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or imply its endorsement, recommendation, or favoring by the United States Government or any agency 
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the United States Government or any agency thereof.” 
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Abstract 
 

Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility 
grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and 
weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either 
by precooling the building’s massive structure or the use of active thermal energy storage systems such 
as ice storage. While these two thermal batteries have been engaged separately in the past, this project 
investigates the merits of harnessing both storage media concurrently in the context of predictive optimal 
control.  
The analysis, modeling, and simulation research presented in this topical report covers the first of three 
project phases. Based on the new dynamic building simulation program EnergyPlus, we added a utility 
rate module, two thermal energy storage models, and incorporated a sequential optimization approach to 
the cost minimization problem using direct search, gradient-based, and dynamic programming methods. 
The objective function is the total utility bill including the cost of heating and a time-of-use electricity rate 
with demand charges. The evaluation of the combined optimal control assumes perfect weather predic-
tion and match between the building model and the actual building counterpart. 
The analysis shows that the combined utilization leads to cost savings that is significantly greater than 
either storage but less than the sum of the individual savings. The findings reveal that the cooling-related 
on-peak electrical demand of commercial buildings can be drastically reduced and justify the development 
of a predictive optimal controller that accounts for uncertainty in predicted variables and modeling mis-
match in real time. 
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1 Introduction 
1.1 Problem Definition and Motivation 
This topical final report describes the accomplishments achieved in the first of three phases of a research 
project aiming to develop a software-based supervisory building controller for commercial buildings that 
utilizes the combined capacity of building thermal mass and thermal energy storage systems. This con-
troller will optimize cooling and ventilation equipment operation under real-time pricing and conventional 
electricity rates and will cooperate with the building automation system to minimize energy consumption 
and operating cost while ensuring human comfort. Due to the uncertain nature of future climate 
conditions, thermal loads, non-cooling electricity consumption and system performance, the approach is 
based on stochastic optimization. This load-management technology holds the promise of innovation in 
building automation and represents a unique approach to the control of building thermal storage. 
The project is undertaken as a joint effort lead by the University of Nebraska – Lincoln, with support from 
the University of Colorado and Johnson Controls as the industrial partner. 
The overriding research goal of this project is to transform a novel concept of supervisory building control 
into a load management and optimization system that operates in conjunction with a building’s energy 
management and control system to optimize cooling and ventilation operation under dynamic and con-
ventional electricity rates. To achieve this goal, we pursued these research objectives: 

 Develop physical models for the building’s energy systems and its dynamic thermal response. 
 Conduct a parametric study to identify the preferred set of conditions under which the merits of the 

new technology is maximized and to isolate the key aspects affecting controller performance. 
 Perform model-based analysis to identify a supervisory optimal control strategy capable of handling 

uncertainty in future variables and models while ensuring safe and comfortable operation. 
Now, that these objectives are completed, we plan to  

 Design, implement, and validate the supervisory controller in a full-scale HVAC laboratory  
 Field-test the optimization system in a suitable location (low humidity with large diurnal tempera-

ture swings) and equipped with a thermal energy storage system as well as a modern building auto-
mation system. 

Commercial building electricity consumption is enormous. Commercial buildings contribute a substantial 
13% or 12.1 out of 96.6 quadrillion Btu (“quads”) to the total U.S. primary energy consumption.1,2 Aggra-
vated primarily by an immense surge in the use of office equipment combined with the associated de-
mand for cooling energy, electricity is responsible for 80% of the end-use primary energy consumption in 
commercial buildings, more than 150 million metric tons of carbon emissions per year, and $60 billion of 
utility cost.2 Harnessing the efficiency potential in current and future construction will be instrumental in 
attenuating the growth of energy consumption and demand as well as the nation’s dependency on an un-
interrupted supply of fossil fuels. This constitutes the motivation for this research. 
The equipment and systems providing thermal comfort and indoor air quality for commercial buildings 
consume 42% of the total energy used in buildings. Energy use and utility cost can be reduced signifi-
cantly by increasing the efficiency of this equipment, by distributing thermal energy more efficiently and by 
more closely meeting the needs of building occupants. The energy efficiency of system components for 
heating, ventilating, and air-conditioning (HVAC) has improved considerably over the past 20 years. For 
example, shipment-weighted energy efficiency ratios of unitary air conditioners in the United States have 
increased by 54%.3 The average efficiency of centrifugal chillers improved by 36% and the efficiency of 
the best chillers increased by 50%.4 With similar improvements in the efficiencies of boilers, motors, fans, 
and pumps, outstanding opportunities exist for reducing energy use and cost in commercial sites. Yet, 
these opportunities depend on effective building operations: e.g., a building with coincident heating and 
cooling due to inferior control loop parameters wastes energy regardless of boiler and chiller efficiency. 
In contrast to energy conversion equipment, less improvement has been achieved in thermal energy dis-
tribution, storage and control systems in terms of energy efficiency and peak load reduction potential. Ad-
vancements are also needed to improve thermal storage systems, improve control systems and improve 
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systems integration from a whole building perspective while meeting occupant comfort and performance 
requirements.5 This research project is charged with developing those advancements. 
This project tackles the novel concept of combined optimal control of both “passive” building thermal 
capacitance and “active” thermal energy storage systems, e.g., chilled-water or ice storage systems, to 
minimize an objective function of choice including total energy consumption, energy cost, occupant dis-
comfort, or a combination of these. The controller will eventually be implemented in real-time in an actual 
commercial building. Instead of merely meeting instantaneous building cooling requirements, both active 
and passive storage inventories will be effectively harnessed in the framework of supervisory control: 

a) To exploit the performance benefits of cooler ambient conditions during nighttime for central chilled 
water plants, allowing for optimal scheduling of chillers, cooling towers, fans and pumps; 

b) To shape the next day’s cooling load profile by pre-cooling the building’s massive structure at night; 
c) To make best possible use of the cost savings potential offered by dynamic utility rate structures, 

including real-time pricing options that are offered by an increasing number of utilities. 
Several investigators have identified promising savings potentials when building operation has been opti-
mized in buildings without storage.6–9, 35 Moreover, recent analyses suggest significant performance mer-
its from either active10–18 or passive19–23 thermal storage inventory under optimal control. 
The combined use of both storage media under optimal control has been investigated for a 24-hour de-
terministic simulation study which revealed that significant operating cost savings (~18%) and electrical 
demand reduction can be achieved.24 Optimal building control proved most effective in dry climates with 
large diurnal temperature swings, in the presence of utility rates strongly encouraging load-shifting, and 
when cool storage systems allow more effective load-shifting than building pre-cooling alone. These re-
sults in conjunction with personal experience in optimal control applied to building systems,10–13, 25–27 en-
couraged me to develop this idea into a predictive supervisory controller suitable for implementation in 
commercial buildings with dynamic utility rates. 

1.2 Description of the Technology 
1.2.1 Summary Description of Technology 
Research and development of a predictive optimal controller for active and passive thermal storage in-
ventory and subsequent implementation in laboratory and field settings appears particularly attractive and 
promising. The project’s load management and optimization technology will more effectively account for 
complex electric rate structures resulting from the deregulation of utilities than traditional control heuris-
tics. In addition, the controller will unlock the potential of building thermal capacitance for the reduction of 
operating cost, electricity consumption and electricity demand. 
This approach will be built into a software package that will operate in conjunction with a building’s energy 
management and control system to optimize cooling and ventilation equipment operation under real-time 
pricing and conventional electricity rates. In the definition of this project report, ‘active’ denotes that ther-
mal storage systems, such as ice storage, require an additional fluid loop to charge and discharge the 
storage tank or to deliver cooling to the existing chilled water loop. Building thermal capacitance is ‘pas-
sive’ since it requires no additional heat exchange fluid in addition to the conditioned air stream. 

1.2.2 Constituent Elements of this Technology 

1.2.2.1 Active Thermal Storage Inventory 
Background – Thermal energy storage (TES) is an electrical load management and building equipment 
utilization strategy, which can reduce utility electricity demand and equipment first-costs. Typical applica-
tions of TES systems include medium-size to large office buildings, hotels, and retail stores. TES systems 
are designed to avoid high utility demand charges from cooling during the summer and level a building’s 
electrical demand profile. Electrical demand and time-of-use rates have been tailored to reflect the signifi-
cance of peak energy use periods. TES systems have gained acceptance to reduce peak electrical con-
sumption and installed chiller capacity. Compared to conventional HVAC systems, those designed with 
TES can provide colder supply water temperatures and permit innovative design on the airside of the 
cooling system achieving substantial capital and operating cost savings.42, 43 Moreover, TES systems are 
used to boost the capacity of gas turbines during hot weather by pre-cooling the inlet airflow. 
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The basic operating strategy of a TES system is to run electrical chillers during times of low electrical de-
mand and energy prices to charge a storage medium. Either ice is melted or a chilled-water tank is dis-
charged to provide cooling and reduce the use of mechanical cooling. Control of TES systems describes 
the process of shifting the cooling load from daytime to nighttime by charging and discharging storage. 
The ability of a TES system to remove heat is a function of several parameters such as the inventory, 
ambient conditions, and building load.28 If inappropriately designed, thermal storage systems may not be 
able to meet the building cooling load late in the day since only a reduced discharge rate can be achieved 
from a near empty storage tank.37–41 The knowledge of thermal storage system performance is crucial for 
successful design, installation, operation, and maintenance of TES systems.29, 30 
Experience with TES Systems – A field survey of 37 TES systems indicated that several are not reliably 
delivering the expected load shifting.31 Another cold storage field test study showed that the reliance on 
manual fine-tuning resulted in suboptimal performance for six out of the eight investigated chilled-water 
systems.32 Previous experience also shows that while TES systems save varying amounts of operating 
cost, they tend to consume more energy than a conventional system meeting all the loads by direct cool-
ing.33 Furthermore, field surveys of existing installations revealed several problems that contributed to the 
tarnished image of TES technology including poor system design, inadequate equipment selection and 
integration, and inappropriate commissioning procedures.  
Yet, the major obstacle that hinders the acceptance of TES technology is the lack of understanding 
among facility owners, HVAC designers and HVAC contractors of the proper operation and control that 
improve the cost-effectiveness of TES systems.31, 32, 34  
With no sophisticated control available, investments are ineffectively utilized and the full potential of cool 
storage is not exploited. As a result, cost savings of all TES systems combined are less than ideal and 
their cumulative energy consumption is higher than necessary. Consequently, a strong need exists for the 
development of an advanced controller for active thermal inventory addressing these shortcomings. 

1.2.2.2 Optimal Control of Active Thermal Storage Inventory 
Absence of Uncertainty – The principal investigator and co-investigators have carried out extensive re-
search in the field of advanced control for active TES systems. Driven by the need for a better under-
standing of the behavior of thermal energy storage systems, we developed a comprehensive simulation 
environment to evaluate a wide range of key parameters influencing the system's performance.10 This 
approach, part of a research project funded by the American Society of Heating, Refrigerating, and Air-
Conditioning Engineers (ASHRAE), allowed me to evaluate the full theoretical potential of TES systems in 
reducing operating cost.25 Within this environment, the optimal control strategy that minimizes the total 
electricity cost combining energy and demand charges was developed and validated. 
In addition to the rate of TES charging and discharging rate as the primary control variable, a set of plant 
parameters governs the operation of the HVAC equipment. These parameters include temperature set-
points such as the chilled water supply and supply air temperatures. These values are adjusted in a sepa-
rate optimization routine (plant optimization), which is embedded in the cost optimization so that the in-
stantaneous power consumption for the current set of external parameters is minimized.25 Only the simul-
taneous cost and plant optimization allow for an optimal control trajectory in which each charg-
ing/discharging control is associated with the minimal attainable cooling plant power consumption.  
Based on building cooling loads and weather data, the optimal control strategy properly accounts for the 
effects of all environmental variables including utility rate structure and cooling plant performance charac-
teristics. Existing control strategies were compared to this optimal strategy, and three of these conven-
tional strategies were modeled: chiller-priority, constant-proportion, and storage-priority control.10 
We found that under favorable conditions, such as strong utility load-shifting incentives or a small energy 
penalty for operating the chiller in icemaking mode, a TES system with conventional controls can indeed 
provide considerable cost savings of up to 20%. However, except for these conditions, only optimal con-
trol will yield cost savings. In fact, optimal control succeeded in reducing cost, even under the most ad-
verse conditions. Typically, optimal control saved 10–20% more energy cost than the conventional con-
trols. 
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Figure 1: Cost savings and energy consumption of optimal con-
trol as a function of the weighting factor w relative to a conven-

tional system without active storage inventory. 

Excess Energy Use – We also confirmed the reputation that TES systems consume more energy than 
central cooling systems without storage. A competitive central cooling system must be energy efficient. A 
major strength of optimal control comes into play here: by tailoring the objective function underlying the 
optimization, optimal control has the 
potential of making TES economically 
attractive and ecologically sound. 
The desire to save energy consump-
tion is simply expressed as an addi-
tional term in the objective function of 
the optimization. While beforehand 
only energy cost was minimized, the 
optimization environment now deter-
mines the optimum to an objective 
function that includes both operating 
cost [$] and energy consumption 
[kWh].12 Introducing a weighting factor 
w, the cost function can accommodate 
arbitrary impacts of the two compo-
nents of the cost function. Figure 1 
shows the results for a particular con-
figuration. By increasing the weighting 
factor, more emphasis is placed on operating cost, and optimal control yields higher operating cost sav-
ings, but at the price of increasing energy consumptions.  The performance shown is relative to the per-
formance of a conventional system. At w ≈ 0.70, optimal control obtains 20% cost savings without energy 
penalty. 
Presence of Uncertainty – During a subsequent investigation phase, we determined the extent of the 
merits of optimal control that can be retained when the optimal controller is subject to uncertainty in the 
external variables driving the physical process, such as future weather variables and cooling loads. 11 
The predictive optimal strategy is based on closed-loop optimization, i.e., an optimal storage charging and 
discharging strategy is developed at every time step over a marching planning horizon utilizing updated 
forecasts. The prediction of climate conditions, utility rates and cooling loads is updated at the beginning 
of each time step over the optimization period, and a new optimal strategy is computed.  Only the control 
action of the first hour is executed at each time step. Short horizons (≈21 hours) were found to be only 
marginally suboptimal relative to a strategy that is optimal over the entire simulation horizon (e.g., one 
month). Thus, there is no point in predicting further into the future than 24 hours. 

1.2.2.3 Dynamic Utility Rates 
Utilities have been experimenting with and implementing real-time pricing (RTP) of electrical energy. 
These electric rates vary hourly based upon the utility delivery cost of generation (or purchases from other 
utilities) and are transmitted electronically to the building through various methods; the two major ap-
proaches are (a) 24-hour-ahead pricing and (b) 1-hour-at-a-time rate signals.  For the first method, the 
utility must forecast its costs for the day and sometimes make multi-hour revisions. In the second method, 
hourly rates are transmitted at the beginning of each hour. In the latter case, a control system that at-
tempts to optimize the performance of a thermal storage system must create a forecast of the electricity 
rates for the day in order to determine appropriate charging and discharging of storage. 
There is ample evidence that customers respond to changing hourly prices, particularly very high prices.  
Georgia Power’s RTP program serves customers with an aggregated demand of 5,000 MW; these cus-
tomers have reduced load 400-750 MW on moderate- to high-priced days.  A subset of very responsive 
customers reduced load by 60% when prices exceeded $1.00/kWh.91  
Dynamic pricing can and has been implemented in a number of ways: pure hourly rates, spot prices or 
“super peak” prices that are limited to a small number of critical hours per year, and a variety of interrupti-
ble-load programs.92,93  For example, Southern California Edison’s I-6 interruptible rate is triggered by a 
reduction in capacity margin as signaled by the Independent System Operator; the rate assesses a very 
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substantial surcharge for power purchased during the designated hours, in return for reduced energy and 
demand charges during normal periods.   
More widespread use of rates such as these is considered to be an appropriate mechanism for amelio-
rating power crises such as the one in 2000 in California, which can be characterized by power shortages 
and near bankruptcy of the two largest investor-owned utilities.  Many retail customers pay a fixed amount 
for electricity and have no incentive to reduce load, while the two largest investor-owned utilities have 
been required to buy very expensive power from the wholesale spot market. Passing on market prices 
would give customers the economic signal to adopt control strategies such as optimal use of thermal 
storage systems and the thermal capacity of building materials.  As a further benefit, even modest reduc-
tion in load can substantially reduce spot prices, by a ratio as much as 10:1.94   
As communications and controls equipment becomes less expensive and more powerful, more regions of 
the country will introduce variable rates. Today, interruptible load programs have been implemented by 
the PJM Interconnection, the ISO New England, and such utilities as Portland General Electric, GPU En-
ergy, and Wisconsin Electric.94 
We compared the predictive optimal controller to three conventional control heuristics. In the presence of 
complex rate structures, the optimal controller was found to have a vast performance benefit (saving 
40%) over conventional controls while requiring only simple predictors.11 Interestingly, these general find-
ings did not change when there was considerable model mismatch, i.e., uncertainty with respect to the 
behavior of the actual cooling plant. Recent investigations regarding forecasting uncertainty determined 
that this controller is robust and does not require high accuracy in predicting loads and utility rates.13 
In summary, dynamic rate structures including RTP could make thermal energy storage systems more 
economically attractive while TES systems may increase the applicability of dynamic rates. We employ 
both the active and passive thermal storage capacity of a commercial building under optimal supervisory 
control using dynamic utility rates. Our past work serves as the foundation for the predictive optimal con-
trol of the active thermal storage inventory and will be united with the predictive optimal control of the pas-
sive thermal storage inventory described in the next section. 

