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An Automatic Bridge Detection Technique
for Multispectral Images

D. Chaudhuri and Ashok Samal, Member, IEEE

Abstract—Extraction of features from images has been a goal of
researchers since the early days of remote sensing. While signifi-
cant progress has been made in several applications, much remains
to be done in the area of accurate identification of high-level
features such as buildings and roads. This paper presents an
approach for detecting bridges over water bodies from multispec-
tral imagery. The multispectral image is first classified into eight
land-cover types using a majority-must-be-granted logic based on
the multiseed supervised classification technique. The classified
image is then categorized into a trilevel image: water, concrete,
and background. Bridges are then recognized in this trilevel image
by using a knowledge-based approach that exploits the spatial
arrangement of bridges and their surroundings using a five-step
approach. A river extraction module identifies the rivers using a
recursive scanning technique and geometric constraints. Using a
neighborhood operator and the knowledge of the spatial dimen-
sions of a typical bridge, we identify the possible bridge pixels.
These potential bridge pixels are then grouped into possible bridge
segments based on their connectivity and geometric properties.
Finally, these bridge segments are verified on the basis of direc-
tional water index along different directions and their connectivity
with the road segments. The approach proposed in this paper has
been implemented and tested with images from the IRS-1C/1-D
satellite that has a spatial resolution of 23.5 × 23.5 m. The results
show that this approach is both efficient and effective in extracting
bridges.

Index Terms—Classification, feature extraction, graph theory,
multiseed clustering, pattern recognition, remote sensing.

I. INTRODUCTION

AUTOMATIC detection of geographical objects such as
bridges, big buildings, or road crossings in satellite im-

ages is useful in many important applications. These applica-
tions include maintaining geographical databases, assessing the
extent of damages in case of natural disasters such as floods or
earthquakes, and military applications. Extraction of high-level
features is also important in the development of content-based
indexing schemes for satellite images [14], [21].

Many approaches to detect linear features have been reported
in computer vision, remote sensing, and photogrammetry lit-
erature. These include the gradient direction profile analysis
method [23], adaptive template matching [10], snake models
[7], [8], [12], [13], perceptual grouping [11], the hyperspectral
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approach [18], multiscale or multiresolution approaches [5],
[13], [24] and GIS-data-guided methods [7], [12]. The concept
of road extraction is relatively simple, but developing reliable
methods remains a difficult challenge. As Fortier et al. [6]
concluded: “Due to its importance, much effort is devoted to
finding solutions to this problem. Unfortunately, no existing
methods yet allow a complete and robust automation of the
process.”

We briefly describe the few approaches proposed for detec-
tion of bridges in remotely sensed data. Houzelle and Giraudon
[9] suggest a data fusion technique using SPOT and synthetic
aperture radar (SAR) images for bridge detection and urban-
area extraction. For bridge detection, they first segment wa-
ter in the SPOT image to spatially constrain the location of
bridges in the SAR image. Mandal et al. [15] use a method
of analyzing the IRS satellite imagery for detecting various
man-made objects including bridges. Initially, a multivalued
recognition system is used to classify the image pixels into six
land-cover types. In order to identify the targets, knowledge of
their characteristics and their interrelationship is incorporated
into the clustered image using heuristic rules. Trias-Sanz et al.
[22] suggest techniques to automatically detect bridges on
small high-resolution panchromatic satellite images that rely
on radiometric features (texture information) and geometric
models. Using neural networks, they classify each pixel into
several terrain classes. Although the approach is effective, there
are several drawbacks to extending it to the general case. First,
computation of texture parameters for a large image takes a sig-
nificant amount of time. In addition, the analysis windows span
more than one texture at the boundaries of texture regions and,
therefore, give imprecise classifications. This technique also is
unlikely to extract bridges over larger regions such as big rivers.

This paper focuses on a method to extract bridges that divide
water bodies in multispectral images. We define a bridge as a
narrow concrete structure between two disparate water bodies,
which is connected to a road. Concrete is considered to be
a broad class of material that comprises the foundation for
buildings, roads, railroads, and metallic structures. Initially,
majority-must-be-granted logic based multiseed supervised
classification technique [16] is used to classify the image pixels
into eight land-cover types. The classifier is trained using a
database of spectral information of different terrain classes
from multispectral satellite sensor images. The eight-class
image is then converted into a trilevel image: water, concrete,
and background. Because bridges on rivers are important
targets in many tactical applications, identification of rivers is a
central step in extracting them. Separation of river and nonriver
parts in the image is done by using a recursive scanning
technique that exploits some geometric constraints such as
area, perimeter, and elongatedness. A low-level operator is then
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used to identify possible bridge pixels. This operation is based
on the following observations: 1) the bridge on a water body
is linear, and 2) the width of bridges is relatively small. The
bridge pixels are then grouped to determine the final location
and span of the bridges. We have evaluated our approach with
real IRS-1C/1-D satellite images.

