressions. For example, our results provide very limited evidence about how WTP is

related to the spatial characteristics of water quality changes. The meta-regression does not

measure how WTP varies with respect to the proportion or amount of waters that are improved or

the distance of the water quality changes from populations. This lack of specificity imposes

limitations on the precision of policy-relevant benefit transfers, since policies almost always

impact waterbodies in spatially nonuniform ways.

Consequently, despite the large and diverse body of existing studies, there is a continued need for

water quality valuation research that can be used to address the requirements of national and

regional-scale benefit assessments. The ability to integrate and apply the results of this research

could be enhanced in several ways. First, a more standardized and policy-relevant approach for

defining water quality changes, such as the designated use classifications used in setting water

quality standards, could be applied in these studies. An example is the approach taken by Viscusi

et al. (2004) and Magat et al. (2000) in which they define the extent and spatial variation in water

quality in terms of the percentage of waters within 100 miles of a person’s home that is ‘‘good’’ (i.e.,

unimpaired) for three designated uses–primary contact recreation (safe to swim), fish consumption

(safe to eat fish), and aquatic life (aquatic ecosystem is healthy). Because state and federal water

quality standards are steadily adopting these use-based designations, this approach is more directly

policy relevant. Table 7 lists eight ‘‘designated use’’ categories that are increasingly being applied

in setting such water quality standards. In contrast to the WQL approach, which focuses on

recreational uses in its terminology (boating, fishing, swimming), use-specific water quality

standards define more dimensions of water quality, which, as shown in Table 7, can be linked with

various categories of water-based ecosystem services. In addition to being policy relevant, an

important advantage of this use-based definition of water quality is that it is directly linkable to

chemical, physical, and biological indicators of water quality through federal and state ambient

water quality standards and criteria. This would then make it possible to systematically consider the

relationship between water quality indicators (inputs) and the services produced by ecosystems.

G. Van Houtven et al. / Resource and Energy Economics 29 (2007) 206–228 225

Table 7

Relationship between water quality services (designated use categories) and sources of economic value

Water quality services

(i.e., designated use category)

Economic value for water quality improvements derived from . . .

Use related services . . . Nonuse services . . .

In market

production

In household

production

In public

sector

production

Related to

existence/intrinsic

values

From altruism

and bequest

motives

Primary contact recreation

(safe to swim)

* *

Secondary contact recreation

(safe to fish, boat)

* *

Ag water supply

(irrigation and livestock)

* *

Industrial water supply * *

Public water supply * *

Aesthetics (visibility, odor) * * *

Fish consumption (safe to eat fish) * * *

Aquatic life (cold and warm water) * *



Second, national and regional policy analysis would benefit from water quality valuation

research conducted: (1) on a larger geographic scale and (2) in parts of the country that are

currently not well represented in the literature. As shown in Table 1, relatively few studies have

addressed water quality changes that occur over more than one state, and even fewer have

specifically investigated the sensitivity of WTP with respect to the geographic extent of the water

quality change or the distance of the water quality change from an individual’s residence. As also

shown in Table 1, few studies have been conducted for water quality changes in the western

portion of the United States. Additional studies in these areas would help to address important

spatial gaps in the literature.

Third, greater detail and consistency in the type of information reported in published water

quality valuation studies would enhance the social utility of the empirical literature. In particular,

more detailed characterizations of the studied water resources and affected populations would be

beneficial. Ideally, these descriptions would include pre-change and post-change water quality,

and information on the spatial and temporal variation in water quality, physical characteristics

and typical uses (including designated uses) of the water resources. They would also include

types and levels of use of the water resource (e.g., average number of trips), and average travel

distance to the affected resources. With a larger number of well-defined and well-documented

value estimates for water quality changes across the country, it should be possible to perform a

more comprehensive assessment (including via meta-analyses) that can lead to more definitive

conclusions for policy analysis.
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