1.2.2.4 Passive Thermal Storage Inventory 
Background – Building zone conditions are usually controlled to maintain constant temperature humidity 
setpoints that ensure acceptable comfort during occupancy. When unoccupied, the building energy 
equipment is turned off and the zone temperature is allowed to float. This strategy is coined night setup 
control. However, in many commercial buildings, building structural mass embodies a substantial thermal 
storage medium that can be harnessed to reduce operating costs. 
Modeling Results – Several simulation studies have shown that proper pre-cooling and discharge of 
building thermal storage inventory can attain considerable reductions of operating costs in buildings. 
These savings result from both utility rate incentives (time-of-use and demand charges) and improve-
ments in operating efficiency due to nighttime free cooling and improved chiller performance (lower ambi-
ent temperatures and more even loading). Ranges of 10% to 50% in energy cost savings and 10% to 
35% in peak power reductions over night setup control were documented in a comprehensive simulation 
study.19 The savings were highest when cool ambient temperatures allowed for free cooling. Other mod-
eling studies yielded similar results.21–22, 44–47 Common to these studies is that the level of savings and the 
superior control strategy strongly depend on the investigated HVAC system and on the climate. 
Experimental Results – Two experiments on building pre-cooling were conducted on an office building in 
Florida without optimizing the storage.49 An experimental facility at the National Institute of Standards and 
Technology (NIST) was used to study the use of building thermal mass to shift cooling load.48 Several 
heuristic strategies were evaluated in the facility that was designed to represent a zone in a common 
commercial office building. A more recent set of experiments performed at NIST validated the potential for 
load shifting and peak cooling load reduction associated with optimal control.21 Here, a model of the test 
facility was developed and validated that included detailed models of the building structure, cooling sys-
tem, and human comfort. Optimization techniques were applied to the simulation model to determine con-
trol strategies used in the two separate tests. The first control strategy was designed to minimize total en-
ergy costs and resulted in the shifting of 51% of the total cooling load to the off peak hours. The second 
control strategy was designed to minimize the peak electrical demand and resulted in a 40% reduction in 
peak cooling load. Thermal comfort was maintained throughout both experiments. 
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Optimal Control of Passive Thermal Storage Inventory – A simplified method was developed based 
on simulation that defines the optimal zone temperature setpoints to minimize daily energy costs over a 
24-hour period and subsequently reduced this problem to the determination of only two variables.22 Cal-
culation of the energy costs did not include utility demand charges. Thus, dynamic utility rates, which typi-
cally only have an energy cost component, are covered. The simplified method compared favorably with a 
more detailed benchmark approach21 that involves the optimization of 24 variables for each zone (the 
zone temperatures for each hour of the day). The simplified procedure provides a global optimum for any 
application and will be investigated for use as an on-line, adaptive algorithm for controlling building ther-
mal storage under dynamic utility rates. Energy cost savings between 22% and 42% were achieved de-
pendent on the average ambient temperature; higher fractional savings can be achieved with pre-cooling 
on cooler days. 

1.2.3 Expected Merits of Research Activities 
The investigated technology addresses need for improved thermal storage systems, improved control 
systems, reduced system auxiliary and parasitic energy use as well as improved whole building systems 
integration.5 Specifically, the expected merits of the technology are 

1. Energy and carbon emission savings: Improved system efficiency will reduce energy con-
sumption in commercial buildings and the associated carbon emissions. The operation of the 
building energy systems will be orchestrated to minimize their aggregate power consumption and 
thereby reduce parasitic and auxiliary energy use. Assuming only 15% overall efficiency im-
provement, a primary energy consumption reduction of 0.113 quads will be attained for the fol-
lowing equipment: electrical chillers, supply, return, condenser, and cooling tower fans as well as 
chilled and condenser water pumps.2 The corresponding cut in carbon emissions is substantial: 
0.113 quads • 15.67 kgC/MMBtu = 1.77 million metric tons of carbon per year. 

2. Superior cost savings for the building owner: Utility cost savings will be vastly superior to ex-
isting control strategies. Based on a total electricity bill of $60 billion/a, the annual dollar savings 
may be estimated to be proportional to the energy savings: 0.113/9.65 • $60 billion = $700 mil-
lion.1 

3. Attractive market potential: According to a recent study on the market potential of optimization 
systems for active building storage inventory, economical application of this technology can be 
assumed for large commercial buildings as long as the incremental capital cost is kept below 
$0.10/ft2 and the corresponding incremental operation and maintenance cost below $0.05/ft2/a.50  

4. Utility deregulation: Dynamic pricing models such as real-time pricing can easily be accom-
modated, and savings from optimal control will exceed those from conventional control strategies 
by an even larger margin since the latter are designed for conventional time-of-use rate struc-
tures. Optimal control inherently makes best possible use of whatever load-shifting incentive may 
exist. Consequently, utility deregulation is an outstanding opportunity for operating cost savings.  

5. Customizable operational strategy: Energy savings can be facilitated concurrently with utility 
cost savings by properly designing the optimization objective function. In fact, the combined ther-
mal storage inventory can be controlled to exclusively minimize building energy use. 

The scientific task tackled is one of stochastic optimization—caused by the uncertain nature of future cli-
mate conditions, thermal loads, non-cooling electricity consumption and system performance—applied to 
the control of commercial buildings. We believe that this approach holds the promise of innovation in the 
domain of building automation and offers answers to problems associated with the control of building 
thermal storage. 

2 Experimental  
2.1 Work Plan Overview 
Our research plan is divided into three consecutive phases: Phase I covered a 14-month budget period, 
while Phases II and III will extend over 10 and 9 months, respectively. Total project duration is 33 months. 
Based on a project start date of September 20, 2001, the project will be completed by the end of June 
2004. This final report documents the work accomplished in the context of Phase I. 
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Phase I was applied research (Technology Maturation Stage 2) and confirmed the conceptual approach 
of the technology through analysis, modeling, and simulation, while Phase II is exploratory develop-
ment (Technology Maturation Stage 3) and involves laboratory testing. Phase III is advanced develop-
ment (Technology Maturation Stage 4) and will identify one suitable site for field-testing. This site will be 
equipped with the necessary instrumentation and controls equipment. During the cooling season of Phase 
III, the predictive optimal controller will be used to govern the operation of the air-handling units and 
chilled water plants of the selected site. The performance will be compared to basecase control strategies 
by alternating between optimal and conventional control periodically. 

Phase I:
Analysis, Modeling, 
and Simulation (14 months)

Phase II:
Laboratory
Testing (10 months)

Phase III:
Implementation
in Field Setting (9 mts.)

 

Pending the successful completion of the three research phases and industry demand, we expect that the 
prototype will be turned into a tangible commercial product by subsequent engineering development. 

2.2 Phase I: Analysis, Modeling, and Simulation 
In Phase I, individual 
models were developed 
for the building struc-
ture’s thermal response, 
the building energy 
equipment including the 
active TES systems, 
and human thermal 
comfort. We integrated 
these models into a 
simulation environment 
that allows for the sys-
tematic analysis of op-
timal and conventional 
control strategies with 
respect to energy consumption and demand, electrical utility cost, and comfort. Figure 2 illustrates the 
interaction of the model components. 

Optimal ControllerPlant Model

Building Model

Comfort Model

Weather

Gains/Occupancy

Construction

HVAC Equipment

Utility Rates

Equipment Schedule Comfort

Cost

Energy

Input Parameters

Simulation Environment Results

 
Figure 2: Block diagram of components developed in Phase I 

2.3 Task 1: Building Dynamic Thermal Response Model 
Task Purpose: The first task in the simulation phase entailed the development of a building model that 
effectively models the dynamic response of a commercial building. Based on a typical floor plan, the 
hourly cooling and heating (sensible) loads for the chosen facility are determined using the heat balance 
approach for a given location and weather region. The heat balance method allows for the instantaneous 
sensible heating and/or cooling load to be determined on the space air mass. To formulate heat balance 
equations, a space within the building is considered enclosed by surfaces (walls, floors, windows, and 
ceiling). Assuming each of the surfaces to be at a uniform temperature for a given time, the heat flow into 
the surface is balanced by the conductive flux leaving the surface to penetrate the solid.51 Transient 
conduction in the multi-layered walls is determined by the transfer function method using a time history of 
air temperatures and heat fluxes.52 
Task Summary: EnergyPlus modules for the calculation of building heating and cooling loads have been 
evaluated and tested. Figure 3 shows a flow chart of the EnergyPlus modules for estimating building 
dynamic thermal response. A sensitivity analysis was carried out to determine the effect of the time step 
on the accuracy and the CPU time for calculating the building loads. Figure 4 shows the results of the 
sensitivity analysis. A linearly proportional relationship was found. The time step will remain an adjustable 
variable to allow for the greatest flexibility in developing the optimal controller. This task is considered to 
be complete. 
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Figure 3: Flow Chart of EnergyPlus for Calculating Building Heating/Cooling Loads 
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Figure 4: Effect of Time Step on Accuracy and CPU time for Calculating Building Loads 

2.4 Task 2: Building Energy Systems Model 
Task Purpose: A steady-state building energy systems model (plant model) will be developed to evalu-
ate optimal control of active and passive thermal storage inventory. The model will calculate the power 
consumption of the air-handling units, chiller, cooling tower, pumps, and fans under an arbitrarily variable 
range of operating conditions. Given external parameters, the model will implicitly calculate the total in-
stantaneous power consumption of all affected building energy systems. Embedded in the optimal control 
routine, the sequence of control variables that minimizes the objective function can be found. A similar 
approach has been successfully developed and applied to the evaluation of ice storage control strate-
gies.1,11 Routines and algorithms adapted from the BLAST and DOE-2 energy modeling programs and 
their successor EnergyPlus are employed.95 Ice storage and chilled-water system models will be inte-
grated in the simulation environment. 
Task Summary: EnergyPlus has been selected as the development environment for this project. Unlike 
simulation tools such as DOE-2 and BLAST, EnergyPlus uses a “nested” approach in which the secon-
dary systems performance is allowed to affect the generation of zone loads. Though more realistic, this 
nested approach makes it harder to develop linear sequential code to suit the project tasks at hand. The 
development of two Ice Thermal Energy Storage System modules for EnergyPlus is finished. A Utility 
Cost module for time-of-use electrical utility rates has been successfully developed and is used in the 
optimization analyses. 

2.4.1 Development of Ice Thermal Energy Storage System Modules for EnergyPlus 
A thermal energy storage (TES) plant model has been developed for EnergyPlus based on the steady-
state plant model of King and Potter (1998)98. Their model was designed to meet the building cooling load 
directly and was used in evaluating optimal control of ice thermal energy storage systems. The TES 
model was developed as a complete system consisting of air-handling unit, chiller, pump, and cooling 
tower. However, the model cannot be directly used for EnergyPlus due to the optimal control methodology 
employed and the air-handling unit system which is already contained in EnergyPlus. The purpose of the 
newly developed TES plant model is to work as one of EnergyPlus plant equipment modules within its 
environment and to accommodate the entire continuum of states-of charge/discharge rate given user in-
put data of charging/discharging rate and chiller outlet water temperature. 
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2.4.1.1 Methodology of ice thermal energy storage plant 
Figure 5 describes the connection of EnergyPlus with the TES and other existing plant models in the En-
ergyPlus environment. The PlantLoopSupplySideManager calculates the demand on the plant loop, se-
lects the equipment that is available to meet the demand based on the plant operation scheme, and calls 
the equipment simulation modules to operate each piece of equipment on the loop. The main subroutine 
ManagePlantSupplySides in PlantLoopSupplySideManager is the driver routine for the plant equipment 
simulation.  Its main function is to determine which pieces of plant equipment are operating and to call the 
appropriate equipment simulation managers. Then, each element of plant equipment is simulated with the 
priority set by a user-defined building load range. After each plant simulation is completed, the loop prop-
erties such as mass flow rate, inlet water and outlet water temperatures are reported as node properties 
in EnergyPlus. 
When modeling the TES plant, the additional icemaking equipment such as chiller, pump, and cooling 
tower are integrated into the TES model. Due to the plant loop definition of EnergyPlus, it is difficult to 
create additional plant loops in EnergyPlus. However, a dedicated chiller that only makes ice for the TES 
is commonly used. When TES is selected for the operating plant, the plant operates under one of three 
modes depending on the input data for u, the charging/discharging rate. The initial state-of-charge x of 
the thermal energy storage tank is set to 0. The detailed calculation procedure for the TES plant model 
can be found in King and Potter (1998)98. 
 

1. Dormant process: u is zero (0) value 
2. Charging process: u is positive (+) value  
3. Discharging process: u is negative (-) value 
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Figure 5: Flow Chart for the Implementation of the Ice Thermal Storage Model in EnergyPlus 
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Dormant process 
When the u value is 0 in the hourly schedule, the TES plant provides the property of water such that TES 
mass flow rate is 0, and the outlet water temperature is the same as the inlet water temperature. There is 
no capacity available to handle building cooling load and to make ice for TES plant. 
 
Charging process 
During charging, the dedicated chiller integrated into the TES model produces ice at a rate of u (+), pro-
vided sufficient chiller ice-making capacity is available. In this case, the cooling capacity delivered to En-
ergyPlus is set to 0, and x is increased according to Eq. (1). Only when the charge rate u can be physi-
cally realized, i.e., given sufficient capacity, will the storage level increase. 

  (1) 
   : current charging level

: previous charging level
   : simulation time interval [ ] 

t t t

t

t t

x u t x
x
x

t fraction of  hour

−∆

−∆

= ∆ +

∆
Similar to the dormant process, the TES mass flow rate is 0, and the outlet water temperature is the same 
as the inlet water temperature inside of EnergyPlus. However, inside of the TES model, the chiller inlet 
water temperature is calculated with the chiller outlet water temperature provided in an hourly schedule. 
Once the inlet water temperature is calculated given the icemaking load and outlet water temperature, the 
electricity consumption of the icemaking equipment is calculated. 
  
Discharging process 
The TES plant provides cooling capacity to meet the cooling demand on the supply side in EnergyPlus 
based on the discharge rate u (-) rate provided in an hourly schedule. The mass flow rate through TES is 
calculated using the TES cooling load and the temperature difference between inlet water temperature 
and supply loop water setpoint temperature in Eq. 2. Outlet water is provided at the supply loop water 
outlet setpoint temperature. The ice level of TES plant is also calculated with Eq. (1). 
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,
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2.4.1.2 Module Modifications 
In order to implement the TES model, three modules are modified, Energy+.idd, DataPlant.f90, and 
PlantLoopSupplySideManager.f90, as well as the new module for TES plant modeling, PlantIceThermal-
Storage.f90, is added to EnergyPlus. The added or modified section can be found with “! by PI” keyword. 
Energy+.idd 
These can be placed under the group of Plant-Condenser Equipment section. 

ICESTORAGE:REFINED, 
      \memo Chiller Model is from King and Potter 
  A1, \field ITS Name 
  A2, \field ITS Type 
      \type choice 
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      \key IOC Internal 
      \key IOC External 
      \key Ice Harvester 
  A3, \field ITS Urate Schedule 
      \type object-list 
      \object-list ScheduleNames 
  N1, \field ITS Capacity 
      \units W_hour 
      \type real 
  A4, \field Plant_Loop_Inlet_Node 
  A5, \field Plant_Loop_Outlet_Node 
  A6, \field ITSChiller Type 
      \type choice 
      \key Centrifugal 
      \key Reciprocating 
      \key Screw 
  A7, \field ITSChillerOutletTemp Schedule 
      \type object-list 
      \object-list ScheduleNames 
  N2, \field ITSChiller Nominal Capacity 
      \units W 
      \type real 
  N3, \field ITSChillerNom OutletWaterTemp 
      \units degF 
      \type real 
  N4, \field ITSChillerNom InletWaterTemp 
      \units degF 
      \type real 
  N5, \field ITSPumpNom HeadLoss 
      \type real 
  N6; \field ITSPump Efficiency 
      \units fraction 
      \type real 

 
DataPlant.f90 
The added variables are specified for status information of TES plant in EnergyPlus such as simulation 
state and equipment location within all supply side plants.  

TYPE ITSSetCapData 
  LOGICAL :: ITSFlag = .FALSE. 
  INTEGER :: LoopNum 
  INTEGER :: BranchNum 
  INTEGER :: CompNum 
END TYPE ITSSetCapData 
TYPE (ITSSetCapData) :: ITSSetCap 
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PlantLoopSupplySideManager.f90 
Using the additional variables listed in DataPlant.f90, the capacity of the TES plant is calculated at each 
hour or timestep in EnergyPlus, unlike other plant equipment whose capacities are assigned only once. 
The capacity needs to be recalculated when the TES plant is called in EnergyPlus because the TES plant 
is subject to variable charge/discharge rates u and the chilled water outlet temperature profile changes 
according to an hourly schedule. 
 
PlantIceThermalStorage.f90 
The algorithm for implementing TES plant is explained briefly above. King and Potter (1998)98 and the 
comments in the source code of PlantIceThermalStorage.f90 provide a more detailed description of the 
plant. 
 
Input and Output  
Input data 
Most input data for defining the TES plant is similar to other plant equipment in EnergyPlus. The perform-
ance coefficients for TES and integrated chiller are already built into the TES plant module. Three com-
mon kinds of ice-based TES and chiller types can be selected by user. All information should be entered 
in SI units. 
 
Output results 
Ice level and u rate in all processes 
 Ice Thermal Storage Starting Fraction [fraction]  

Ice level of TES plant at the beginning of the hour or simulation time. 
 Ice Thermal Storage Dis(-)/Charge(+) U Input Hour [fraction] 

Repeated input value of u rate in schedule profile. 
 Ice Thermal Storage Dis(-)/Charge(+) U Current Hour [fraction] 

Calculating suitable u rate based on input u and TES and chiller capacities [fraction]. 
TES information in discharging process 
 Ice Thermal Storage ITS Water mass flow rate [kg/s] 
 Ice Thermal Storage ITS Water Inlet Temp [°C] 
 Ice Thermal Storage ITS Water Outlet Temp [°C] 
 Ice Thermal Storage ITS Cooling Rate [W] 
 Ice Thermal Storage ITS Cooling Energy [J] 

 
Built-in plant equipment in TES plant in charging mode 
 Ice Thermal Storage CHILLER Water mass flow rate [kg/s] 
 Ice Thermal Storage CHILLER Water Inlet Temp [°C] 

Chilled water inlet temperature from TES to built-in chiller. 
 Ice Thermal Storage CHILLER Water Outlet Temp [°C] 

Chilled water outlet temperature in hourly schedule from chiller to TES.  
 Ice Thermal Storage CHILLER Pump Power [W] 
 Ice Thermal Storage CHILLER Chiller Power [W] 
 Ice Thermal Storage CHILLER Tower Power [W] 
 Ice Thermal Storage CHILLER Total Power [W] 
 Ice Thermal Storage CHILLER Total Power Consumption [J] 

Total energy consumption for built-in TES equipment (chiller, pump, and cooling tower)  
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2.4.2 Development of a Utility Cost Module for EnergyPlus 
To be able to calculate the operating cost of the HVAC system, a utility cost calculation module was de-
veloped and implemented in EnergyPlus. This module computes the electricity consumption of the whole 
building and the total HVAC system electricity use, and a time-of-use (TOU) utility rate is applied. This 
section provides a description and summarizes the functionality of the new utility cost module added into 
EnergyPlus, explains how to use the new module and where to find the results. 