We briefly compare our approach with the few other ap-
proaches proposed in literature. For the bridge detection method
proposed by Houzelle and Giraudon [9], both SPOT and SAR
images are required. Thus, an additional step to register both
images is necessary. Sometimes, it is difficult to collect the
ground control points, resulting in reduced accuracy of the
registration process. In addition, the availability of both sensor
images for the same time period is questionable. The approach
proposed here requires a single satellite image in the multi-
spectral mode. Hence, there is no additional registration step.
The method proposed by Mandal et al. [15] uses a contour
tracing method. Misclassification results in many nonbridge
segments to be detected as bridges. In addition, the approach is
computationally more expensive. Unlike the approach proposed
here, there is no confirmation test for small segments to be
labeled as bridges. The approach proposed in this paper exploits
geometric constraints of bridges to distinguish them from other
geometric configurations. The novel decision-making logic is
another advantage to confirm the presence of small bridges,
resulting in reduced false-alarm rates.

The main contributions in the proposed method are as
follows: 1) a tunable algorithm to identify candidate bridge
pixels using a simple Boolean and/or logical low-level operator
within a d × d window; 2) a new merger–separator operation
that exploits geometric constraints to group the possible bridge
pixels into small bridge segments; and 3) a novel decision-
making logic for confirmation of bridges with low false-
alarm rate.

II. ROAD EXTRACTION

In this paper, we define a bridge on the water body as a
narrow concrete structure between two disparate water bodies,
which is connected to a road. Using the connectivity constraint
of the bridge with road will reduce the false-alarm rate. There-
fore, road extraction is used as a part of our approach to detect
bridges.

Road networks are important features in satellite imagery,
which are characterized by unique spectral and spatial prop-
erties. However, low-level feature extraction is not always
sufficient to accurately identify the roads in a satellite image.
Incorporation of high-level knowledge is a necessary step in
the process of road extraction. Our road extraction method is
based on the work described in [4] and [17] and is designed
to take advantage of certain characteristics of the IRS-1C/1-D
multispectral images. We assume that the visible road struc-
tures are piecewise linear, 1–5 pixels wide, darker than their
surroundings, and are nearly homogeneous in their appearance.

Many of the characteristics are either directly applicable or
can be easily extended for other types of imagery. The process
of road extraction can be divided into the following three major
steps: line enhancement, segmentation, and linking. The en-
hancement process uses only local operations in which linelike
structures get enhanced while the edges get suppressed, thereby
avoiding false alarms. During the segmentation process, non-

road pixels are successively eliminated from the image. At this
point, only the road pixels remain for processing. However,
some road pixels may have been eliminated. Therefore, a
linking step is used to recover the eliminated road pixels.

III. MULTISEED SUPERVISED

CLASSIFICATION TECHNIQUE

Like most remote sensing applications, we begin our analysis
with an initial ground-cover classification. Supervised classi-
fication is widely used to accomplish this task. One of the
critical issues that directly affects the accuracy of classification
is the choice of the training set. The bridges considered here
are essentially concrete structures that act as dividers of water
bodies. Thus, it is important to extract concrete and water
from a multispectral image. Many supervised classification
algorithms, e.g., minimum-distance classifiers, use the mean of
the training samples as the representative (seed) of a particular
class. The main problem with seed-point-based algorithms is
that they are not appropriate for classes that are not spherical
in shape and are unlikely to yield good results for complex
and elongated shapes [16]. In such cases, using multiple seeds
to represent a class is likely to be more effective. This is
particularly true for satellite images, where the variation within
a class may be high. We can treat a nonhomogeneous class as
the union of many homogeneous classes [16] and represent it
by a seed from each of the constituting homogeneous classes.
This approach will be more effective and will result in increased
accuracy of classification. We have demonstrated the effective-
ness of a multiseed-based classifier and have compared it to
many other classifiers [16]. The algorithm used in this paper has
the following three main steps: 1) identification of seed points;
2) parameter estimation; and 3) classification.

A. Seed Point Detection

The central idea is to eliminate outliers from the training
sample to arrive at the central points of the clusters. The number
of seed points needed for accurate training depends on the shape
of the class. We have shown that a single seed cannot accurately
classify elongated data (classes with large gray-value variation),
and using multiple seeds is an effective way to solve this
problem [1], [2], [16]. The seed point depends on the highest
density, and this paper [3] proves that the estimated density
is consistent and asymptotically unbiased. The training data
of each class are collected by the guidance of the topographic
maps and by visiting sites.

B. Statistical Parameter Extraction Algorithm

After extracting the seed points of each class in the training
data, we determine the statistical parameters for each class.
The main idea is to identify the key subclusters in each class
and determine their first-order statistics: maximum, minimum,
mean, median, and mode for the gray levels. We use a k-means
clustering approach to determine the clusters.

C. Minimum-Distance Logical-Based Classifier

Using the statistical parameters for each class, we can
classify the unknown pixels of any image. Our classifi-
cation algorithm uses the following two types of logic:
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Fig. 1. Different organization of bridges on the rivers.

1) minimum-distance-of-majority-must-be-granted logic and
2) minimum-of-minimum-distance-granted logic. Both are de-
signed for multiseed classification and improve the accuracy
of classification [16]. In both cases, we first compute the
distance between the pixels to be classified and then each of
the subclusters of each class. In majority-must-be-granted logic
using the minimum distances, a class is assigned to an unknown
pixel if three of the five minimum distances (min, max, mean,
median, and mode) correspond to the same class. In minimum-
of-minimum-distance-granted logic, we assign a pixel to a class
whose minimum distance among mean, median, mode, max,
and min is the smallest.

IV. BRIDGE DETECTION TECHNIQUE

In this paper, we define a bridge as a narrow concrete struc-
ture that connects two water bodies and is connected to a road.
Due to the difficulty in collecting a large number of samples, we
consider concrete as a broad class that includes buildings, roads,
railroads, and metallic structures. In addition to the spectral
properties, we also exploit many geometric constraints of and
world knowledge about bridges. These constraints include the
following.

1) A bridge should be a concrete structure.
2) A bridge should be a straight line on the water body.
3) A bridge acts as a divider of the water body; it is sur-

rounded by water on both sides.
4) A bridge should have constant width; the actual width

depends on the sensor resolution.
Fig. 1 shows different cases of bridges on the water body

(river). Case 1 [Fig. 1(a)] occurs when there is only one bridge
on the river. Case 2 [Fig. 1(b)] arises when there is more
than one bridge on the river. The bridges may be parallel or
nonparallel. Case 3 [Fig. 1(c)] occurs when there is more than
one river in the image and the bridges lie on a straight line. Note
that the bridges across a series of rivers do not have to be on a
straight line. Fig. 1(a) handles the scenario when they are not,
and Fig. 1(c) shows the scenario when they are. Our algorithm
can extract bridges from all such cases including the case of an
island.

The bridge detection algorithm is performed in four steps.
We first extract river segments in the image. We then identify
possible pixels that can be part of bridges. The candidate bridge
pixels are then grouped to form bridges. Finally, a verification
step validates the identified bridges. Each of these four steps is
described in detail hereafter.

A. River Extraction Technique

We begin by classifying a scene into eight different land-
cover classes using the multiseed supervised classification

technique. The eight classes are as follows: ice/snow, shrubs,
concrete, water, sand, forest, soil, and rock. For bridge de-
tection, concrete and water are the most important classes.
Therefore, we convert the eight classes in the classified image
into three classes by merging the rest of the classes into one
class called “background.” After this step, each pixel in the
image is labeled as water, concrete, or background.

Due to noise or other problems, some bridge pixels may have
been classified as water pixels. Similarly, a few water pixels
may have been misclassified as bridge, resulting in many small
regions that are not significant. We fix this by removing the
regions whose area falls below a predefined threshold (5 pixels
in our experiments). This makes a computation significantly
faster.