2.4.2.1 Methodology and module organization 
The utility cost module summarizes the electricity consumption of all the components in the simulation 
including cooling and non-cooling loads by tracking the hourly meter values provided by EnergyPlus. The 
total cost of operation includes both energy and demand portions. A new object called Utility is set up to 
input the hourly energy and demand rates. The hourly value of the energy charge is calculated by multi-
plying the hourly electricity consumption with the corresponding energy rate, and then at the end of the 
simulation, the total energy cost is the sum of the hourly energy charges. For the demand charge portion, 
the maximum demand charge in each rate period (on-peak, mid-peak, off-peak …) is tracked, multiplied 
by the corresponding rate, and stored in an array. At the end of the simulation, the sum of the array ele-
ments is the total demand charge. But we have to consider that the simulation period is usually not one 
month, and the demand charge is a monthly charge. Thus, we may want to apply a runtime factor, which 
may be the ratio of the number of hours in the simulation divided by the average number of hours in a 
month, i.e., 8760/12 = 730 hours. This ensures that the demand charge is reasonable for any simulation 
period. The procedures of the calculation are summarized in the following formulas: 

Hourly energy charge: 

,energy i energyC r= E

P

 

Where: 

energyr  is the energy rate [$/kWh] 

E  is the electricity consumption [kWh] 

Total energy charge: 

, ,
1

n

energy sum energy i
i

C C
=

=∑  

n is the number of total simulation hours 

Demand charge of certain time period 

, , 1 2max( , .... )demand i demand i mC r P P=  

where: 

iP  is the electricity demand at certain hour [kW] 

,demand ir  is the demand rate in this time period 
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Total demand charge for the runtime period 

, ,
1

( )
n

demand sum RT demand i
i

C f C
=

= ∑  

where, fRT is the runtime factor 

Number of hours in simulation 
730 (average hours in one month)RTf =  

Total cost of the operation cost 

, ,total energy sum demand sumC C C= +  

2.4.2.2 Module organization 

New object: 

Utility: 

  A1, \Utilityname 
  A2, \Name of EnergyRateSchedule 
  A3, \Name of DemandRateSchedule 

New module: 

UtilityCost.f90 

It has the following functionalities: 

1. This module reads the object Utility from the input file. 
2. Identifies the hourly energy and demand rates by reading the value from the corresponding schedule.  
3. Calculates the energy cost for each hour. 
4. Sets up an array to store the maximum demand charge for each utility rate period, which is used later 

to determine the final demand charge. 
5. Updates the sum of hourly energy costs, which will be the final value of the energy cost portion of the 

total cost at the end of simulation. 
6. Update the sum of array of demand charges, which will be the final value of the demand cost portion 

of the total cost at the end of simulation. 
 

Modified Modules: 

Three modules were modified, but the integrity of EnergyPlus is not changed. And these modifications 
can be kept with updates of EnergyPlus itself since all modifications are marked with “! Added by Simeng 
Liu”. 

a. DataGlobals.f90 

Additional variables are declared which are called: 

TotalElecCurrentHour  
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The total electricity consumption hourly, including cooling portion and non-cooling portion, [J]  

BldgElecCurrentHour  

The hourly non-cooling electricity consumption [J]  

CoolingElecCurrentHour 

The hourly cooling electricity consumption [J] 

OutputFileEconomic  

Unit number for economic file, which summarizes the hourly cost 

FirstHour 

Logical variable which is set true which the simulation is in first hour, used by initialization of the demand 
charge array 

TotalEnergyCostSum 

The total (not hourly) energy cost portion for the whole building and HVAC system, including cooling and 
non-cooling portion components [$] 

CoolingEnergyCostSum 

The total (not hourly) energy cost portion for the HVAC system [$] 

NonCoolingEnergyCostSum 

The total (NOT hourly) energy cost portion for the non-cooling portion [$] 

TotalDemandCost 

The total demand cost [$] 

Money 

The total cost of the simulation, which equals the sum of TotalEnergyCostSum and TotalDemandCost 

b. OutputProcessor.f90 

Modification is made in the subroutine UpdateMeters, where the meter values are tracked hourly, and the 
UtilityCost function is called. 

c. SimulationManager.f90 

Modifications are made in the subroutine OpenOutputFiles and CloseOutputFiles, to open and close 
the output files, and specify the format of the results. 

2.4.2.3 Input and Output 

To use the utility cost module with EnergyPlus, a new Energy+.idd file is required which includes the defi-
nition of the new object Utility. The input file should have a Utility object, which includes the name of the 
Utility object and one schedule for the energy rate, the other schedule for the demand rate. The users 
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have the flexibility to define the rate structures hour by hour, week by week and month by month. Holi-
days and other special occasions can be reflected as well. 

The result of the economic calculation is summarized in an output file with the extension *.eco, which in-
cludes the detailed report of the energy cost portion and the final values for demand cost, energy cost 
and total cost. The final values is also available in the standard EnergyPlus output file *.eso. 

The new module and the modified modules are included with the new IDD file. One can compile them 
with the other modules of EnergyPlus, and run in the CVF (Compaq Visual Fortran) environment, or use 
the new executable file *.exe to replace the old one in the EnergyPlus directory, by running it with new 
IDD file.  

Note: If you run the new EXE file, the *.eco report file will always be generated in the directory of Energy-
Plus, but not where the input file (IDF file) located. 

2.4.2.4 Validation of Utility Cost module 
1. Validation 

Validation of the economic module is completed by comparing EnergyPlus output with MS Excel cal-
culations. Different cases were studied to validate the accuracy of the model.  
 
a) Basecase 

The basecase used during the validation is as follows: 
Runtime Period = June 28 (one day); 
Time Step = 1 hour; 
On-peak hours = 9:00-18:00, the rests are off-peak hours; 
On-peak energy rate = 0.12 $/kWh, off-peak 0.05 $/kWh; 
On-peak demand rate = 20 $/kW, off-peak 5 $/kW; 
Meter report frequency = Hourly; 
 

b) Run period: Three run period were studied, i.e., June 28 (one day), June 22 to June 28 (one 
week), June 1 to 30 (one month). The results are summarized in the table below. Table 1 shows 
that the utility cost module and MS Excel give the same outputs. 

Table 1: Summary of Runtime Period Comparison 

EXCEL Output Eco. Model Output EXCEL Output Eco. Model Output EXCEL Output Eco. Model Output
Total Energy Cost ($) 625.703 625.703 145.158 145.158 23.517 23.51704
Total Demand Cost ($) 383.606 383.606 89.219 89.219 12.734 12.73424
Total Elec. Cost ($) 1009.309 1009.309 234.377 234.377 36.251 36.25128

One Month Period One Week Period One Day Period

 
 

c) Time steps: Two time steps were studied, 1 hour, and 10 min. The results are summarized in Ta-
ble 2 below. 

Table 2: Summary of Timestep Comparison 

EXCEL Output Eco. Model Output EXCEL Output Eco. Model Output
Total Energy Cost ($) 23.517 23.520 23.554 23.550
Total Demand Cost ($) 12.734 12.730 12.750 12.750
Total Elec. Cost ($) 36.251 36.250 36.303 36.300

One Hour TimeStep 10 Min TimeStep

 
Table 2 shows again that the utility cost module and MS Excel computes the same results. The 
difference of output between one hour time step and 10 min time step is caused by EnergyPlus 
convergence. 
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Another issue related to the timestep is the choice of meter reporting frequency to be per time 
step instead of per hour. The utility cost module gives slightly different results as shown in Table 
3, which is due to floating point performance. 

Table 3: Summary of Meter Report Frequency Comparison 

Meter Report Hourly Meter Report per TimeStep
Total Energy Cost ($) 23.550 23.55421
Total Demand Cost ($) 12.750 12.7495
Total Elec. Cost ($) 36.300 36.30372

Eco. Model Output (10 min Timestep)

 
 

d) Rate structure  
Since the effect of energy rate structure is straightforward, the effect of demand rate structure is 
studied. A flat demand rate of 5$/kW is used to test the model. Table 4 shows that the output 
from the utility cost module matches that from Excel very well. 

Table 4: Summary of Demand Rate Structure Comparison 

EXCEL Output Eco. Model Output EXCEL Output Eco. Model Output
Total Energy Cost ($) 23.517 23.520 23.517 23.517
Total Demand Cost ($) 12.734 12.730 2.557 2.557
Total Elec. Cost ($) 36.251 36.250 26.074 26.074

Base Case Demand Rate Flat Demand Rate

 
 
2. Conclusions 

By comparing the output of the utility cost module and that of MS Excel, it is safe to say that the utility 
cost module gives the intended results according to the numerical model of utility calculation. The util-
ity cost module represents the utility cost calculations accurately. 

 

2.5 Task 3: Building Thermal Comfort Model 
Task Purpose: Comfort-based control instead of thermostatic control will investigated. The use of com-
fort-based control, though uncommon in practice, has been investigated and documented.71–74 Comfort 
indices will be calculated from predicted mean vote (PMV) correlations developed by Fanger (1972).70 
The inputs to the comfort model will be air temperature, relative humidity, mean radiant temperature, oc-
cupant activity level, and occupant clothing. When the building control is expressed as a zone PMV set-
point, the zone temperature setpoints are adjusted to produce a desired PMV value for the space. Sim-
pler, alternative comfort indices will also be investigated.83 

Task Summary: Three comfort models (Fanger, Pierce, and KSU) have been evaluated using Energy-
Plus. The predictions of EnergyPlus are generally in good agreement with calculated and measured re-
sults reported in the literature for three thermal comfort models. The use of the Fanger model is recom-
mended since it is most commonly used for assessing thermal comfort within buildings. 
Task Details: Analysis of EnergyPlus Thermal Comfort Module 
The thermal comfort module for EnergyPlus is based on three comfort models (Fanger, Pierce, and KSU). 
Selected results are presented in the following sections to compare the predictions of EnergyPlus with 
those reported in the literature.  
 

2.5.1 Results for Fanger Model 
First, the predictions of the Fanger model as implemented in EnergyPlus are compared with published 
results from Fanger (1972).70 The results of the comparative analysis are summarized in Table 5. The 
results indicate that the predictions from EnergyPlus module are very close to those provided by Fanger 
(1972) with an average error of 3%. 
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Table 5: Comparison between Predictions of EnergyPlus Fanger Module and Results by Fanger (1972) 

PMV PMV_fanger error = PMV - 
PMV fanger PMV PMV_fanger error = PMV - 

PMV fanger PMV PMV_fanger error = PMV - 
PMV fanger

26 -1.6 -1.62 0.02 -2.34 -2.34 0.00 -3.50 - -
28 -0.39 -0.42 0.03 -1.00 -1.05 0.05 -1.87 - -
30 0.75 0.68 0.07 0.34 0.26 0.08 -0.23 - -
24 -0.73 -0.73 0.00 -1.10 -1.10 0.00 -1.53 -1.53 0.00
26 0.00 -0.01 0.01 -0.28 -0.31 0.03 -0.63 -0.66 0.03
28 0.76 0.72 0.04 0.54 0.49 0.05 0.28 0.23 0.05
22 -0.33 -0.33 0.00 -0.54 -0.55 0.01 -0.78 -0.80 0.02
24 0.22 0.20 0.02 0.04 0.02 0.02 -0.16 -0.18 0.02
26 0.77 0.75 0.02 0.63 0.60 0.03 0.47 0.44 0.03

0

0.5

1

FANGER MODEL COMPARISION TABLE Met = 1, Tr = Ta, 50% RH

Clothing 
(clo) Ta (C)

Vel = 0.1m/s Vel = 0.2 m/s Vel = 0.4 m/s

 
 

2.5.2 Results for Pierce Model 
Figure 6 compares the calculations of the PMVET (i.e., Predicted Mean Value under Effective Tempera-
ture as defined in the Pierce model) performed by EnergyPlus module and those reported in Gagge et al. 
(1997).96 The results of Figure 6 show that the PMVET calculated by EnergyPlus are nearly identical to 
those reported by Gagge et al. (1997). Good agreement between the calculations of EnergyPlus and re-
ported results by Gagge et al. (1997) for DISC values are illustrated in Figure 7. 
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Figure 6: Comparison of predictions of EnergyPlus Pierce module and those reported by Gagge et al. 
(1997) for PMVET values. 
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Figure 7: Comparison of the predictions of the EnergyPlus Pierce module and those reported by Gagge et 

al. (1997) for DISC values. 
 

2.5.3 Results for KSU Model 
The results of a comparative analysis between EnergyPlus predictions and laboratory measured data 
(Berglund, 1978)97 and calculation by a program developed by Gagge et al. (1997) for Thermal Sensation 
Prediction values showed that EnergyPlus accurately calculates KSU Thermal Sensation Prediction for 
cold conditions. However, EnergyPlus predicts about 0.5-0.7 vote higher than the result for warmer condi-
tions. However, the difference between EnergyPlus predictions and reported results by Gagge et al. 
(1997) is still within an acceptable range. 

2.6 Task 4: Model Integration 
Task Purpose: Once all of the necessary models for building thermal response, energy systems, and 
human comfort had been created, they were integrated into a comprehensive simulation environment. 
Figure 8 depicts the interaction of the components. 
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Figure 8: Flow of information within the simulation environment 

For each considered point in the optimization space, the optimal controller generates the zone setpoints 
for the building model and the charge/discharge rates for the active TES system in the plant model. The 
building model uses its control input in conjunction with ambient weather conditions to calculate the sensi-
ble and latent cooling requirement. Subsequently, the zone cooling loads are used by the plant model to 
calculate the total cooling related power consumption, which is required to maintain the zone setpoints. 
The plant optimization subroutine determines those plant parameters that minimize the instantaneous 
power consumption for the given cooling load, weather condition, TES state-of-charge and charge/dis-
charge rate. The comfort model uses the zone conditions to ascertain occupant comfort based on the 
PMV scale. 
Task Summary: The integration rests on the EnergyPlus program architecture and is complete, including 
the availability of the ice-based and idealized TES modules. 
 

2.6.1 Analysis of EnergyPlus Convergence  
As part of the integration of an optimization routine within EnergyPlus, it was found that the cooling loads 
and indoor temperatures fluctuate significantly depending on the time step and the initial conditions (de-
termined by a 3-day “warm-up” period). A simple test was then performed to determine the cooling load 
predictions of EnergyPlus for a sample input file (i.e., a 3-zone low-rise building as indicated in Figure 9) 
as a function of the time step during a large sequence of identical days. For each day of the sequence 
both the indoor and outdoor conditions are maintained identical.  
Figure 10 shows the predictions of EnergyPlus for six time steps (ranging from 1 hour to 10 minutes). It is 
clear that EnergyPlus does not provide consistent predictions when using a simulation timestep of 20 
minutes. The reason for this problem is not apparent at this point. It is hoped the developers of Energy-
Plus can help solve this problem. Even for the other timesteps, the same conditions do not lead to identi-
cal cooling loads. These prediction problems are attributed to the convergence criteria and the warm-up 
period of EnergyPlus. 
Stricter convergence criteria for cooling loads and peak cooling loads as well as longer warm-up periods 
were implemented in EnergyPlus in an attempt to obtain more consistent cooling load predictions from 
EnergyPlus. Figure 11 illustrates the impact of the stricter convergence criteria on the predictions of En-
ergyPlus using a time step of one-hour using the same building used in Figure 9. The additional conver-
gence criteria appear to improve the prediction consistency of EnergyPlus. 
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Figure 9: 3-zone building with slab-on-grade floor foundation. 
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Figure 10: Predictions of EnergyPlus for cooling loads for a sequence of identical days using various time 
steps.  
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Figure 11: Impact of stricter convergence criteria on the predictions of EnergyPlus for cooling loads for a 
sequence of identical days using one-hour time step.  
 
2.6.2 Analysis of Integration of Optimization Modules within EnergyPlus   
Using a 3-zone low-rise building as sketched in Figure 9, testing of an optimization module incorporated 
within EnergyPlus has been carried out. The building structure is medium thermal mass with about 60 
lb/ft2. The optimizer module is extracted from the IMSL library and is based on the Nelder-Mead Simplex 
method. The optimization module in EnergyPlus is used to determine the optimal precooling strategies 
that minimize a well defined cost function under various rate structures. Three rate structures, with vary-
ing degree of load shifting incentives, are considered as defined in Table 6.  Three cost functions are 
considered:  

 Energy charges excluding any demand charges 
 Demand charges excluding any energy charges 
 Total Cost including both energy and demand charges 

Most of the results presented in this report are obtained for a typical day in summer month (July 15) using 
Chicago, IL weather data. 
 

Table 6: Characteristics of the electricity rates used in the parametric analysis 
 

On-Peak Period Hour 10 to 16 
 Rate 1 Rate 2 Rate 3 

On-Peak Energy Charge $0.10 $0.10 $0.10 
Off-Peak Energy Charge $0.05 $0.05 $0.05 

On-Peak Demand Charge $1 $5 $10 
Off-peak Demand Charge $1 $1 $1 
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2.6.2.1 Selection of Tolerance Value for Optimization Module 
Various parametric analyses have been conducted to explore the impact of selected features of the opti-
mization module. In particular, the convergence criterion of the optimization module has been investi-
gated. Figure 12 summarizes the effect of decreasing the value of the convergence tolerance on the op-
timal value and the CPU time required to run the optimizer/EnergyPlus program when the cost function 
accounts for total charges (including energy and demand charges) using Rate 2 for electricity rate struc-
ture.  A stricter tolerance value of 10-4 has been considered but the required CPU time is excessively long 
(almost 24 hours were needed to run EnergyPlus/Optimizer program).   
Table 7 provides more details on the impact of the tolerance value selection for the optimization module. 
It is clear the selection of a tolerance value of 10-2 is acceptable without large computational penalties to 
obtain relatively accurate estimates of the optimal values for the cost function. A tolerance value of 10-2 is 
selected for the remainder of the analyses. 
 
Table 7: Impact of the tolerance value on the optimal cost function values (demand and energy charges) 

 
  Optimal Cost Function Values  

Tolerance CPU Time [s]  Energy [J] Peak Energy Rate [W] Cost [$] 
1.0E-1 1074 668,198,784 13,077 91.01 
1.0E-2 3623 725,000,000 12,397 88.00 
1.0E-3 6731 714,195,456 12,186 84.60 
1.0E-4 20813 713,367,040 12,162 84.51 
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Figure 12: Effect of tolerance value on the optimal cost value and CPU time. 
 

2.6.2.2 Impact of Cost Function and Utility Rates 
The optimizer/EnergyPlus program has been used to determine the optimal solutions for precooling the 
building thermal mass in order to reduce the cost function under the three rate structures defined in Table 
6. Table 8 summarizes the results of this investigation. Significant savings can be achieved when the 
peak demand is shaved off. Figures 13, 14 and 15 show the temperatures setpoints and cooling loads 
profiles for both conventional and optimized precooling control strategies to minimize respectively, de-
mand charges, energy charges, and total charges using Rate 2.  
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When the demand or the total charges are minimized, the building mass is precooled for most of the un-
occupied hours as indicated in Figures 13(a) and 15(a). This nearly continuous precooling ensures that 
the peak demand is reduced during the occupied period as shown in Figures 13(b) and 15(b).  
When energy charges are minimized, precooling is called for only for few hours before occupied period as 
indicated in Figure 14(a). The small amount of precooling results in a reduction of the cooling load during 
the entire occupied period as shown in Figure 14(b).  
The comparison of the outdoor temperature variation with the optimal temperature setpoint schedules for 
all cases indicates that there is potential to use economizer cycle to precool the building mass without 
operating the chiller as indicated in Figures 13(c), 14(c), and 15(c). 