Segmentation is the process of grouping similar pixels into
regions. The result of segmentation is a set of disjoint regions
that covers the image. Many approaches have been used in
literature, including classical blob coloring as well as split
and merge [20]. Because our image is trilevel (water = 1,
concrete = 2, and background = 0), we propose a specialized
recursive scanning algorithm that is fast and efficient for our
application. For recognition of rivers, we only consider the
pixels that are labeled 1 (water) and ignore the rest.
Recursive Scanning Method: We begin by selecting a pixel

with label 1 (water) and label it as “marked.” The procedure
simultaneously looks for all other pixels in its 3 × 3 neighbor-
hood and marks them if they are also water pixels. This is a
variation of the region growing method, but growing and mark-
ing take place in all directions within a 3 × 3 window simulta-
neously. Once the pixel is “marked,” it will not be considered in
the search procedure. Therefore, this method is very fast. Unlike
many other growing methods, this method is independent of
a starting point, and there is no requirement to select suitable
properties for including points in the various regions during
the growing process, except to check for water pixels. The
procedure terminates when all the water pixels are “marked.”

After water regions are found, we compute some shape
features. Our goal is to identify rivers, i.e., elongated water
bodies. Three shape parameters, namely, area, perimeter, and
elongatedness, are used to find elongated water bodies. Area
and perimeter are computed in a straightforward manner. To
compute the elongatedness, we first compute the center of the
region. If the center of the region does not lie inside the region,
we choose the nearest point to be the center. We then compute
the maximum and minimum distances from the center to the
boundary points of that region. We define elongatedness as

elongatedness(E) = dmax − dmin

where dmax and dmin are the maximum and minimum distances
from the center to the boundary of the region, respectively. If
dmin is zero, then we take the average of the 5% of the nearest
pixels to the region boundary. We classify a region as a river
if the area, perimeter, and elongatedness all exceed predefined
thresholds, which are determined during training.

B. Candidate Bridge Pixel Extraction Technique

The next step in our analysis is to identify the bridge pixels.
We view a bridge as a narrow concrete structure that divides
rivers in the image. We identify candidate bridge pixels using a
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Fig. 2. Possible bridge pixel extraction window.

simple Boolean and/or logical low-level operator within a d × d
window. Direction of small elongated objects is something that
is generally difficult to estimate due to the discrete nature of
the image. Looking for pixels in all directions can be very
expensive. While the window size depends on the spatial reso-
lution of the sensor, our experiments showed that considering
only four directions (horizontal, vertical, right diagonal, and
left diagonal) for extraction of possible bridge pixels provides a
good balance between computational efficiency and extracting
the bridge pixels accurately.

Fig. 2 shows a 5 × 5 window along with the eight directions.
We consider only the [1 ↔ 5], [2 ↔ 6], [3 ↔ 7], and [4 ↔ 8] di-
rections. It also shows the chessboard distance between the cen-
ter pixel and the pixels in the window. The chessboard distance
dc between two q-dimensional points X = (x1, x2, . . . , xq) ⊆
Rq and Y = (y1, y2, . . . , yq) ⊆ Rq is defined as

dc(X,Y ) =
q

Max
i=1

|xi − yi|.

Based on the chessboard distance, we define a layered neigh-
borhood for a pixel. Because every direction has two senses,
positive and negative, a pixel has two immediate neighbors
along a particular direction at a particular distance. If we choose
a d × d (d is odd) window for our analysis, we can only identify
bridges of thickness 1 to d − 2. The value of d depends on the
width of the bridges and the spatial resolution of the sensor.
The number of layer neighbors required to develop a logical
low-level operator within a d × d window is (d − 1)/2. The
basic logic for extracting the possible candidate bridge pixel
within a window of size d × d along a horizontal direction
is given hereafter. The same logic applies for the other three
directions, but adjusting for the orientation. For a candidate
pixel (i, j) to be labeled as a bridge pixel, the following
conditions must hold in any one of the four directions (see
Fig. 2).

1) The candidate pixel must be concrete.
2) At least one pixel in the all layer-k, (k < (d − 2)/2),

neighborhood must be concrete.
3) All layer-k, where k = (d − 1)/2, neighbor pixels must

be water.
It should be noted that if d = 3, then k < 1, i.e., k = 0. Thus,

a concrete pixel may not have any neighbor to be labeled as a

bridge pixel. Therefore, we can detect bridges of thickness 1
also. By considering the broad definition of the concrete class
and the complexity of the scenes, some nonbridge pixels may
get classified as bridge pixels. They often appear as isolated
pixels, which can be removed easily by using a 3 × 3 mask or
through a morphological operation.

C. Grouping Bridge Pixels to Form Bridge Segments

Once a set of bridge pixels is identified, we group them
into contiguous sets that correspond to bridge segments. We
begin the grouping operation by using the recursive scanning
algorithm (described in Section IV-A). Because the number of
regions extracted is typically more than the actual number, a
merging step is required.
Merger–Separator Operation Technique: Segmentation of

bridge pixels to form bridge segments does not usually result in
perfect groupings. A single bridge structure may be broken into
multiple segments due to the noise in the original image or mis-
classification of constituent pixels. These multiple segments,
often separated by a small distance, should be considered for
merging. The following two factors must be considered during
any merging process: 1) the distance and 2) the angle between
the segments. All segments of a single bridge, when combined,
should form a linear structure with two parallel edge lines.
Using these principles, we have the following rules.

1) If a set of segments aligns on a straight line and is
proximate, it must be merged.

2) If a set of segments is proximate but does not form a linear
structure, it must be kept separate.

We have developed a merger–separator operation that ex-
ploits these distance and orientation constraints. Suppose
there are m-segmented regions that need to be analyzed for
merger–separator operation. Therefore, there are mc2(= m ×
(m − 1)/2) combinations of regions that are checked. If m
is large, the merger–separator operation takes an unacceptable
amount of time. To reduce the complexity of the problem, we
use the minimum spanning tree (MST) [1], [2].
Definition: Let S1 and S2 be the two sets of pixels, where

S1 = {(x1i, y1i), i = 1, . . . , n1} and S2 = {(x2j , y2j), j =
1, . . . , n2}. The distance D(S1, S2) between two groups is
defined as

D(S1, S2) = min
i=1,2,...,n1
j=1,2,...,n2

{d �(x1i, y1i), (x2j , y2j)�}

where d(X,Y ) is the Euclidean distance between the two
points X and Y .

Assume that there are C groups of bridge segments. Let
(xj,i, yj,i), i = 1, . . . , nj be the nj points of jth group of
segments, where j = 1, 2, . . . , C. The centroid of the jth group,
(xj , yj), is given by

xj =
1
nj

nj∑
i=1

xj,i yj =
1
nj

nj∑
i=1

yj,i, j = 1, . . . , C.

We begin our merger–separator operation with the compu-
tation of the centroids of each segment. Using the centroids
as nodes in a graph, we compute the MST. The Euclidean
distance between two connecting nodes is used as weights for
the edges in the graph. MST gives the connectivity of these
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Fig. 3. Possible directional strips for computing the directional water index.

centers. A pair of segmented regions is considered for the
merger–separator operation only if their centroids form an edge
in the MST. The MST of the centroids of the segmented regions
preserves the connectivity while reducing the complexity of the
merger–separator operation.

To determine if two segments should be merged, we first
determine the lines that best fit each group of pixels. This is
done by using a standard least squares regression technique that
minimizes the square error [19]. Let θj and θk be the angles of
inclination of the best-fit lines of the jth and kth groups, respec-
tively. If the difference between the angles is large, i.e., (|θj −
θk| > α), the two groups are different. If (|θj − θk| ≤ α),
either the two groups lie in a straight line or the two groups
are parallel to each other. They can be distinguished as follows.
We first compute the angle of the line that connects the centers
of the jth and kth groups. Let θjk be the angle of the line joining
the two centers. Compute the two angle difference parameters

θmin = min (|θjk − θj |, |θjk − θk|) .

If |θmin| ≤ δ, a small predefined threshold, then the jth and
kth groups approximately lie in a straight line and should be
checked for proximity. Otherwise, the two groups are parallel
and should not be merged. If they lie in a straight line, they are
merged if the distance between them, dms, is small.

Decision Logic Regarding Directional Water Index and
Connectivity: The bridges recognized in the previous step must
be verified using the presence of surrounding water. We use the
concept of directional water index to verify that an identified
structure is a bridge. Directional water index is defined as
the number of water pixels within a strip along a particular
direction. Water surrounds the bridge in all directions, except
along the direction of the bridge. Thus, the water index along
the bridge direction will be less than along any other direction.
We consider five directions to analyze from the center of a
possible bridge for computation of the water index, as shown
in Fig. 3. They are horizontal (1 ↔ 5), right diagonal (2 ↔ 6),
vertical (3 ↔ 7), left diagonal (4 ↔ 8), and the bridge direc-
tion (0 ↔ 9). Fig. 3 also shows the center of the bridge and
strips of width 2hni

along all directions.
One can increase the number of directions, but it will increase

the computational cost. For the confirmation of a bridge, we test
the water index in different directions. First, we compute the
direction of the segmented region by determining the direction
of the best-fit line of the pixels in the segmented region. This
segment will be confirmed as a bridge if the directional water
index along this direction is less than the index along other
directions.