 
Table 8: Cost savings due optimal precooling of building for various cost functions and rate structures. 

 
Cost Function(Rate) No Optimization [$] With Optimization [$] Savings [%] 

Energy (Rate 1, 2, or 3) 12.05 11.76 2 
Demand (Rate 1) 32.83 24.27 26 
Demand (Rate 2) 98.96 73.87 25 
Demand (Rate 3) 181.62 136.04 25 

Total (Rate 1) 44.88 37.32 17 
Total (Rate 2) 111.01 87.21 21 
Total (Rate 3) 193.67 149.34 23 
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Figure 13(a): Indoor temperatures set-point schedules for both conventional and optimal pre-cooling con-

trols set for the 3-zone building when demand charges are minimized using rate 2. 
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Figure 13(b): Cooling load profiles for both conventional and pre-cooling controls obtained for the 3-zone 

building when demand charges are minimized using rate 2. 
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Figure 13(c): Outdoor temperature, optimal indoor set-point, and cooling load profiles for the 3-zone build-

ing when demand charges are minimized using rate 2.  
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Figure 14(a): Indoor temperatures set-point schedules for both conventional and optimal precooling con-
trols set for the 3-zone building when energy charges are minimized using any of the three rates.   
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Figure 14(b): Cooling load profiles for both conventional and pre-cooling controls obtained for the 3-zone 

building when energy charges are minimized using any of the three rates. 
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Figure 14(c): Outdoor temperature, optimal indoor setpoint, and cooling load profiles for the 3-zone build-

ing when energy charges are minimized using any of the three rates. 
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Figure 15(a): Indoor temperatures set-point schedules for both conventional and optimal pre-cooling con-

trols set for the 3-zone building when total charges are minimized using rate 2. 
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Figure 15(b): Cooling load profiles for both conventional and pre-cooling controls obtained for the 3-zone 

building when total charges are minimized using rate 2. 
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Figure 15(c): Outdoor temperature, optimal indoor setpoint, and cooling load profiles for the 3-zone build-

ing when total charges are minimized using rate 2. 
 

2.6.2.3 Impact of “Smoothing” Optimal Setpoint Schedules 
As shown in Figures 13, 14, or 15, the optimal precooling schedules are generally not smooth and thus 
are potentially difficult to implement in real buildings. The “alpine” optimal schedules result in rather sud-
den changes in the cooling loads that the chiller has to meet. To avoid this operational problem, smooth-
ing procedures of the optimal precooling schedules were investigated. Two smoothing procedures were 
considered: 
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 Smoothing Procedure 1 uses a relatively large rate of change or gradient based on the highest 
and lowest temperatures setting 

 Smoothing Procedure 2 uses a smaller rate of change or gradient based on temperature settings 
for two hours. 

The results of two smoothing procedures are illustrated in Figure 16 for the three cases considered in 
Figures 13, 14, and 15. In general, the smoothing procedure 2 provides less abrupt changes in the pre-
cooling temperature setpoint schedules. The results of the smoothing of the optimal precooling setpoints 
are summarized in Table 9 using smoothing procedure 2. In general, the smoothed optimal precooling 
schedules reduce only slightly the potential cost savings for most cases.   
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Figure 16(a): Smoothed and original optimal precooling setpoint schedules for the 3-zone building when 

demand charges are minimized using rate 2. 
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Figure 16(b): Smoothed and original optimal precooling setpoint schedules for the 3-zone building when 
energy charges are minimized using any of the three rates. 
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Figure 16(c): Smoothed and original optimal precooling setpoint schedules for the 3-zone building when 
total charges are minimized using rate 2. 

 
Table 9: Effect of smoothed optimal precooling temperature schedules on cost function values for various 

rate structures using smoothing procedure 2. 
 

Cost Function (Rate) No  
Optimiza-

tion [$] 

Original Op-
timization [$] 

Smoothed  
Optimization 

[$] 
Energy (Rate 1, 2, or 3) 12.05 11.76 11.80 

Demand (Rate 1) 32.83 24.27 25.30 
Demand (Rate 2) 98.96 73.87 74.01 
Demand (Rate 3) 181.62 136.04 148.87 

Total (Rate 1) 44.88 37.32 39.02 
Total (Rate 2) 111.01 87.21 90.80 
Total (Rate 3) 193.67 149.34 154.12 

 

2.7 Task 5: Analysis of Optimal and Conventional Control 
Task Purpose: The theoretical minimum of the objective function, which will likely be the building’s elec-
trical utility bill, will be found by determining the sequence of optimal control actions over the time hori-
zon of interest, which may likely be an infinite horizon. Because of the focus on dynamic rate structures 
such as real-time pricing without demand charges, minimizing the cost over the next 24 hours will suffice. 
Time-of-use utility rate structures including demand rates are more difficult to deal with, since it is not 
known when the optimal demand occurs. However, an approach to dealing with TOU rates has been de-
veloped and is discussed below. Most of the results discussed include a demand charge portion. 
Once the optimal solution is found, basecase scenarios will be defined for comparison and a parametric 
study will identify the performance merits of optimal control relative to conventional control basecases, the 
preferred set of conditions under which the merits of the novel technology is maximized, and the key as-
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pects affecting controller performance. The results will be the foundation for the development of a predic-
tive optimal controller. 
Task Summary: Efforts have been focused on identifying a suitable optimization framework. It is consid-
ered to either a) call EnergyPlus from an external optimization engine such as GenOpt, or b) integrate 
optimization algorithms into EnergyPlus such as the ones offered by the IMSL/Math Library to accommo-
date our optimization functionality. It has been decided to proceed with both approaches in parallel and 
both approaches have successfully optimized medium-scale optimization problems. The detailed results 
of a parametric analysis are discussed in Section 3. 
 

EnergyPlus

Thermal
Storage

Utility Cost

GenOpt:
Nelder-Mead
Hooke-Jeeves

Control
parameters Cost

EnergyPlus

Thermal
Storage

Utility Cost

IMSL Math Library
Quasi-Newton: Finite-
difference gradient
Modified Newton: Finite-
difference Hessian

Nelder-Mead: Geometric
Simplex

OptQuest: Population
based: Scatter/Tabu

 
 

Figure 17: Schematic of External (left) and Integrated Optimization (right) 
Different optimization methods were integrated into EnergyPlus and their performances compared. These 
optimization methods include: the Nelder-Mead simplex method (IMSL BCPOL routine), quasi-Newton 
method (IMSL BCONF routine), a population-based scatter search method (OptQuest), simulated anneal-
ing, Box’s complex method, line search method, and dynamic programming (for active thermal storage 
inventory only). Considering optimization performance, robustness, and efficiencies, the IMSL BCPOL 
routine was chosen to be used to optimize passive thermal inventories and dynamic programming method 
is chosen to be used to optimize active thermal inventories. 
  

2.8 Task 6: Predictive Optimal Control Strategy 
Task Purpose: Within the simulation environment, extensive model-based analysis will be performed to 
identify a robust predictive optimal supervisory controller capable of handling uncertainty in future 
variables and models while ensuring economical, healthy, and comfortable operation. The features that 
the control strategy has to reveal are: 

 Robust: When the controller fails, it fails safely to a comfortable, healthy, and economical operation. 
 Predictive: Correctly forecast building loads on the basis of occupancy, weather, and zone setpoints. 
 Optimal: Over the optimization horizon, the set of control variables minimizes the objective function. 
 Supervisory: The optimal controller will dictate optimal setpoints of subordinate plant parameters. 

 
Task Summary: Based on past experience with real-time optimization, certainty-equivalent closed-loop 
optimization is employed: The predictive optimal controller carries out an optimization over a predefined 
planning horizon L and of the generated optimal strategy only the first action is executed. At the next time 
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step the process is repeated. The final control strategy of this near-optimal controller over a total simula-
tion horizon of K steps is thus composed of K initial control actions of K optimal strategies of horizon L, 
where L < K. This ensures that newly available, improved forecasts of future variables are always utilized. 
Figure 18 illustrates the procedure involved in determining the predictive optimal control policy. By moving 
the time window of L time steps forward and updating the control strategy after each time step, the newly 
updated forecast information is introduced and delivers a policy (thick dotted line), which is different from 
the policy found at k* (thin dashed line). 
 

Timek K

L-step horizon

You are here at k*.

1. Predict variables.

2. Find certainty-equivalent 
DP-based optimal policy.

3. Execute 
first action.

State

Policy predicted at k*.

4. Determine optimal policy by 
repeating steps 1 through 3.

 
Figure 18: Schematic of the certainty-equivalent, closed-loop, predictive optimal control procedure. 
 

2.8.1 Background 
To improve the performances of the selected optimization routines, i.e., to increase their robustness and 
efficiency, modifications are needed to simplify the problem and to streamline the optimization process. 
This selection of optimization techniques was carried out in parallel with the selection of appropriate opti-
mization methods.  
In the original problem, it is necessary to let optimization routines find hourly setpoints for both passive 
inventory and active inventory at the same time. If a 24-hour planning horizon is assumed, there will be 2 
arrays of 24 variables each to be optimized leading to a 48-dimensional optimization task. Given the ca-
pabilities of above available optimization routines, this is a difficult problem to solve. The following two 
phenomena are observed.  
First, the optimization routines tend to ignore the potential of the passive inventory if optimizing passive 
and active inventory at the same time. This is due to the fact that active thermal inventories have much 
larger influences on cost function values (electrical bills in our case) than passive thermal inventories do 
when both changing the  setpoints by the same absolute amount. Second, when considering passive 
thermal inventory only, it is a 24-dimensional problem. This is still a difficult problem for most of the opti-
mization routine to solve especially due to the fact that the building simulation process is highly nonlinear 
and not differentiable (i.e. to provide gradients to help the optimization routines search in the proper direc-
tion). As a result, it was observed that the optimal results are in the shape of “zig-zag”, indicating local 
minima. Finally, due to the complexity of the problem, it takes the optimization routines a long time, i.e., 
from two to more than twenty hours, to finish a 24-hour optimization, which makes the optimization infea-
sible. 
These problems are solved by introducing the building modes and a sequential optimization technique. 
The building mode technique groups the setpoints during similar time periods. It reduces the dimension of 
the problem in a physically reasonable way so that the optimization routines can find the optimum set-
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points quicker and almost without affecting the accuracy of the solution. The sequential optimization tech-
nique is introduced to help the optimization routine distinguish the effect of different thermal inventories. 
Instead of optimizing thermal inventories having greater effects on cost functions with those having lower 
effects on cost functions at the same time, it optimizes different thermal inventories sequentially. Below 
we will show that using sequential optimization helps the optimization routines find a “near optimum” with 
results close enough to the global optimum. 
 

2.8.2 Development of an Optimization based on Building Modes and its validation 
Purpose: Up to this point, optimizations of building zone setpoint temperatures were based on L = 24 
hourly set points. The Nelder-Mead simplex method and OptQuest scatter search optimization ap-
proaches were used to conduct the optimization of building total electrical cost. The results show that it 
takes the Simplex about 30 minutes to 3 hours and OptQuest requires tens of hours to find the solution. 
This is not feasible in real plant operations. Therefore, while looking for faster optimization techniques, 
using “building modes” to reduce the size of the optimization problem is a valid approach. 
Introduction: According to the plant operation schedule and time-of-use (TOU) electrical rates, buildings 
can be considered to be operated under distinct modes. One of the most convenient and simplified ways 
of defining these modes is to divide building operation into the following four modes. 
 Unoccupied-Offpeak is when the building is not occupied and the electrical rate is off-peak. 
 Unoccupied-Onpeak is when the building is not occupied but the electrical rate is on-peak. 
 Occupied-Onpeak is when the building is occupied and electrical rate is on-peak. 
 Occupied-Offpeak is when the building is occupied but electrical rate is off-peak. 
Time periods within a building mode exhibit similar characteristics. For instance, during unoccupied on-
peak period, thermal comfort can be neglected and thus the temperatures can be set to higher setpoints 
to save electricity costs. Therefore, it is possible to take the building mode as an entity and optimize a 
constant zone temperature setpoint extending over a building mode. It may seem that we sacrifice the 
accuracy of the optimum setpoints found. However, this sacrifice of accuracy is ameliorated by using the 
closed-loop optimization feeding fresh high-quality forecasts. Further, since we optimize in a lower dimen-
sional space, the existing optimizers are less likely to get caught in local optima. 
During each building mode, the corresponding control variable is kept constant as shown in Figure 19b. 
Since these few variables describe stepped profiles for each control variable, we denote them as solution 
parameters SP. For the given occupancy and utility rate periods and assuming hourly time steps, the so-
lution space for an L = 24 hour horizon is reduced from 24 dimensions to 5 dimensions. For any horizon 
L, the number of parameters can increase or decrease depending on how many distinct occupancy and 
rate periods are covered. Though this simplification causes the solution to become slightly suboptimal 
compared to the full solution, the problem now becomes computationally tractable. 
The active storage (TES) optimization problem is characterized by complex and nonlinear constraints as 
yet simple state transitions. This class of problem is most readily solved using dynamic programming and 
yields L solution variables as shown in Figure 19a. 
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L-Step Optimization Horizon
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Figure 19: a) Simplified stepped optimization for passive storage and b) active storage optimization 

 
Results and Analysis: The following table offers results comparing the 24 hourly setpoint optimization and 
the 5 building mode (the Unoccupied-Onpeak modes in the morning and in the night are treated sepa-
rately) optimization. 
The building is a 15-zone 3-story office building occupied from 8:00-17:00. Electrical rate on-peak time is 
from 9:00-18:00 during which energy rates are 0.20 $/kWh, demand rate is 10 $/kW, and off-peak time is 
from 19:00-9:00 during which energy rates are 0.05 $/kWh and no demand rates are levied. The five 
building modes are then: 

Unoccupied-Offpeak-1: 1:00-7:00 
Occupied-Offpeak:  8:00 
Occupied-Onpeak:  9:00-17:00 
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Unoccupied-Onpeak:  18:00 
Unoccupied-Offpeak-2:  19:00-24:00 

The comparisons are made for two locations (Phoenix, AZ and Minneapolis, MN) , two seasons (April 1 
and July 22), two electrical rates (basic and flat rate) and two building construction types (heavy: 220 
lb/ft2, and light 50 lb/ft2). 
 

Table 10: Comparison of optimizations based on building modes and 24 hourly setpoints. 
 

    H-1, 
AZ,July 

H-1, 
MN,April 

H-1, 
MN,July 

H-2, 
AZ,July 

H-2, 
MN,April 

H-2, 
MN,July 

L-1,  
AZ,July 

L-1, 
MN,April 

L-1, 
MN,July

Basecase Total Cost 788.00 631.00 717.30 815.80 625.80 733.80 903.90 603.50 769.30
Total Cost 714.00 583.00 672.60 758.00 568.70 691.40 829.50 568.00 716.00
Runs 427 337 270 471 458 476 301 344 266
Time 3:45 0:58 1:56 3:55 1:04 3:26 2:14 1:06 1:48Simplex 24 SP 

Saving -9.39% -7.61% -6.23% -7.09% -9.12% -5.78% -8.23% -5.88% -6.93%
Total Cost 704.90 571.00 663.90 764.00 573.00 674.60 819.00 561.00 703.70
Runs 35 35 29 51 50 72 33 30 33
Time 0:05 0:01 0:03 0:07 0:02 0:08 0:05 0:02 0:04Simplex 5 Bldg Mode 

Saving -10.55% -9.51% -7.44% -6.35% -8.44% -8.07% -9.39% -7.04% -8.53%
5 mode Cost Saving 1.15% 1.90% 1.21% -0.74% -0.69% 2.29% 1.16% 1.16% 1.60%
5 mode Time Saving 3:40 0:57 1:53 3:48 1:02 3:18 2:09 1:04 1:44

Total Cost 712.00 574.00 656.20 723.40 558.70 660.80 804.00 558.00 694.00
Time 13:00 8:40 28:46 22:22 8:23 18:55 24:56 10:16 19:21OptQuest 24 SP 
Saving -9.64% -9.03% -8.52% -11.33% -10.72% -9.95% -11.05% -7.54% -9.79%
Total Cost 703.00 569.00 655.00 739.00 557.60 669.50 814.70 559.50 699.00
Time 12:00 3:42 10:11 12:47 3:28 9:11 13:21 4:51 10:55OptQuest 5 Bldg Mode 
Saving -10.79% -9.83% -8.69% -9.41% -10.90% -8.76% -9.87% -7.29% -9.14%

5 mode Cost Saving 1.14% 0.79% 0.17% -1.91% 0.18% -1.19% -1.18% -0.25% -0.65%
5 mode Time Saving 1:00 4:58 18:35 9:35 4:55 9:44 11:35 5:25 8:26

           
H-1 : Heavy-mass building with incentive electrical rate         
H-2:  Heavy-mass building with flat rate          
L-1:  Light-mass building with Incentive electrical rate         

  
From Table 10 it can be observed that in terms of cost savings, in some cases the building modes ap-
proach saves more than the hourly setpoints approach, while in other cases the reverse is true. The fact 
that the building modes perform slightly better reveals that the hourly setpoint approach using both Sim-
plex and OptQuest at times gets stuck in local minima. But all the differences are within 0.15-2.3%. In 
terms of time savings, the advantage of using building modes is obvious. While using hourly setpoints, it 
takes Nelder-Mead Simplex 1-4 hours or OptQuest 8-29 hours to find the optimum; it takes only 1-5 min-
utes for Nelder-Mead Simplex and 3-14 hours for OptQuest to find the equally good results. 

2.8.3 Dynamic Programming for the Optimization of Active TES Systems 
Dynamic programming (DP) has been shown to be an effective method to optimize active thermal storage 
systems. It is developed and tested with a simple plant model in which the baseload chiller has a constant 
COP chiller of COP = 4.5, and the thermal storage system is an ice tank with its dedicated chiller with 
COP = 3.0. The following graphs show the results of using dynamic programming and simplex method to 
optimize building electrical energy cost. 
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Figure 20: Using dynamic programming to optimize plant energy cost. 
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Figure 21: Using Nelder-Mead Simplex method to optimize plant energy cost 
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While the base case total cost is $135, the DP optimized control gives a cost of $93.8 with a saving of 
30.5%. Using the Simplex method, the cost is $129.3 with a saving of only 4.2%. 
Another merit of dynamic programming is that by defining terminal state costs, it is convenient to control 
the final ice inventory level to be the same as initial ice level when initial ice level is nonzero. This is diffi-
cult to be accomplished by other optimizers. The following graph shows that with initial ice level being 
50%, dynamical programming controls the end ice level to be the same as initial value. 
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Figure 22: Dynamic programming controls the final state of ice level. 

 

2.8.4 Comparison of simple and refined thermal energy storage system models 
Background: At present, a TES model based on a paper by King and Potter98 is integrated within Energy-
Plus. Due to the iterative nature of the heat transfer calculations within the refined model, it takes longer 
to simulate the TES performance. When the optimization task is added, it takes a considerably longer 
time and can make it infeasible. By using a simpler model for the TES using a constant-COP chiller, the 
simulation as well as optimization times can be reduced. Thus, if using a simple plant model offers similar 
results compared to the refined model, it is recommended to use a simple plant model for the optimiza-
tion. Thus, a simpler constant-COP TES model was integrated into EnergyPlus, and optimizations based 
on the refined TES model and the simple TES model are compared. 
First, given the same input, the output of electricity consumption of the refined Model and the simple TES 
model are similar as can be seen in Figure 23. 
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Figure 23: Comparison of Refined TES model and simple TES model 

 
Table 11 shows the results comparing optimization of the RefinedTES model and the simple con-
stant-COP TES model using dynamic programming. The COP of the large base varies from 2.5 to 
4.5. Electrical rates vary from 0.25 vs. 0.05 $/kWh (Onpeak vs. Off-peak) to 0.10 vs. 0.05 $/kWh. 
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Table 11: Comparison of optimizations using refined TES model with simple TES model. 
    Rate - 1 Rate - 2 Rate - 3 Large Chiller COP 
    0.25 : 0.05 0.20 : 0.05 0.15 : 0.05 
Basecase 701.33 565.37 429.42 
King & Potter Model Energy Cost 687.26 563.86 429.42 
King & Potter Model Energy Cost Savings. -2.01% -0.27% 0.00% 
Simple Model Energy Cost 686.07 565.37 429.42 
Simple Model Energy Cost Savings -2.18% 0.00% 0.00% 

4.5 

Model Difference -0.17% 0.27% 0.00% 
Basecase 722.44 582.31 442.19 
King & Potter Model Energy Cost 698.91 575.05 442.19 
King & Potter Model Energy Cost Savings. -3.26% -1.25% 0.00% 
Simple Model Energy Cost 696.77 575.37 442.19 
Simple Model Energy Cost Savings -3.55% -1.19% 0.00% 

4 

Model Difference -0.30% 0.05% 0.00% 
Basecase 749.58 604.1 458.61 
King & Potter Model Energy Cost 712.97 587.88 458.4 
King & Potter Model Energy Cost Savings. -4.88% -2.68% -0.05% 
Simple Model Energy Cost 710.54 586.46 458.61 
Simple Model Energy Cost Savings -5.21% -2.92% 0.00% 

3.5 

Model Difference -0.32% -0.24% 0.05% 
Basecase 785.77 633.14 480.51 
King & Potter Model Energy Cost 731.95 603.32 473.24 
King & Potter Model Energy Cost Savings. -6.85% -4.71% -1.51% 
Simple Model Energy Cost 728.89 601.23 473.57 
Simple Model Energy Cost Savings -7.24% -5.04% -1.44% 

3 

Model Difference -0.39% -0.33% 0.07% 
Basecase 836.44 673.8 511.16 
King & Potter Model Energy Cost 758.37 624.79 491.1 
King & Potter Model Energy Cost Savings. -9.33% -7.27% -3.92% 
Simple Model Energy Cost 754.58 621.9 489.24 
Simple Model Energy Cost Savings -9.79% -7.70% -4.29% 

2.5 

Model Difference -0.45% -0.43% -0.36% 
  

From Table 11 it can be observed that the differences between the refined TES model and the simple 
constant-COP TES model less than 0.45%. It takes about 40 seconds for the refined TES model to finish 
a calculation and 1 second for constant-COP TES model. Considering that a search loop for demand lim-
its is added on top of the energy cost optimization, if 100 searches are necessary, using the refined TES 
model it is going to take more than 1 hour while using the simple constant-COP model requires less than 
2 minutes. The advantage of using the simple TES model is obvious. 
 

2.8.5 Thermal History Variables in EnergyPlus for Building Load Calculation 
Summary: A dynamic building energy analysis program such as EnergyPlus requires that historical data 
be stored to calculate current building thermal performance. Before starting any simulation of building 
thermal behavior, EnergyPlus uses a pre-simulation process called “warm-up period calculation” in order 
to estimate and store historical data at the beginning of the simulation period. At each time step during 
the simulation period, EnergyPlus continues to store historical data used to properly model the dynamic 
thermal performance of the building. The number of historical data depends on several factors including 
the construction material, the number of zones, and the type of HVAC system. In order to implement the 
moving time window closed-loop optimization procedure for passive and active TES systems, it is essen-
tial to identify the variables for which EnergyPlus stores thermal historical data. The identification of these 
variables helps reduce simulation time and thus makes optimization of passive and active TES systems 
feasible with EnergyPlus. 
After giving an introduction on modeling of thermal history, this section provides a list of identified vari-
ables that affect building thermal history in EnergyPlus. Results of a verification analysis are also summa-
rized. 
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2.8.5.1 Modeling of Thermal History 
 
The building structure responds to changes in zone temperature setpoints. The zone temperature TZ is 
directly affected only by the net convective heat flux according to the discrete-time energy balance on the 
zone air 

 , ,Z
Z conv i

i

TC Q
t

∆ =
∆ ∑  (3) 

where CZ is the zone thermal capacitance. These convective heat fluxes include contributions from inte-
rior wall surfaces, HVAC systems, internal and solar gains, as well as infiltration. Of those, the current 
interior wall surfaces fluxes depend on a history of past inside and outside air and surface temperatures 
as well as inside and outside heat fluxes. The transient response of the building envelope is typically 
modeled by transforming the heat diffusion equation  
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(where α is the thermal diffusivity) into a conduction transfer function (CTF), where the inside and outside 
surface heat fluxes are determined with the help of construction-specific CTF coefficients a, b, c, and d. 
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The zone temperature setpoints can be varied between 15 and 30°C during unoccupied periods and be-
tween 20 and 24°C during occupied periods. Building precooling reduces the convective contributions 
from inside surfaces during occupied periods by depressing the average envelope temperature during 
unoccupied periods. 
 
In reference to Eq. (5), the “thermal history” of a wall can be abbreviated by 
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From the index k ≥ 1, it is obvious that only and not current past information is used. For the outside sur-
face temperature of an exterior wall, we can balance convective, radiative, and solar source terms 
  (7) , , , , ,s o s c o s r o s oq q q S= + +

and yield 
  (8) 0 , 0 , , , , , , ,s i s o s o s c o s r o s oa T b T K q q S− + = + +

Since the convective flux can be described by 

  (9) (, , , , ,s c o s c o amb s oq h T T= −

we yield the outside surface temperature 
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h T h T S K b T
T

h h a
+ + − +

=
+ +

 (10) 

 
By similar arguments for the inside surface of the exterior wall, 
  (11) 0 , 0 , , , , , , ,s o s i s i s c i s r i s ib T c T K q q S− + = + −

After defining the convective flux 
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  (12) (, , , , ,s c i s c i s i Zq h T T= − )
we eliminate Ts,o through the use of Eq. (10) and find an expression for the inside surface temperature 
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 (13) 

Similar approaches can be found for interior walls and windows. With the help of the auxiliary star tem-
perature Tstar a system of linear equations can be solved: 

 11 12 1

21 22 2

Z

star

TX X Z
TX X Z
   
 


  = 


       

 (14) 

and the zone temperature can be found. 

2.8.5.2 Description of Thermal History Variables 
Variables that affect thermal history in EnergyPlus are found in five modules namely: DataHeatBalSur-
face, DataHeatBalFanSys, DataSurfaces, DataLoopNode, and ZoneTempPredictorCorrector module. For 
each module, the variables are listed and identified below. 
 
A. DataHeatBalSurface Module 
THM:  Master temperature history of building construction with zone time step 
TH:  Temperature history of building construction with system time step interpolated from THM 
QHM:  Master heat flux history of building construction with zone time step 
QH:  Heat flux history of building construction with system time step interpolated from QHM 
TempSurfIn: Inside surface temperature for each surface 
TempSurfOut: Outside surface temperature fore each surface 
 
B. DataHeatBalFanSys 
XMAT:   Temporary zone temperature to test convergence at current time 
XM2T:    Temporary zone temperature to test convergence at one hour ago 
XM3T:    Temporary zone temperature to test convergence at two hours ago 
XM4T:    Temporary zone temperature to test convergence at three hours ago 
ZoneAirHumRat:  Zone air humidity ratio 
ZoneAirHumRatOld:  Zone air humidity ration at previous hour 
ZT:    Zone air temperature 
ZTAV:    Zone air temperature averaged over the system time increment 
XZTAV:    Zone air temperature averaged over the system time increment at previous hour 
MAT:    Mean air temperature 
 
C. DataSurfaces 
SurfaceWindow: Calculated window-related values 
 
D. DataLoopNode 
Node: Inlet and outlet condition of each system and plant component containing temperature, flow rate, m
aximum allowed (design) flow rate, minimum allowed (design) flow rate, maximum available flow rate, and
 minimum available flow rate 
 
E. ZoneTempPredictorCorrector 
WZoneTimeMinus1:   Humidity ratio history terms for time minus 1 zone time steps 
WZoneTimeMinus2:   Humidity ratio history terms for time minus 2 zone time steps 
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WZoneTimeMinus3:   Humidity ratio history terms for time minus 3 zone time steps 
WZoneTimeMinus4:   Humidity ratio history terms for time minus 4 zone time steps 
WZoneTimeMinus1Temp:  Temporary zone air humidity ratio at previous time step 
WZoneTimeMinus2Temp:  Temporary zone air humidity ratio at time step minus 2 
WZoneTimeMinus3Temp:  Temporary zone air humidity ratio at time step minus 3 

2.8.5.3 Validation of Thermal History Variables 
In this subsection, the results of a validation analysis are summarized. The main objective of this verifica-
tion analysis is to ensure that thermal history is adequately defined by the variables identified in the previ-
ous subsection. 
Using a simple three-zone building model, a simulation over a six-month period (January 1st to July 31st) 
is performed first. During the simulation, the thermal history of the building is stored for January 16 at 7 
a.m. (through the variables listed above). Then and immediately after completing the six-month simula-
tion, a second simulation of two days (January 16 and 17) is carried out without a warm-up period (thus, 
the historical data for the building at the start of the second simulation are based on July 31st results) but 
with historical data (stored from the first simulation) used starting January 16th at 7 a.m.    
Figures 24 through 26 show the hourly variation of respectively, the room air temperature, the heating 
load, and the cooling load for the 3-zone building model during January 16th. The results obtained from 
the two simulation runs are presented in Figures 24-26: 

• First simulation run: January 1st through July 31st,  
• Second simulation run: January 16th through January 17th without the warm-up period but u

tilizing the thermal history of January 16th at 7 a.m. obtained from the first simulation run.   
At the end of first simulation run, the values of the variables that store building thermal history are calcu-
lated based on data obtained at midnight of July 31st (i.e., summer conditions). Therefore, the building 
behavior is greatly affected by a summer-type thermal history at the start of the second simulation run 
which is initiated without a warm-up process. This behavior is clearly illustrated in Figures 24-26 for hours 
between 1 a.m. through 6 a.m. But after 7 a.m., the building thermal behavior obtained by the two simula-
tion runs coincides perfectly. Indeed, the two simulation runs utilize the same thermal history starting from 
7 a.m. Consequently, the variables defined in above fully describe the thermal history of the building. 
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Figure 24: Room air temperature in each of the three zones during January 16th. 
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Figure 25: Total heating load for the three-zone building during January 16th. 
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Figure 26: Total cooling load for the three-zone building during January 16th. 
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2.8.6 Integration of Predictive Optimal Control into EnergyPlus 

2.8.6.1 Background and Purpose  
In order to study predictive optimal control of building thermal storage inventories (active and passive 
storage), a building simulation program is necessary to simulate building heating, cooling, ventilation and 
other energy flows. EnergyPlus as the most advanced building energy simulation program was selected 
as the basis in this study. 
Like other simulation programs, EnergyPlus simulates building energy flows based on an input file in 
which descriptions of building construction, HVAC equipment, system, plant and their controls are pro-
vided. EnergyPlus source code contains models of different HVAC equipment, systems and plants as well 
as algorithms calculating building heating/cooling load based on building construction and occupancy 
schedules, system/plant types and controls. Therefore, given the input file, EnergyPlus can simulate the 
corresponding building, HVAC equipment, system and plant energy flows. 
EnergyPlus can carry out normal simulations where the input file must provide fixed HVAC system/plant 
control information. It is however not able to conduct optimization simulations where optimization algo-
rithms can be used to find an optimal control strategy which is unknown by the input file provider. There-
fore, given EnergyPlus as the simulation tool, it had to be modified to be able to do predictive optimization 
simulations to serve the purposes of our project. 

2.8.6.2 Introduction of Optimization Subroutines and Their Application 
There are many optimization routines available as encapsulated subroutines that can be used as “black-
box” optimizers. All that users of these optimization routines need to do is to provide the required input 
data related to the control variable(s) that need to be optimized. Then, the encapsulated subroutines 
return optimized control variable(s). Although the algorithms that these optimization “black-boxes” use to 
find the optimal value may vary, what needs to be provided by users is similar. These inputs usually in-
clude control variable(s) and their bounds/constrains, some kinds of step sizes, and tolerances, etc. Due 
to this similarity of optimization routines on inputs and outputs, the optimization routine using the Nelder-
Mead simplex method (BCPOL) in IMSL library is taken as the sample optimization routine to illustrate the 
integration method in this document. 

The BCPOL routine requires 8 inputs and provides 2 outputs. It has the form of the following. 
      CALL DBCPOL(FCN, NumVariables, Guess, IBTYPE,  & 
   LowerLimit, UpperLimit, Tolerance, MaxRunningNum, & 
       OptimumX, OptimumValue) 

 

2.8.6.3 Introduction to EnergyPlus 
It is necessary to understand how Normal-EnergyPlus (The released EnergyPlus without an optimization 
function is referred as Normal-EnergyPlus in this document.) simulates the controls of HVAC zones, sys-
tems and plants as well as how Normal-EnergyPlus is constructed in order to integrate optimization rou-
tines into Normal-EnergyPlus and thus turn Normal-EnergyPlus into Optimization-EnergyPlus (referring to 
Normal-EnergyPlus after being integrated with optimization functions)  
 
How does EnergyPlus Run? 
When EnergyPlus starts to run, the input file is first processed by calling ProcessInput subroutine where 
the input file is checked and read and values are stored in global arrays that can be accessed easily by 
subroutines that are designed to retrieve data from them. Then follows the core line of the program block 
of EnergyPlus, i.e., calling ManageSimulation subroutine in SimulationManager. Here, an initialization is 
first carried out and then ‘loop-in-loop’ simulation is started and finished.  
After the initialization, EnergyPlus calculates from outside to inside the environment loop, day loop, hour 
loop, and timestep loop. The term “environment” in EnergyPlus can be simply understood as a thermal 
history concatenated running period. For example, if in the input file, running period is July 20 to Nov 20, 
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there is one environment. If in the input file, one running period is July 20 to Aug 30 and another running 
period is from September 1st to December 5th, there are two environments. By calling GetNextEnviron-
ment subroutine in WeatherManager file, environment loop counts the environments needed to be simu-
lated and initializes the next available environment to be simulated by the day loop. Each environment 
contains one or more days. These days are simulated one by one in the day loop. In each day, 24 hours 
are simulated from 1 to 24 in hour loop. In each hour, a timestep loop of up to six timesteps is allowed. 
The core calculation of EnergyPlus is performed each timestep. In each timestep, routines inside Energy-
Plus read building, system and plant schedules, as well as other input information of that timestep, then 
calculate building heat transfer, zone load, system load, plant load and eventually energy consumption of 
that timestep, then report outputs if requested. This core calculation is repeated until the last timestep of 
the last hour of the last day of the last environment is completed.  
In Normal-EnergyPlus, these control schedules must be provided as fixed values and will not be changed 
by EnergyPlus. In Optimization-EnergyPlus, these schedule values should be able to be changed by the 
optimization “routine, then fed back to EnergyPlus calculations to produce the cost function values for 
each optimization iteration. 
 
How does EnergyPlus simulate controls? 
EnergyPlus simulates the control of HVAC zones, systems and plants through schedules. In the input file, 
schedules of control variables need to be provided. Each schedule is made of sub-schedules, i.e. sched-
ules are made of week schedules, week schedules are made of day schedules, and day schedules con-
tain 24 hourly values. For simulations with timesteps less than one hour, the schedule values are interpo-
lated between hours. At the start of the first timestep of the first hour of the first day of the first environ-
ment, subroutine ProcessScheduleInput is called. This subroutine collects all the schedules in the input 
file and stores them in a global array, i.e., Schedule. Then, at each timestep simulation, whenever a 
schedule value of that time step is needed, subroutine GetCurrentScheduleValue is called. Inputting a 
schedule index that relates to the sequence number of that schedule stored in the Schedule array, the 
schedule value of that timestep can be returned. Knowing the name of the schedule, the schedule index 
number of a schedule can be retrieved by calling subroutine GetScheduleIndex that takes the schedule 
name as an input and returns the schedule index in the Schedule array where all the schedules are 
stored. The existences of these schedule handling subroutines make it very convenient to get any sched-
ule value at that timestep just by knowing the name of the schedule.  
 
An Example of EnergyPlus Inputs and Outputs 
In the following example, a 3-story, 15-zone office building is simulated on July 20, Phoenix, AZ. The fol-
lowing figure shows the simulated zone air temperature and plant chiller power consumption under con-
ventional nighttime setback control. 
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Figure 27: Simulation of a night setback control of an office building using EnergyPlus 

From Figure 27 it can be observed that, in nighttime setback control, the zone air temperature floats dur-
ing the night unless it goes higher than the cooling setpoint, i.e. 30°C. During occupied time, the cooling 
setpoint is 24°C. The total chiller power consumption is 489 kWh with a peak at 9:00 of 53.9 kW; the 
building total electrical consumption is 813 kWh with a peak at 9:00 of 85.3 kW. If the electrical rate is 
0.20 $/kWh and 10$/kW from 9:00-18:00 (On-Peak period) and 0.05 $/kWh and 0 $/kW during the rest of 
the day (Off-Peak period), the owner of the building is paying $178.8 in total for electricity. 

2.8.6.4 Integration of a Standard Optimization Subroutine into EnergyPlus 
Integrating optimization subroutines into EnergyPlus starts by modifying the construction of Energy-Plus, 
after understanding how EnergyPlus is constructed and how the zones, systems and plants are controlled 
by schedules. 
 