The selection of the width of a strip is critical in the computa-
tion of the directional water index in that direction. The perfect
width of the strip is half of the bridge width. If the width is
very large, too many water pixels may be included along the
bridge direction. On the other hand, if it is very small, the water
index along all directions will be low, and it will be difficult to
verify the bridge. We estimate the width of the strip by using a
data-driven procedure described in [3] and given by

hni
=

(
li
ni

)1/2

, i = 1, 2, . . . ,m

where hni
is the half-width of the strip, ni is the number of

points in the bridge group, and li is the sum of the edge weights
(Euclidean interpoint distance) of the MST of the bridge
group.

In order to make this more efficient, we compute this only
around the bridge pixels that are within a certain distance. The
search region of water body is a collection of water pixels
within an open disk, with the center being located at the
centroid of a bridge segment. The radius of the open disk is
called a search radius (SR) and is given by

SRi = hni
× gdmax

where SRi is the search radius for the ith bridge segment,
hni

is the estimate of the half bridge width, and gdmax is the
maximum distance between any two bridge pixels in the same
segment and is given by

gdmax = Max
i=1,2,...,m

[
Max

j,k=1,2,...,ni
j �=k

d(pi,j , pi,k)

]

where m is the total number of bridge segments and d is
the Euclidean distance between two points in the same bridge
segment. It should be noted that this is a global max and is
not defined with respect to any bridge segment. Therefore, it is
maximized over all the bridges. Using the constrained search
space, we compute the directional water index along all ten
directions (see Fig. 4).
Confirmation Test for Bridges: In order to confirm that a

hypothesized bridge segment is actually a bridge, we use the
constraints described earlier in this section. To summarize,
a bridge is a narrow and linear concrete structure between
two disjoint water bodies and is connected to a road. Water
surrounds it in all directions, except in the direction of the
bridge. Therefore, the water densities in different directions and
connectivity between the bridge and road can be used as the
basis for confirmation.

We have already computed the signed directional water index
along different directions (0–9). We define unsigned directional
water densities as the sum of the water index along the positive
and negative directions. Thus

uwi(0 ↔ 9) = dwi[0] + dwi[9]

uwi(1 ↔ 5) = dwi[1] + dwi[5]

uwi(2 ↔ 6) = dwi[2] + dwi[6]

uwi(3 ↔ 7) = dwi[3] + dwi[7]

uwi(4 ↔ 8) = dwi[4] + dwi[8]
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Fig. 4. IRS-1C satellite multispectral image of ground resolution of 23.5 × 23.5 m. (a) Original image, (b) classified image, and (c) mapped image of the infrared
band image and detected bridges.

where uwi is the unsigned directional water index and dwi is the
signed directional water index. Using these, we define the total
water index (twi), the minimum directional water index (mwi),
and the percentage of water index (pwi) along the direction of
the bridge as follows:

twi = uwi[0 ↔ 9] + uwi[1 ↔ 5] + uwi[2 ↔ 6]

+ uwi[3 ↔ 7] + uwi[4 ↔ 8]

mwi = Min {uwi[0 ↔ 9], uwi[1 ↔ 5], uwi[2 ↔ 6],

uwi[3 ↔ 7], uwi[4 ↔ 8]}

pwi =
mwi
twi

× 100.

A hypothesized segment is confirmed as a road segment if the
minimum water index occurs only along the bridge direction,
and the value of the percentage of water index is less than a
certain threshold and it is connected to a road segment.

V. EXPERIMENTAL RESULTS

To test the effectiveness of the approach, we use the mul-
tispectral images obtained using the IRS-1C satellite. The
IRS-1C satellite comprises the following two parts: a standard
multipurpose platform and a sensor system payload. The pay-
load consists of two identical high-resolution visible (HRV)
sensor systems, a wide field sensor (WiFS) system, and a pack-
age comprising two magnetic tape data records and a telemetry
transmitter. The HRV sensors can operate in the following two
modes in the visible and reflective infrared portions of the
spectrum: a panchromatic mode, corresponding to observation
over a broad spectral band (similar to a typical black-and-white
photograph), and a multispectral (color) mode, corresponding
to observation in four narrower spectral bands. In IRS-1C satel-
lite panchromatic mode, the wavelength of the band is 0.50–
0.75 µm. The ground spatial resolution is 5.8 × 5.8 m. In
the multispectral mode, the wavelengths of bands 2, 3, 4, and
5 are 0.52–0.59 µm (G), 0.62–0.68 µm (R), 0.77–0.86 µm
[near-infrared (NIR)], and 1.55–1.75 µm [shortware infrared
(SWIR)], respectively. The ground spatial resolution is 23.5
× 23.5 m. Moreover, IRS-1C also has WiFS sensors, which
operates in 0.62–0.68 µm (R) and 0.77–0.86 µm [near-infrared
(NIR)] with a spatial resolution of 188 × 188 m.