The ManageSimulation subroutine 
The integration of optimization function(s) starts by modifying the ManageSimulation subroutine. First, the 
initialization part needs to be separated from repeated calculations. The initialization part ends at line Be-
ginFullSimFlag = .True., which means initialization is done and the full simulation begins. The code follow-
ing this line in the ManageSimulation subroutine is moved into a separate subroutine EnvironSimulation 
where the environment loop simulation starts. Also, in order to keep the flexibility of choosing between 
Normal-EnergyPlus and Optimization-EnergyPlus, a new field choosing between optimization or no opti-
mization is added into the Run Control section in the input file. The Run Control section as well as the 
TimeStep In Hour section in the input file are read by calling GetProjectData in the initialization part, since 
the information contained in these sections guides the simulation.  
If the input value of the do-optimization-or-not field of the Run control section is ‘YES’, then the newly cre-
ated global flag DoOptmization is set to ‘true’, otherwise, it is set to ‘false’. Then, in ManageSimulation 
subroutine, instead of starting an environment simulation directly by calling EnvironSimulation, the simula-
tion is branched into two newly added subroutines, i.e. ManageNormalEnergyPlus and ManageStdOpti-
mEnergyPlus, by the value of DoOptimization. If DoOptimization is ‘false’, ManageNormalEnergyPlus is 
called, where EnvironSimulation is called directly. Otherwise, ManageStdOptimEnergyPlus is called, 
where another initialization subroutine for optimization purpose, i.e. ProcessOptimizationInput, is first 
called to prepare the inputs needed by the optimization subroutine (BCPOL), then the BCPOL subroutine 
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is called and EnergyPlus with optimization is run here. In the latter case, the EnvironSimulation subroutine 
serves as the cost function calculator. In the BCPOL ‘black-box’, more than one iteration are run until the 
optimal values of control variables are found. In each iteration, BCPOL modifies the value of control vari-
ables and calculates and compares the cost of that set of values by calling EnvironSimulation subroutine 
(indirectly). After BCPOL returns the optimal control variable values, EnvironSimulation subroutine is 
called one more time and the outputs are reported.  
 
Handling of inputs for optimization subroutine 
The BCPOL routine requires eight inputs and provides two outputs. It has the following format: 
      CALL DBCPOL(FCN, NumVariables, Guess, IBTYPE,  & 
   LowerLimit, UpperLimit, Tolerance, MaxRunningNum, & 
   OptimumX, OptimumValue) 
These inputs are prepared by calling ProcessOptimizationInput subroutine in ScheduleManager file. In 
order for the BCPOL to know which control variables need to be optimized, new sections named Optimi-
zation:Schedule are created in the input file, which has the format showed below. 

OPTIMIZATION:SCHEDULE, 
         A1, \field OptimizationScheduleName 
           \Required-field 
           \Type alpha 
       A2, \field Guess Schedule 
           \Required-field 
           \Type object-list 
           \Object-list ScheduleNames 
       A3, \field Lower Limit Schedule 
           \Required-field 
           \Type object-list 
           \Object-list ScheduleNames 
       A4; \field Upper Limit Schedule 
           \Required-field 
           \Type object-list 
           \Object-list ScheduleNames 

Each control variable that needs to be optimized must have a corresponding Optimization:Schedule sec-
tion in the input file. A2, A3, A4 are schedules provided in input file. A2 is the name of the schedule pro-
viding the initial values of the control variable. A3 and A4 are the names of the schedules providing the 
lower bounds and upper bounds of the control variable, respectively. A1 is the name of the controlled 
variable schedule, which needs to be used in every corresponding place in the system/plant part of the 
input file. The construction of this section corresponds to the OptimizationScheduleData data type defined 
in a newly added global data file DataOptimization.  In the newly added ProcessOptimizationInput subrou-
tine, the schedule indices of these schedules in the Optimization:Schedule sections are stored in array 
OptimizationSchedule that is defined in a OptimizationScheduleData data type. Since EnergyPlus already 
has routines that can retrieve the schedule value by the schedule index, it is straightforward to get each 
value of each schedule of the OptimizationSchedule array. 
Thus, as explained above, once the schedule names of the control variables are read into Optimization-
Schedule, it is easy to get their values and store them into arrays that serve as inputs for optimization rou-
tines by using subroutines like GetScheduleIndex and GetCurrentScheduleValue. Therefore, in the Proc-
essOptimizationInput subroutine, the Guess, LowerLimit, UpperLimit, OptimumX arrays are allocated ac-
cording to the number of control variables that need to be optimized. And the schedule values of these 
control variables are also stored in Guess, LowerLimit, and UpperLimit sequentially.  

University of Nebraska – Lincoln and University of Colorado at Boulder Page 48 



Topical Report for Phase I: Analysis, Modeling, and Simulation of Cooperative Agreement DE-FC26-01NT41255 
Project Title: “Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory” 

Other inputs of BCPOL, i.e., NumOfVariables, Tolerance, IBTYPE, MaxRunningNum are also assigned 
values in calling ProcessOptimizationInput. Now, all that the BCPOL routine needs is a subroutine that 
calculates cost functions, i.e., FCN. Therefore, a new external subroutine FCN is added located in the 
SimulationManagerFile. It has the following format. 

SUBROUTINE FCN (N, X, F) 
The optimization subroutine manipulates the Guess array values and feeds those into the dummy variable 
X of FCN and then get the cost function value returned by FCN. The core line of subroutine FCN is calling 
EnvironSimulation. The newly added economic module allows for the costs of energy, i.e. electrical en-
ergy cost, electrical demand cost and total electrical cost, being calculated for each calling of Environ-
Simulation. Thus, after calling EnvironSimulation in FCN, one of these costs is selected as the cost func-
tion value to be returned to the optimizer and serves for the evaluation of optimality. The following section 
is added to keep the flexibility of allowing to choose from using energy cost, demand cost or total cost to 
be returned as cost function value in FCN. 

OPTIMIZATION:COST, 
          \Memo Optimization Cost 1: Energy (Energy based Optimization) 
         \Memo Optimization Cost 2: Demand (Demand based Optimization) 
         \Memo Optimization Cost 3: Both   (Energy and Demand based Optimization) 
     N1;  \field Optimization Cost 
          \Type choice 
          \Key 1 
          \Key 2 
          \Key 3 
This section is processed in ProcessOptimizationInput and the value is stored in variable Optimization-
Cost that is defined in DataOptimization. Then, GetCurrentScheduleValue subroutine in ScheduleMan-
ager file is modified. As explained before, the function of this subroutine is to retrieve the schedule value 
of the inputted schedule index at this timestep. In Normal-Energyplus, this subroutine traces the values 
stored in the Schedule array that stores all the schedule values in the input file. In Optimization-
EnergyPlus, if the schedule is not the optimization schedule, its value is traced in the Schedule array. 
Otherwise, its value is traced in the XguessSort array that is just another form of Guess array and its val-
ues are changed by the optimization routine in each optimization iteration. 
The optimization routine returns the optimal values of control variables in array OptimX that is defined in 
DataOptimization. Then, EnvironSimulation is called one more time with XGuess equals OptimX to get 
the final optimal outputs and report them. 
 
Output control 
There are modifications related to output reporting. Unlike Normal-EnergyPlus where there is only one 
iteration for each environment simulation, Optimization-EnergyPlus requires more than one iteration to 
find the optimal value. Without changing the report handling, outputs for each iteration are reported. If 
these intermediate outputs are not wanted, modifications related to output reporting are needed. In 
DataOptimization, a variable EndOptimizationFlag is defined. This variable is set to false until the 
optimization is done. Only before the final simulation run, EndOptimizationFlag is set to “true”. The 
outputs reporting of Normal-EnergyPlus is controlled by DoOutputReporting variable solely. In 
Optimization-EnergyPlus, all that needs to be modified is that instead of being solely controlled by 
DoOutputReporting, the reporting has to be controlled by the EndOptimizationFlag, too. 
 
Handling Thermal History  
Up to now, Normal-EnergyPlus has been modified so that the value of control variables can be modified 
by the optimizer while the EnvironSimulation subroutine is separated to be used by the optimizer as the 
cost function calculator. In order for the optimizer to call EnvironSimulation in each iteration for many it-
erations, other modifications related to the handling of environments and thermal history are necessary. 
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First, EnvironSimulation uses GetNextEnvironment subroutine to judge if there is another environment 
available for simulation and initialize the new available environment if there is any. The total numbers of 
environments are counted from the input file at the initialization stage of EnergyPlus, i.e., before calling 
EnvironSimulation. There is an internal counter that stores the number of GetNextEnvironment being 
called. It increases by one each time this subroutine is called. When the counter counts the same number 
as the total number of environments, in its next call, it will return the next environment as ‘unavailable’ to 
the EnvironSimulation subroutine. Then the EnvironSimulation subroutine exits. In order for the optimizer 
to call EnvironSimulation as many times as needed, this environment counter in GetNextEnvironment 
subroutine is reset to zero in each iteration after EnvironSimulation exits. 
Second, when calling EnvironSimulation, before starting to simulate this environment, EnergyPlus runs a 
“warming-up” period to initialize the thermal history of the building construction, HVAC system/plant. This 
warming-up period is realized by starting from an arbitrary set of values of thermal history related vari-
ables. Then, by repeatedly running the first day of that environment until these thermal history related 
variables converge, the warming up period is finished and the thermal history at the start of the first 
timestep of the first hour of the first day of that environment is found. Then, based on this starting thermal 
history, the actual “simulation” begins.  
Without modifying the warming-up period input, the warming-up period always uses the same input as the 
first day of that environment. In our optimization scenario, this is incorrect. Since the optimizer is trying 
different control variables of that environment in each iteration, the warming-up period of that iteration is 
changed according to the control variable values at that iteration. This again is incorrect. The real thermal 
history at the start of that environment should not be changed by the later operation of the system/plant 
and should be a sole result of the operations that has already happened. Thus, the warming-up period 
should be separated from the real simulation. In the warming-up period, instead of using the “first day“ 
inputs of that environment as inputs, the operation of “yesterday” should be the inputs of the warming-up 
period. After the warming-up period is done, the thermal history at the start of the first timestep of the first 
hour of the first day of the environment should be recorded and should be locked in. The calculation of 
cost function values in each iteration of the optimizer should be based on this same starting thermal his-
tory.  
To be able to record thermal history at the end of the warming-up period and upload the thermal history at 
the start of the real simulation, variables that store building, system, and plant thermal histories need to 
be found and subroutines that record and update thermal history value are needed. Since in the released 
EnergyPlus document, there is no content explaining which variables store thermal history, the identifca-
tion of these thermal history related variables was carried out by trial-and-error. The file ThermalHistory-
Manager is added to EnergyPlus, which includes public subroutines that record and update thermal histo-
ries, i.e. RecHistoryValues and UpdateHistoryValues.  
Then, since in EnergyPlus, there is already a logical variable, i.e. WarmUpFlag marking the starting and 
ending of the warming-up period, it is easy to record thermal history after the warming-up period is fin-
ished and upload recorded thermal history at the start of the first timestep. Lines of code for recording and 
updating thermal histories are added in the timestep loop of EnvrionSimulation. 
 
Handling Environment 
Next, subroutines related to initializing new environments need to be modified so that during the warming-
up period, the warming-up is based on yesterday’s data, i.e., building schedule, weather data, etc. This is 
done by modifying subroutines in WeatherManager. Unlike other inputs to EnergyPlus, the weather data 
is read day by day instead of timestep by timestep. Before the beginning of each day, the weather data is 
read into a global variable Tomorrow by calling ReadWeatherForDay subroutine. At the beginning of that 
day, global variable Today is updated by Tomorrow by calling UpdateWeatherForDay subroutine.  This 
process is done in the InitializeWeather subroutine in WeatherManager. Both Today and Tomorrow are of 
weather data type which stores weather data like outside dry bulb/dew point temperatures, pressure, so-
lar radiation, wind speed/direction, illumination data, etc. In Normal-EnergyPlus, the warming-up period 
reads the weather information of the first day of the environment. Here, this is changed to reading 
weather information of one day before the first day of the environment. Also, the date is changed to one 
day before the first day so that the building schedules are yesterday’s. 
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With these modifications, Normal-EnergyPlus has become Optimization-EnergyPlus, which has the flexi-
bility of choosing between normal EnergyPlus simulations and optimization EnergyPlus simulations and 
choosing among using energy cost, demand cost and total cost as the optimization objective function. 
 
An Example of Optimization Control 
Figure 28 shows results of optimal control on zone temperature setpoints for the example 15-zone office 
building. Zone cooling setpoints, average zone air temperatures and the chiller power consumption is pro-
vided. 
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Figure 28: Optimal control of passive thermal storage inventory of a 15-zone office building using En-

ergyPlus 
From Figure 28, it can be observed that instead of setting up temperature during the night, it decides to 
precool the building. During the day, the release of cooling energy stored in building envelope helps to 
bring down the chiller electrical demand. Under this optimal control, the total chiller power consumption is 
725.3 kWh with a peak of 2:00 at 70 kW. The building total electrical consumption is 1234.7 kWh with a 
peak of 2:00 at 105 kW. Under the same utility rate structure mentioned before, the total electrical bill is 
$146.2 with a savings of 18%. 

2.8.6.5 Integration of Closed-Loop Optimization (Moving Window) into EnergyPlus 
EnergyPlus has been modified to allow for the optimization of control variables. In real operation, optimi-
zation has to be carried out based on predicted weather conditions because the true weather conditions 
are not known until they have occurred. Therefore, the accuracy of optimal control is affected by the accu-
racy of weather prediction.  
There are many forecasting methods available. Usually, the error increases as the time horizon from 
“now” increases. For example, it is likely that the weather prediction made five hours ahead at the start of 
the day may be a lot less accurate than the weather prediction made one hour ahead. Predictive optimal 
control technique, i.e., certainty-equivalent closed-loop optimization, as illustrated in Figure 18 aims at 
minimizing the impact of inaccuracy of optimization of control variables caused by the inaccuracy of 
weather prediction. 
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Here, two new terms are introduced, the optimization window length WL and moving length ML. The term 
window length refers to the time horizon for weather prediction. The term moving length refers to the fre-
quency of updating weather prediction. Given WL = 24 hours and ML = 2 hours, the moving window opti-
mization operates as follows: 
Before the first hour of the day on which optimal operation commences, weather is predicted once for the 
time horizon WL. Optimization of control variables over the time of WL is conducted based on this predic-
tion. The time consumed by doing optimization is called time cost of optimization TCO. Then, starting 
from hour one of the day, the plant is operated according the optimal control given by the first optimization 
run for ML = 2 hours. Towards the end of the second hour, the true weather for nearly the first two hours 
of the day has already been obtained. The second weather prediction is now carried out over the next WL 
hours, i.e. from hour three of today to hour 2 of tomorrow. The second optimization is then carried out and 
finished by the end of hour 2. The control of the plant from hour three is modified according to the second 
optimization for the next 2 hours. This process is repeated indefinitely. 
 
Adapting Moving Window Optimization Concept into EnergyPlus 
Theoretically speaking, WL and ML can be chosen arbitrarily as long as WL is not less than ML. However, 
given the structure of EnergyPlus, the moving length cannot be adapted with such flexibility. 
EnergyPlus simulation can be called a “one day” simulation, meaning not only the simulation must be at 
least 24 hours or an integer multiple of 24 hours, but also it has to start from hour one of the day and end 
at hour twenty four of the day, i.e. the simulation cannot start from hour 3 of the day and end at hour 2 of 
the next day which is also a 24 hour span. Therefore, the example above, which has a ML = 2 hours and 
the optimization of the second move requires simulation as well as optimization starting at hour 3 of today 
and ending at hour 2 of tomorrow, is impossible for the current EnergyPlus to carry out. The moving win-
dow concept has to be adapted indirectly into EnergyPlus by a two-day-simulation approach. 
Using the two-day-simulation technique, each day of the running period is a group sequence of two days. 
For example, a runtime period of July 20 to July 25 is finished in 6 runs, i.e. 7/20-7/21, 7/21-7/22, 7/22-
7/23, 7/23-7/24, 7/24-7/25, and 7/25-7/26. Given 24 hour is the fixed WL, those moves that do not start 
from hour one of the day, can be carried out by picking the corresponding time span in the two-day-
simulation instead of “run” the time span directly. For example, if a runtime period of July 20 to July 21 is 
required and if ML = 6 hours, the closed-loop optimization is going to be carried out in eight two-day runs 
as follows: 
Move #1: Running 7/20-7/21, optimizing hours 1-24, collecting hours 1-6. 

 Predicting weather of hour 1-24 of 7/20 (Weather prediction of 7/21 is necessary for the run but 
will not affect the results).  

 Optimization based on minimizing total cost of hour 1 of 7/20 to hour 24 of 7/20, collecting optimal 
control from hour 1 to 6.  

 Starting from hour 1 of 7/20, operating the plant according to the optimal control output of the op-
timization until hour 6.  

 At the end of hour 6, updating weather of hours 1-6 of 7/20 with true weather in EnergyPlus. 
 At the end of hour 6, recording the true thermal history at the end of hour 6 by running Energy-

Plus one more time while the weather of first 6 hours being updated with true weather. 
Move #2: Running 7/20-7/21, optimizing hour 7-30, collecting hours 7-12. 

 Predicting weather from hour 7 of 7/20 to hour 6 of 7/21. 
 Optimization based on minimizing total cost of hour 7 of 7/20 to hour 6 of 7/21. In this optimization 

runs, the simulation of hour 7 of 7/20 is started based on uploading the recorded true thermal his-
tory at the end of hour 6. Collecting optimal control from hour 7 to 12. 

 Then starting at 7:00 of 7/20, operating the plant according to the optimal control output of the op-
timization for hours 7 to 12. 

 At the end of hour 12, updating weather of hours 7-12 with true weather in EnergyPlus. 
 At the end of hour 12, recording the true thermal history at the end of hour 12 by running Energy-

Plus one more time while the weather of the second 6 hours being updated with true weather. 
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Move #3: Running 7/20-7/21, optimizing hour 13-36, collecting hour 13-18. 

 Predicting weather form hour 12 of 7/20 to hour 12 of 7/21. 
 Optimization based on minimizing total cost of hour 13-36. In every run of this optimization, the 

simulation of hour 13 starts from uploading the thermal history recorded at the end of hour 12. 
Collecting optimal control from hour 13 to 18. 

 Then starting at 13:00 of 7/20, operating the plant according to the optimal control collected. 
 At the end of hour 18, updating weather of hours 13-18 with true weather in EnergyPlus. 
 At the end of hour 18, recording the true thermal history by running EnergyPlus one more time 

with the weather of the third 6 hours being updated with true weather. 
Move #4: Running 7/20-7/21, optimizing hour 19-42, collecting hour 19~24. 

 Predicting weather form hour 19 of 7/20 to hour 18 of 7/21. 
 Optimization based on minimizing total cost of hour 19-42. In every run of this optimization, the 

simulation of hour 13 starts from uploading the thermal history recorded at the end of hour 12. 
Collecting optimal control from hour 19 to 24. 

 Then starting at 19:00 of 7/20, operating the plant according to the optimal control collected. 
 At the end of hour 24, updating weather of hour 19-24 with true weather in EnergyPlus. 
 At the end of hour 24, recording the true thermal history at the end of hour 24 by running Energy-

Plus one more time while the weather of the fourth 6 hours being updated with true weather. 
Move #5 to Move #8: Similar to Move #1 to Move#4, with run period 7/21-7/22. 
From the above example, it can be observed that for each move a two-day simulation is carried out. The 
second day is just to help gather data of that move. During each move, the process of weather prediction, 
optimization with uploading of thermal history when necessary, operating, updating weather, and re-
cording thermal history is repeated. The next section describes in detail how this adaptation is realized in 
the source code. 
 
Realizing the Moving Window Optimization Concept in EnergyPlus 
The variables DoSTDOptim and DoMoveWinOptim 
In order to keep the flexibility of choosing between standard optimization (without weather prediction) and 
optimization, two new flags are added in DataOptimization: DoSTDOptim and DoMoveWinOptim. In the 
input file, a new section, i.e. OPTIMIZATION:STYLE, is created. The form of this section is as follows: 
   OPTIMIZATION: STYLE, 
             \memo 1: Standard Optimization 
             \memo 2: Moving Window Optimization 
       N1;   \field Optimization Style 
             \type choice 
             \key 1 
             \key 2 
This section allows the user to choose between standard optimization (key value = 1) and moving window 
closed-loop optimization (key value = 2). This section is processed after processing the RunControl sec-
tion in GetProjectData subroutine. As stated above, the GetProjectData subroutine reads information in 
“Run Control” and “Time Step in Hour” sections of the input file, then assigns ‘true’ or ‘false’ to the flag 
DoOptimization. If DoOptimization is ‘true’; lines are added to handle Optimization:Style section in input 
file. If the key value is 1, DoSTDOptim is assigned ‘true’ and DoMoveWinOptim is assigned ‘false’. If the 
key value is 2, DoSTDOptim is assigned ‘false’ and DoMoveWinOptim is assigned ‘true’. 
 
The variable MoveLength 
Another modification of the input file is to add a MoveLength section as follows 
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  MoveLength, 
          \Memo For Moving Window Optimization, it is MoveLengh of shifting. 
          \Memo Window Size is always 24-hour period. 
          \Memo It should be 1 <= MoveLength <=24 from choice. 
      N1;   \field Move Length 
            \Type choice 
            \Key 1 
            \Key 2 
           \Key 3 
           \Key 4 
           \Key 6 
            \Key 8 
            \Key 12 
            \Key 24 
Since the WL is fixed at 24 hours, the ML can only be numbers listed in the key value list. This section of 
input file is processed in calling ProcessOptimizationInput, which needs to be called before starting the 
optimization. 
 
The variable WholeRunPeriod 
An additional variable WholeRunPeriod is incorporated into EnergyPlus in DataOptimization. The value of 
this variable is assigned the first time when collecting environment information, i.e., during the first call of 
GetNextEnvironment. GetNextEnvrironment is called before starting the simulation of each environment.  
In the first call of GetNextEnvironment, the environment information is read and the variable Environment 
is assigned values when calling GetUserWeatherInput. The variable Environment stores information such 
as the start and end date of each environment. Here, lines are added in GetUserWeatherInput that calls a 
newly added subroutine CalcMoveOptimRunPeriod. In this subroutine, the value of RunPeriod when 
conducting moving window optimization is calculated. As shown in the example above, when conducting 
moving window optimization for July 20-July 21 with ML = 6, the number of runtime periods is eight in-
stead of one for the case of standard (consecutive time block) optimization or the normal EnergyPlus 
scenario. For EnergyPlus, this change increases the number of environments so that EnergyPlus will not 
exit after finishing the first move but continues with the next move which may or may not have the same 
run period.  In this newly added CalcMoveOptimRunPeriod subroutine, the number of total environments 
for the moving window optimization is calculated according the two-day simulation rule and the value of 
ML. The WholeRunPeriod variable is initialized and assigned values here. The purpose of the Whol-
eRunPeriod is to store the environment information for all of the moves. Then, instead of reading informa-
tion for variable Environment from the input file, the variable reads information from this WholeRunPeriod 
variable.   
 
The subroutine GetNextEnvironment 
Another important change is to add lines of code to count the number of environments correctly under 
different scenarios. Source code is added to assign correct values to the environment integer counter 
variable Envrn and the logical variable Available so that when running normal EnergyPlus or standard 
EnergyPlus, the Envrn increases by one at each calling of GetNextEnvironment and Available is ‘True’ 
when Envrn is less or equal to the total number of Environment. When carrying out moving window opti-
mization, Envrn increases by one at the start of each new move and keeps the same value within that 
move, and Available is ‘true’ when Envrn is less or equal to the total number of environment. Also, these 
added lines have to separate the optimization runs from the “last run” that is used to record thermal his-
tory after each move. 
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The subroutine ManageMoveWinOptimEnergyPlus 
In SimulationManager, a new branch is added in the branch DoOptimization equals ‘True’. If DoSTDOp-
tim is ‘true’, the program branches into calling ManageSTDOptimEnergyPlus that is ManageOptimization. 
If DoMoveWinOptim is ‘true, the program branches into calling the newly added subroutine Man-
ageMoveWinOptimEnergyPlus. All this subroutine does is to put the content of ManageSTDOptimEner-
gyPlus into loops of moves. Therefore, instead of exiting after finishing one optimization, it starts another 
optimization for the next move until all the moves are finished.  
In the closed-loop optimization, before the optimization of a move starts, weather data for the next 24 
hours is first predicted. After the optimization is done for that move, there is a “last run” at the end of each 
move after the optimization, where the weather file is updated with true weather data up to the end of the 
collection hour of that move and the thermal history at the end of the collecting hour of that move is re-
corded for use in the next move. By controlling the value of the newly added logical variable, i.e., Begi-
nEachRunMoveWinOptimFlag, in DataOptimization at each move, the correct environment to be used in 
that move can be controlled in conjunction with BeginEachRunMoveWinOptimFlag. 
 
The subroutine EnvironSimulation 
In the EnvironSimulation subroutine, flags that mark the environment information are added before each 
environment simulation. Whenever BeginEnvrnFlag is set to ‘true’, the thermal history has to be cleared 
and a warming-up period is necessary to get the thermal history at the beginning of that environment. For 
closed-loop optimization, this flag has to be controlled so that the thermal history recorded from the previ-
ous move can be used in the consecutive move. This is done by modifying the initializing of these control 
flags at the beginning of each environment and before the start of day-loop in the EnvironSimulation.  
Lines that record thermal history at the end of the collecting hour and update thermal history at the start of 
the collecting hour of each move is added inside the hour loop. Since the environment information like the 
collecting hours of each move has already been stored in the WholeRunPeriod, it is straightforward to 
control the thermal history recording and updating. 
With these changes, the major program structure that enables moving window optimization is complete.  
 
An Example of Predictive Optimal Control 
Using the same sample building, if the weather predictor that is available to predict the weather 24 hours 
ahead is to use yesterday’s weather, Figure 29 shows the comparison of optimal control results with and 
without weather prediction updating.  
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Figure 29: Comparison of optimal control of a 15-zone office building with and without weather 

updating 
Average zone air temperature, zone setpoints and chiller electrical consumption are shown. From Figure 
29, it can be observed that without using weather predictor, the optimal control chooses to precool the 
building to 21°C from 1:00 to 7:00, which when updating the weather file proves to be too much precool-
ing. In predictive optimal control, the optimizer changes its strategy according to the newly updated 
weather information. As a result, predictive (closed-loop) optimization cost is $143.6 dollars and saves 3 
more dollars than standard optimization (continuous time block). 

2.8.6.6 Integration of Weather Predictor into EnergyPlus 
The purpose of the weather predictor is to provide predicted weather for the optimization of each move. 
As stated above, the weather information is read daily instead of per timestep as is done with other input 
information. The weather data of the simulated day is recorded in variable Today, which is read and up-
dated in subroutine InitializeWeather. In subroutine InitializeWeather, the BeginDayFlag that is set to ‘true’ 
before the first timestep simulation of each day and set to ‘false’ after the first timestep simulation of each 
day. In subroutine InitializeWeather, whenever BeginDayFlag is ‘true’, variable Today is updated by read-
ing the 24 hours weather data from the weather data file. 
To integrate the weather predictor, a new variable PredictedWeatherData is introduced which stores all 
the weather information of 24 hours in the weather data file. When a new environment or a new move 
begins, the weather of the first day is loaded into variable Tomorrow and then at the beginning of a day, 
the data in Tomorrow is loaded into Today, and variable Tomorrow is updated by reading the next 24 
lines in the weather data file. Thus, to realize weather prediction and update true weather data is a matter 
of manipulating weather data file at appropriate times. 
Once a weather prediction routine predicted the weather for the next 24 hours, it is stored in variable Pre-
dictedWeatherData. A new subroutine UpdateWeatherFileWithPredictedWeather is controlled to be called 
at the start of each move to write the data in PredictedWeatherData into the weather file. Also, at the end 
of each move, the collected true weather data of this move is written into the weather file to replace the 
data predicted by calling new subroutine UpdateWeatherFileWithTrueWeather. 
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Index of Modified Source Codes 
 Added DataOptimization file, which declares all the variables related to the optimization. 
 In SimulationManager file 

• Added: 
o ManageNormalEnergyPlus 
o ManageSTDOptimizationEnergyplus 
o EnvironSimulation 
o FCN 

• Modified: ManageSimulation 
 In ScheduleManager file 

• Added: ProcessOptimizationInput        
• Modified: GetCurrentScheduleValue 

 In WeatherManager file 
• Added: 

o UpdateWeatherFileWithPredictedWeather 
o UpdateWeatherFileWithTrueWeather 
o WeatherPredictor 

• Modified: 
o GetNextEnvironment 
o InitializeWeather 
o ReadEPlusWeatherForDay 
 

2.9 Task 7: Optimization System Design 
Task Purpose: Based on Task 6, a functional design of the predictive optimal controller will be devel-
oped, which will provide functional descriptions of all components of the design, methods for forecasting 
electricity price and non-cooling electricity demand, suitable models for cooling loads and building energy 
systems, communication requirements between optimizer and building automation system (BAS), and 
method(s) to incorporate optimization control variables into the BAS software. 
Some of the key optimization system design decisions will be identified and prioritized. Examples include: 

 What is a suitable real-time system identification method to adequately mirror the actual building 
energy systems behavior as well as building dynamic response and to adjust model parameters? 

 How can electrical demand charges be incorporated into the optimization so that traditional time-
of-use rates may also be accounted for? 

 How can real-time electricity prices be most accurately predicted? 
 What forecasting techniques are suitable for this application, and what are their limitations? 

Task Summary: Based on the closed-loop approach to the predictive optimal control of active and pas-
sive building thermal storage inventory, a calibration procedure for the building model and a methodology 
to account for monthly demand charges have been developed and investigated. Further, several forecast-
ing models are currently under investigation, from simple same-as-yesterday predictors to more advanced 
seasonal autoregressive integrated moving average (SARIMA) models. The results will be reported as 
they are produced. 
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2.9.1 System Identification and Model Calibration 

2.9.1.1 Problem Description 
After setting up the model for the commercial building under investigation and its building energy systems, 
the thermal response of the building and behavior of the building energy systems can be predicted within 
the simulation and optimization environment. However, these simulated results will not accurately repre-
sent the actual response of the real building. At the same time, information from the building automation 
system is available which can be considered a reliable source of data of the actual building given proper 
sensor calibration. Therefore, an efficient method is needed to refine the simulation models using the real-
time data from the BAS.  This procedure can be considered a system identification or model calibration 
process. System identification can be deemed as an investigation process generating a mathematical 
model of a given system based on experimental data, measurements, and observations. Figure 30 shows 
the system identification loop (modified from [99]). 

Building Automation
Management System

Data

Choose Model Set

Choose Criterion of Fit

Calculate Model

Validate Model

Prior Knowledge

Not OK: Revise

OK: Use it
 

 
Figure 30: System Identification Loop 

System identification problem can be formulated as follows [100]: We have observed inputs,u t  and out-
puts  from a dynamic system: 

( )
( )y t

[ (1), (2),..., ( )]tu u u u t=  

[ (1), (2),..., ( )]ty y y y t=  

We are looking for a relationship between past observations [ ,1tu − 1ty − ] and future outputs : ( )y t
1 1( ) ( , ) ( )t ty t g u y v t− −= +  

The additive term v t  arises from the fact that the next output ( ) ( )y t  cannot be the exact function of the 
past data. 
Inverse modeling is known as the process when system identification is based entirely on measured data 
or experiment results. Many endeavors have been undertaken into the building simulation analysis involv-
ing a variety of the approaches and algorithms, such as autoregressive moving average (ARMA) models, 
artificial neural network model, etc. [102] indicate that these approaches are efficient, although they may 
lead to results which do not respect the physical properties of the real systems. Braun and Chaturvedi 
proposed a so-called “gray box” model in [102]. In this approach, the thermal response of the building 
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structure is modeled after the transfer function method, and the parameters of the transfer function are 
constrained within specified feasible ranges. A global search method and nonlinear regression algorithm 
are applied to identify the optimal parameters of the transfer function which generate best thermal re-
sponse to “fit” the data of simulation result of TRNSYS. 
In the given case, EnergyPlus provides a fully detailed simulation environment in which the building can 
be modeled with a high degree of accuracy. Information from the building automation system is available 
that reflects the thermal response of the actual building. This provides an opportunity to train the model of 
EnergyPlus to make it better. The goal of the system identification process is to develop a program or 
environment to calibrate the existing model using the information from the BAS to make it represent the 
building as close as possible. 

2.9.1.2 Methodology  
Objective function 

A modern building automation system provides a wealth of information available either directly from 
measured data by the sensors or indirectly generated by post-processing measured data. In the following 
descriptions, we assume that the total building sensible cooling load is monitored by the building automa-
tion system, a set of data is recorded which represents the hourly sensible cooling load profile. ( )RL t

1 2 1( ) [ , ,....... , ]T TRL t RL RL RL RL−=  

Each element of the vector represents the hourly building real cooling load, t is the index of the time se-
ries, and the T is the number of hours of the monitoring period, which is equal to the total calibration 
hours. On the other hand, the predicted hourly cooling load profile SL is generated by the simulation 
program.  

( )t

1 2 1( ) [ , ,....... , ]T TSL t SL SL SL SL−=  

Then a set of error data is generated: 

1 2 1

1 1 2 2 1 1

( ) [ , ,....... , ]
[ | |,  | |,....... | |,  | |]

T T

T T T T

Er t Er Er Er Er
RL SL RL SL RL SL RL SL

−

− −

=
= − − − −

 

Then the root-mean-square error (RMSE) can be defined as: 
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1
( )
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T

i
i

Er
RMSE

T
==

−

∑
 

In our system identification process, we are trying to calibrate the parameters of the building simulation 
model to minimize the root-mean-square error RMSE. 
 
Calibration parameters 
Three categories of parameters are under consideration. 

Table 12: Candidate parameters for calibration 

Building construction Internal heat gain Energy system 

 Geometry and scale of 
the building, layout of 
the zones. 

 Thermal properties of 
construction materials 
(thermal conductance, 
specific heat, etc). 

 Schedule of occupancy, 
light, and equipment 

 Power density lighting 
and equipment,  

 Number of people. 

 Capacity of the energy 
system components. 

 Operating performance 
parameters of the com-
ponents (COP, PLR, etc) 
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As Table 12 indicates, there is a variety of factors affecting the simulation model. It is impossible and un-
wise to take all of them into consideration. An information collection procedure must precede the setup of 
the simulation model for a building. Some of the parameters in Table 12 can be obtained accurately dur-
ing this procedure. For example, the geometry and scale of the building, fenestration area and the layout 
of zones can be attained from architectural drawings of the building. A checklist is proposed to make this 
procedure as accurate as possible. This can be considered a pre-processing step to calibrate the simula-
tion model. Table 13 gives a draft of the checklist; the detailed list of items depends on the conditions of 
the specific building we are trying to control. 

Table 13: Summary of Checklist of pre-process and calibration information 

Category Information from pre-processing Information needed to calibrate 

Building 
construction 

 Orientation (azimuth) of the building 

 Detailed scale of the building 

 Layout of the zones 

 Information on fenestration of the 
building  

 Detailed scale of the construction  

 Material properties  

 

 

 

thermal conductance 

specific heat 

density 

Internal heat 
gain 

 Detailed schedule of the occupancy 

 Detailed schedule of the lighting 
control 

 Detailed schedule of the equipment 
control 

 Power density of the light (LPD) 

 Power density of the equipment (EPD) 

Energy sys-
tem 

 Organization of the system (includ-
ing layout of the air distribution sys-
tem and water system) 

 Capacity of the components of the 
system 

 Operating parameters 

 

 

Coefficient-of-performance (COP) 

Part-load performance 

 
Calibration environment 
A calibration environment is developed to find the optimal values of the parameters which are hard to ob-
tain by pre-processing. Two approaches are considered to fulfill this task. One is to use the GenOpt to co-
operate with EnergyPlus (Figure 31); the other approach is to use optimization routines from the IMSL 
Math Library or other optimization tools (Matlab optimization tool box) integrated with EnergyPlus 
modules (Figure 32).  
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Read
The measured cooling Load data

Read
IDF file with new object added

(objective building construction)

Initialize the simulation parameters

EnergyPlus Simulation

Track the hourly total cooling load
(OutPutProcessor.F90)

RMSE Calculation

GenOpt

Modified EnergyPlus

Calibration Finished  

Figure 31: Calibration environment with GenOpt 
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Read
The measured cooling Load data

Starting EnergyPlus with SysID simulation

Read
IDF file with new object added

(objective building construction)

EnergyPlus Simulation

Initialize the simulation parameters

Track the hourly total cooling load
(OutPutProcessor.F90)

RMSE Calculation

Candidate Optimization tools
* BCLSF Subroutine
  (IMSL library)
* Matlab Optimization tool box

Not converge

Converge

Write Ouput file and Final material properties

 

Figure 32: Calibration environment with optimization tools integrated with EnergyPlus 

Results 
As a test of these approaches above, a series of calibration simulations was completed and the results 
are presented below. A three-zone building is used as the sample building we are trying to control. Due to 
the lack of actual information coming from a building automation system, the results of a basecase run is 
selected and assumed to be the actual building information as fed back from the building automation sys-
tem. The specific heat of the materials, lighting power density and equipment power density of each zone 
are selected as the calibration parameters. Construction is simplified to one layer to reduce the dimen-
sionality of the optimization problem. Table 14 gives the settings of the basecase and selected optimiza-
tion cases, and Table 15 summarizes the results by GenOpt. 