In this paper, we illustrate our approach with two scenes
obtained by using the IRS satellite multispectral imagery. Both
the images are taken from the plains area but from different
seasons, one from winter and the other from the summer season.
Both the scenes are classified into eight different land-cover
classes using the multiseed supervised classification technique.
The classes obtained are ice/snow, shrubs, concrete, water,
sand, forest, soil, and rock for both images, and the average
numbers of pixels of each class for both seasons used for
training the classifier are 0, 2500, 4323, 4868, 1252, 3215, 768,
and 1019, respectively. Note that no ice/snow training samples
are available in low-altitude plain areas of India.

Fig. 4(a) shows an original multispectral image (of a plains
scene in summer) of size 512 × 512 generated from green,
red, and near-infrared bands of IRS-1C. Statistical parameters
for each class are obtained from the training samples by using
SPD and ESP algorithms, which are described in Sections III-A
and III-B, respectively. Then, the multiseed-based supervised
classification, described in Section III-C, is used to obtain
a classified image [see Fig. 4(b)]. The circularity parameter
θ in the SPD algorithm is set to 3.0. We have checked the
classification accuracy from the known number of pixels of
each class by multiseed supervised classification technique.

We have tested the road detection algorithm [17] on a
number of PAN and LISS images from IRS-1C/1-D and
SPOT satellites. For IRS-1C/1-D LISS, there are four spectral
bands—three in the visible range and one in the near-infrared
range. We consider only the near-infrared band because the
roadlike structures are not significant in the first three bands.
We have seen from the road output image that the roads are
well connected with all three bridges.

The results of applying the bridge detection algorithm are
shown in Fig. 4(c). The bridges are shown in white lines.
Although the two bridges in the upper right corner of the
original image of Fig. 4(a) are not clearly visible, the proposed
algorithm is able to detect them. The detailed areas around the
bridges are also shown in Fig. 4(c).

Fig. 5(a) shows another original multispectral image (plains
scene in winter) of a different part in India. The size of the
image is 512 × 512. Statistical parameters for each class are
obtained from the training samples by using SPD and SPE
algorithms. The classification is performed based on these
statistical parameters. Fig. 5(b) shows the final output of the
classification method. After applying all steps in the bridge
detection technique, we get the final bridge output. Fig. 5(c)
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Fig. 5. IRS-1C satellite multispectral image of ground resolution of 23.5 × 23.5 m. (a) Original image, (b) classified image, and (c) mapped image of the infrared
band image and detected bridges.

shows the combined images of the near-infrared band and
detected bridges.

We compare the results for both images with a Survey of
India (SOI) map and find that the detected bridge locations are
correct. SOI publishes the most geologic and geographic maps
of India in the form of 392 numbers 1◦ × 1◦ quadrangles sheets.
An exercise was to register the SOI toposheets and pick selected
features for the base map. The scale of the map is 1 : 25 000.
Maps are updated every five to ten years and are based on site
visits to verify the features including bridges.

The parameters that are used in several modules of bridge de-
tection technique are same for both images. In this experiment
of the IRS-1C LISS image for river extraction, the threshold
values that we take for area, elongatedness, and perimeter are
400, 20, and 300, respectively. We use 5 × 5 (d = 5) windows
for the extraction of possible candidate bridge pixels. We have
chosen the value of parameters α = 0.5, δ = 0.3, and dms =
5.0 for the merger–separator operation technique.

We have applied the method proposed by Mandal et al. [15]
and have summarized the results of this method and the method
proposed in this paper for detection of bridges in both images.
For the scene shown in Fig. 4, Mandal’s approach detected
one of the three bridges and gave one false alarm. In Fig. 5,
Mandal’s approach recognized both of the bridges correctly. In
contrast, our approach extracted all the bridges in both scenes
correctly.

VI. SUMMARY AND FUTURE WORK

We have presented an approach for detecting bridges from
multispectral satellite images. A bridge is characterized by a
narrow concrete structure between two disjoint water bodies
and is connected to a road. There are many civilian, commer-
cial, and military applications for this paper. For example, this
technique can also be used after disasters to see if a bridge still
exists.

The following are the three main modules in our bridge
detection approach: 1) pixel classification; 2) road extraction;
and 3) bridge detection. It is very difficult to collect the
training samples of different materials from low-resolution
multispectral images like IRS-1C/1-D satellite images of
ground resolution of 23.5 × 23.5 m. Hence, we group several
classes of material (buildings, roads, railroads, and metallic
structures) into a single class called concrete. A majority-
must-be-granted-logic-based multiseed supervised technique is

incorporated to classify the image pixels into eight land-cover
types. The classified image is converted into a trilevel im-
age, i.e., comprising water, concrete, and background. Because
bridges over water are important targets in many applications
and the focus of this paper is to extract such bridges, water
information is one of the most important features in our ap-
proach. Separation of river and nonriver parts from the water
class information of the classification image is done by using
a recursive scanning technique that exploits some geometric
constraints such as area, perimeter, and elongatedness. A low-
level operator is used within a d × d window for extraction
of the possible bridge pixels. This operation is based on the
following observations: 1) the bridge on the water body is a
straight line, and 2) the bridges are typically no more than
a few meters wide. For grouping the possible bridge pixels,
a grouping operator based on connectivity property within a
3 × 3 window is used at the edges of different regions of the
possible bridge pixel image.

The grouping operation may not be able to find the correct
group due to a noisy image or misclassification. Some of the
groups may lie in the same straight line with a minimum dis-
tance that is greater than one but less than a specific threshold.
These two straight lines will not form a single group due
to the grouping operation, but they should be considered for
merging. This situation can be overcome by increasing the
window size of the grouping operation. If we increase the size
of the window, then the groups that lie in the same straight
line with a minimum distance that is greater than one will
merge. At the same time, the groups that are parallel with a
minimum distance that is greater than one will also merge.
Hence, a merger–separator operation is introduced to overcome
this situation. The merger–separator operation is based on
geometric constraints and an MST. The centers of each group
are computed, and the MST of these centers is drawn. The min-
imum distance D between the two groups that are connected
by the MST is computed. The angle difference φ between the
best-fitted lines of the MST connected groups is determined.
If φ > α (α is a predefined threshold) then they are different
groups. If not, then the angle θmin can be determined as the
minimum value of the pair of difference values of centers
fitted line of the two groups and individual fitted lines of the
two groups, which are connected by the MST. If θmin lies
between a specific range then they are collinear; otherwise they
are parallel. The two groups can be merged on the basis of
the values of D and φ, and the condition of parallelism. We
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apply decision-making logic regarding the water index in ten
directions and connectivity with roads to derive the confirmed
bridge. An efficient algorithm for road detection is used in our
proposed method of bridge detection. To test the efficiency of
the algorithm, several real-life data are considered.

The approach described here is tuned to the IRS-1C/1-D
satellite imagery. The size of an object depends on the spatial
resolution of the satellite sensor. The parameters will need
to be adjusted for a different type of sensor, e.g., IKONOS
that has a higher spatial resolution and different multispectral
bands. IKONOS has a blue band instead of a SWIR band, and
the spatial resolution of the bands is approximately six times
higher than the IRS-1C image. Consequently, bridges that were
1–3 pixels wide in the IRS-1C image can reach a width of
about 20 pixels in an IKONOS image. Thus, we have to collect
different training samples for each class, and by SPD and SPE
algorithms, we can calculate the statistical parameters for each
class. In the road extraction algorithm, we have to change
the mask size for low-level operations to enhance the linelike
structures. Some soft threshold values in the segmentation
process of road detection also have to be tuned. The rest of
the road detection algorithm will remain unchanged. In the
bridge detection algorithm, we have to change the window size
for the extraction of possible bridge pixels. We have to search
in some additional directions for finding the directional water
index. The segmented region, which is possibly a bridge, will
be thicker in the higher resolution image. Thus, a thinning
algorithm may have to be introduced in the merger–separator
algorithm. The rest of bridge detection techniques will remain
unchanged.

This paper can be extended in many different directions.
As described before, it can be tuned for higher resolution
satellite imagery. In addition, it will be interesting to detect
bridges in panchromatic data. In this case, we have to develop
a new supervised classification technique for classifying the
panchromatic data.
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