University of Nebraska – Lincoln and University of Colorado at Boulder Page 62 



Topical Report for Phase I: Analysis, Modeling, and Simulation of Cooperative Agreement DE-FC26-01NT41255 
Project Title: “Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory” 

 

Table 14: Parameters settings for the base case and optimization cases 

Calibration 
parameters 

Specific heat 
[J/kg*K] 

Lighting power 
[W] 

Equipment power 
[W] 

Component of 
EP 

External 
wall Roof East 

zone 
North 
zone 

Resis-
tive 

zone 

East 
zone 

North 
zone 

Resistive 
zone 

Basecase 1750 1350 1500 2500 1500 3000 1500 3000 

Initial values of 
the optimiza-

tion cases 
836 836 1200 2100 1300 2700 1300 2700 

Optimization 
Case 1 √ √       

Optimization 
Case 2   √ √ √ √ √ √ 

Optimization 
Case 3 √  √ √ √    

Optimization 
Case 4 √     √ √ √ 

Optimization 
Case 5 √ √ √ √ √ √ √ √ 

 

Table 15: Summary of results for the optimization cases by GenOpt 
(All the simulation and optimizations is finished on a P4 1.4GHz and 256M ram computer with Windows 2000 platform) 

Optimization 
Cases 

Time 
[min] Number of runs Algorithm Remarks 

Optimization 
Case 1 2-3 32-37 Nelder-Mead 

Hooke-Jeeves  

Optimization 
Case 2 3-4 51-61 Nelder-Mead 

Hooke-Jeeves 
Hooke-Jeeve attained much bet-

ter optimal values 

3-4 54 Hooke-Jeeves Optimization 
Case 3 4-5 76 Nelder-Mead 

 

7 63 Hooke-Jeeves Optimization 
Case 4 3 48 Nelder-Mead 

 

23 404 Hooke-Jeeves Optimization 
Case 5 10 158 Nelder-Mead 

Nelder-Mead converged faster 
than Hooke-Jeeve 
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Table 16: Summary of results for the optimization cases by GenOpt 

(‘NM’ denotes the algorithm is Nelder-Mead, ‘HJ’ denotes Hooke-Jeeves) 

Optimal values 
Calibration 
parameter 

Base 
case 
value Case 1 Case 2 Case 3 Case 4 Case 5 

NM HJ NM HJ NM HJ NM HJ 
External 

wall 1750 
1737 1741 

 
1750 1736 1740 1736 1818 1736 Spe-

cific 
heat 

Roof 
 

1350 1336 1356      1339 1361 

NM HJ 
East 
zone 1500   

1687 1500 
1492 1275   1636 1275 

North 
zone 2500   2255 2400 2467 2500   2030 2475 

Light-
ing 

power 
density 

Resis-
tive 

zone 
1500   1511 1600 1560 1700   1621 1775 

East 
zone 3000   3177 3000   3197 2975 3100 2925 

North 
zone 1500   1698 1600   1611 1500 1551 1575 

Equip-
ment 
power 
density 

 Resis-
tive 

zone 
3000   2641 2900   2704 3000 3116 2975 

Root-mean-square error 0.07 0.009 0.014 0.0001 0.007 0.015 0.017 0.014 0.305 0.027 

 
Table 16 lists the optimal values found by GenOpt. The results show that in all five calibration cases, the 
minimization routine can find optimal values which lead to a thermal response that is very close to the 
actual response of the basecase. The root-mean-square errors in all five optimal cases are small, suffi-
cient for building energy system simulation. Figures 33 to 36 give the cooling load profile of the base case 
which represents the real value from the building management system, including the initial profile and the 
profile with the optimal values found by the optimizer. All four figures indicate that the optimal profile is 
almost the same as the basecase. Comparing the results of root-mean-square error in the five cases, it 
seems that the optimization time and the magnitude of the error increases when the dimensionality of the 
RMSE minimization problem increases. 
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Figure 33: Cooling load profiles of basecase and Case 1 with initial and optimal values 
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Figure 34: Cooling load profiles of basecase and Case 2 with initial and optimal values 
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Figure 35: Cooling load profiles of basecase and Case 3 with initial and optimal values 
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Figure 36: Cooling load profiles of basecase and Case 5 with initial and optimal values 
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Conclusions 
From the results above, the methodology of the calibration environment can be expected to satisfy the 
system identification requirements. This process is not only supposed to be carried out before the predic-
tive optimal control procedure begins, but also to be repeated periodically (e.g., once a month) to ascer-
tain that the building simulation models adequately represent the real building.  
The alternative approach of the calibration environment which integrates the RMSE minimization routines 
into EnergyPlus is under development. This approach is expected to provide greater flexibility for the user 
to manipulate the parameters of the building simulation models in order to decrease the dimensionality of 
the optimization problem and shorten the optimization time. An update of the results of this approach is 
expected to be finished in the near future. 
 
Recommended Procedure 
System identification is a calibration procedure, which harnesses available information from the building 
automation system to calibrate the building simulation model to better represent the actual building, which 
is a prerequisite for the predictive optimal control strategy to qualify as actually being optimal. In addition 
to the general calibration process described above, a specific sequence of calibration steps is recom-
mended  

a) The preprocessing step will be carried out before the building simulation model is placed into the 
calibration environment. It is recommended to make sure that all the items in the checklist have 
been accounted with utmost care. 

b) It is advised to calibrate the internal heat gain parameters first and if possible to keep the num-
ber of parameters to be fit low in order for the dimensionality of the RMSE minimization problem 
to be as low as possible. 

c) The material properties are crucial factors affecting the building thermal response; it is sug-
gested to calibrate these factors when all of the other parameters have been properly tuned. 

d) The calibration of operating parameters of the energy system of the building can be done sepa-
rately from the other parameters mentioned above. The same methodology can be applied. 

 

3 Results and Discussion 
3.1 Introduction 
This chapter contains a parametric analysis of predictive optimal control of building thermal storage inven-
tories. Different parameters, e.g. building thermal mass, electrical utility rate, season, plant size, are con-
sidered. Also, the effects of different prediction periods are compared and their results are analyzed. 

3.2 Keywords 
Some of the keywords frequently referred to in this chapter are 

 Standard Optimization is the optimization of building setpoints based on true weather data; there-
fore, there is no prediction of weather involved.  

 Building Modes is to group building zone temperature setpoints according to the building’s opera-
tional status. Usually, building can be operated in four modes, i.e. Unoccupied-Offpeak, Unoccu-
pied-Onpeak, Occupied-Offpeak, and Occupied-Onpeak, indicating whether the building is occu-
pied (and therefore, thermal comfort need to be maintained) and whether electricity is expensive 
(during on-peak period). 

 Sequential Optimization means to optimize zone temperature setpoints (passive storage) first, 
and then based on the optimized setpoints to optimize active storage charging/discharging rates. 

 Predictive Optimization is synonymous with closed-loop moving window optimization (CLO) in this 
document. Predictive optimization is an optimization technique that attempts to compensate for 
the inaccuracies of standard optimization by adjusting weather prediction and thus repeat the op-
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timization periodically based on updated weather and new prediction. The time span of one pre-
diction is called window length and the period between two predictions is called moving length.  

 Continuous time block optimization (CTBO) has WL = ML = 24 hours, i.e., a policy is planned 
over the next WL = 24 hours and executed for the same ML = 24 hours. Update forecasts are 
therefore not utilized. 

3.3 Building Models, Weather Files and Basecase Scenario 
This section describes the building models that are used to run the parametric analysis and the base 
cases that the parametric analysis is compared to. 

3.3.1 Building Models 
To simulate a typical office building, a three-story fifteen-zone building as shown in Figure 37 is modeled.  
 

 
Figure 37: Isometric view of 15-zone office building 

 
Building floor area is 48 by 36 square meters. Each floor is divided into five zones, i.e. North-Zone, South-
Zone, East-Zone, West-Zone and Center-Zone. Figure 38 shows the zone dimensions of each floor.  The 
dimensions of each zone are: North-Zone: 48m by 6m South-Zone: 48m by 6m, West-Zone: 24m by 12m, 
East-Zone: 24m by 12m. 
 

 

South-Zone 

North-Zone 

East-
Zone 

West-
Zone 

 
 

Center -Zone 

 
 

Figure 37: Floor dimensions 
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Table 17 describes the wall constructions of exterior walls, interior partitions, ceilings and floors for a su-
per heavy mass case. This construction gives a building mass of 203.5 lbm/ft2. 

Table 17: Construction of a very heavy mass building 
CONSTRUCTION d (m) k (W/m-K) Rho (kg/m3) Cp (J/kg-K) R (m2 K /W)

    EXTWALL-mass-in
    A1 - 1 IN STUCCO 0.0250 0.691831 1858.14 836.8 0.03614
    b6 0.0500 0.043000 91.00 840.0 1.16279
    E2 - 1 / 2 IN SLAG OR STONE 0.0120 1.435549 881.02 1673.6 0.00836
    C4 - 4 IN COMMON BRICK 0.1000 0.726422 1922.22 836.8 0.13766
    E1 - 3 / 4 IN PLASTER OR GYP BOARD 0.0200 0.726422 1922.22 836.8 0.02753
    InternalWall
    E1 - 3 / 4 IN PLASTER OR GYP BOARD 0.0200 0.726422 1922.22 836.8 0.02753
    C4 - 4 IN COMMON BRICK 0.1000 0.726422 1922.22 836.8 0.13766
    E1 - 3 / 4 IN PLASTER OR GYP BOARD; 0.0200 0.726422 1922.22 836.8 0.02753
    ceiling
    E1 - 3 / 4 IN PLASTER OR GYP BOARD 0.0200 0.726422 1922.22 836.8 0.02753
    C10 - 8 IN HW CONCRETE 0.2000 1.729577 2242.59 836.8 0.11564
    E1 - 3 / 4 IN PLASTER OR GYP BOARD; 0.0200 0.726422 1922.22 836.8 0.02753
    ROOF-mass-in
    C12 - 2 IN HW CONCRETE 0.0500 1.729577 2242.59 836.8 0.02891
    E2 - 1 / 2 IN SLAG OR STONE 0.0120 1.435549 881.02 1673.6 0.00836
    E3 - 3 / 8 IN FELT AND MEMBRANE 0.0100 0.190254 1121.29 1673.6 0.05256
    B12 0.0760 0.043000 91.00 840.0 1.76744
    c13                    0.1500 1.731000 2243.00 840.0 0.08666
    FLOOR SLAB 8 IN
    DIRT 12 IN 0.3048 0.172958 1041.20 836.8 1.76228
    C10 - 8 IN HW CONCRETE;  0.2000 1.729577 2242.59 836.8 0.11564  

 
In this parametric analysis, three different mass levels are studied, i.e., heavy-mass, medium-mass and 
light-mass. These mass levels are modeled based on the construction in Table 17. By varying the density 
of the material in constructions in Table 17, three different mass levels are achieved. The heavy mass 
building has a mass level of 130 lbm/ft2. The medium mass building has a mass level of 81 lbm/ft2. The 
light mass building has a mass level of 37.5 lbm/ft2. 
The building is occupied from 8:00-19:00 and unoccupied for the rest of the day. There are 0.08 per-
son/m2. The equipment and lightings are modeled in the same schedule that gives 31.25 W/m2. Table 18 
summarizes the internal load schedules. 

Table 18: Internal load schedules 
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2
Lighting WeekDay 0.05 0.05 0.05 0.05 0.05 0.05 0.2 1 1 1 1 1 1 1 1 1 1 0.5 0.05 0.05 0.05 0.05 0.05 0.0
People WeekDay 0 0 0 0 0 0 0 0.5 1 1 1 1 0.5 1 1 1 1 0.5 0.1 0 0 0 0 0

4
5
 

Three electrical rate structures are studied: strong-incentive rate, weak-incentive rate, and no-incentive 
rate. Table 19 summarizes these rates. 

Table 19: Electrical rate structures 
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Energy Rate ($/KWH) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.05 0.05 0.05 0.05 0.05 0.05
Demand Rate ($/KW) 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0

Energy Rate ($/KWH) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Demand Rate ($/KW) 5 5 5 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 5 5 5 5 5

Energy Rate ($/KWH) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Demand Rate ($/KW) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Stong Incentive Elec. Rate Structure

Weak Incentive Elec. Rate Structure

NO Incentive Elec. Rate Structure

0

5

 
 
From above information, it can be deduced that the building is operated under the following five unique 
building modes. 
 Unoccupied-Offpeak-1: 1:00-6:00 
 Occupied-Offpeak-1: 7:00-8:00 
 Occupied-Onpeak: 9:00-18:00 

University of Nebraska – Lincoln and University of Colorado at Boulder Page 69 



Topical Report for Phase I: Analysis, Modeling, and Simulation of Cooperative Agreement DE-FC26-01NT41255 
Project Title: “Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory” 

             Occupied-Offpeak-2: 19:00 
             Unoccupied-Offpeak-2: 20:00-24:00 

3.3.2 System and Plant Models 

3.3.2.1 Secondary HVAC System Model 
A VAV reheat system with dual setpoints with deadband zone control is used. Table 20 shows the zone 
setpoints and minimal fresh air schedule for conventional nighttime setback control and the zone set-
points upper and lower bounds for zone control setpoint optimization. 

Table 20: Night-Setback control schedules 
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2
Cooling Setpoint 45 45 45 45 45 45 24 24 24 24 24 24 24 24 24 24 24 24 24 45 45 45 45 45
Heating Setpoint 12 12 12 12 12 12 18 18 18 18 18 18 18 18 18 18 18 18 18 12 12 12 12 12
Minimal OA Fraction 0 0 0 0 0 0 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0 0 0 0 0

4

 
The outdoor air flow rate is controlled by a temperature based economizer that adjusts the outdoor air 
fraction from 0% to 100% by comparing the temperature of return air and outdoor air. At the same time, 
the outdoor air fraction must meet the schedule of minimal outdoor air fraction. 

3.3.2.2 Primary Plant Model 
 Big Chiller: Cooling is provided by a constant-COP electrical chiller with a nominal capacity of 500 kW 

and a COP (coefficient-of-performance) of 4.5.  
 TES Model: The constant-COP TES model is used. This model includes an ice tank and its dedicated 

constant COP chiller (small chiller) and tower. The ice tank size is 1,500 kWh. The small chiller nomi-
nal capacity is 250 KW with a constant COP of 3.0. 

3.3.3 Weather File and Simple Weather Predictor 
In this document, the location for all the simulations is Phoenix, AZ.  

3.3.3.1 Summer, Spring and Winter TMY2 Weather 
Figure 38 shows the dry bulb temperature of a typical day in summer, spring and winter, i.e. July-20th, 
April-2nd, January-17th. Table 21 summarizes the dry bulb temperature information of the three typical 
days. 
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Figure 38: Outdoor dry-bulb temperature of typical days of summer, spring, and winter in Phoenix, AZ 

Table 21: Summary of outdoor dry bulb temperatures of typical days in summer, spring and winter 
(unit: degree C) 20-Jul 2-Apr 17-Jan
Average 34.3 23.9 12.3
Minimal 27.8 14.4 8.9
Maximal 41.1 32.8 19.4
Day-Night Swing 13.3 18.4 10.5  

3.3.3.2 A Simple Weather Predictor 
A simple weather predictor that predicts a 24-hour weather profile based on the previous 24-hours of 
weather is used. This weather predictor makes the first prediction at hour one of the day by using the 
weather of last 24 hours. Then at every hour requiring an update, the prediction is adjusted by calculating 
the error of the prediction one hour before the updating hour and then shifting the last prediction upwards 
or downwards by the same absolute deviation. Figure 39 shows an example of the results of this predictor 
by using this predictor to update prediction every ML = 6 hours for July-20th. 
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Figure 39: Prediction of weather of July-20 using a simple predictor and updating every 6 hours 

Figure 39 illustrates the true weather data and the weather prediction at each move, i.e. at hour 1,7,13, 
and 19. Also shown is the overall weather prediction. The average errors of predictions at each move are 
3, 0.7, -1.76 and -1.28 °C respectively. 

3.3.4 Basecases 
The optimal control of passive and active building thermal storage inventories is compared with two base-
cases. In basecase-1, the ice tank is not used, and the plant/system operation is nighttime setback con-
trol. In basecase-2, the plant/system control is a nighttime setback control but an ice tank is used to try to 
shift part of the on-peak load to off-peak. In this base case, chiller-priority control is used: the ice tank is 
charged to 100% during the night when the electrical rate is off-peak and during the hours that the cooling 
load is nonzero, the cooling load is met by the big chiller up to its capacity and the ice tank is going to 
melt as much ice as it is necessary to meet the fraction of cooling load that cannot met by the big chiller. 
Since the ice tank control is not optimized, chiller-priority control may actually cost more than without ice 
tank. Table 22 shows the comparison of the two base cases, i.e. base case with ice tank dormant and 
base case with chiller-priority control. Different mass levels L (light), M (medium), and H (heavy), different 
electrical rate structure 0 (no incentive), 1 (weak incentive) and 2 (strong incentive), and different seasons 
are compared. 

University of Nebraska – Lincoln and University of Colorado at Boulder Page 72 



Topical Report for Phase I: Analysis, Modeling, and Simulation of Cooperative Agreement DE-FC26-01NT41255 
Project Title: “Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory” 

Table 22: Comparison of TES dormant and Chiller priority controlled TES plant 
L-0 L-1 L-2 M-0 M-1 M-2 H-0 H-1 H-2

Base case -1: TES Dormant 294.5 294.5 263.3 292.0 292.0 260.4 288.8 288.8 257.5

Base case -1:Chiller Priority 327.9 327.9 221.6 325.4 325.4 218.8 322.1 322.1 215.8

Comparing with Base case-1 10.2% 10.2% -18.8% 10.2% 10.2% -19.0% 10.3% 10.3% -19.3%

Base case -1: TES Dormant 223.8 223.8 200.4 218.8 218.8 195.4 216.0 216.0 192.8

Base case -1:Chiller Priority 266.3 250.0 135.4 266.2 250.0 135.4 266.0 249.7 135.3

Comparing with Base case-1 16.0% 10.5% -48.0% 17.8% 12.5% -44.3% 18.8% 13.5% -42.5%

Base case -1: TES Dormant 149.3 149.3 131.1 148.3 148.3 130.1 147.9 147.9 129.6

Base case -1:Chiller Priority 260.7 243.8 133.7 260.7 243.8 133.7 260.7 243.8 133.7

Comparing with Base case-1 42.7% 38.8% 1.9% 43.1% 39.2% 2.7% 43.3% 39.3% 3.0%

SUMMER

SPRING

WINTER

 
 
From Table 22, it can be observed that when the electrical rate structure offers no incentive or only a 
weak incentive, operation of the ice tank cost more money. With a strong incentive electrical rate, chiller-
priority control of ice tank can save some money in the summer and spring but not in the winter. This is 
because in summer and spring, the cooling load is substantial. The strong incentive electrical rate can be 
taken advantage of by shifting a large amount of cooling load from on-peak to off-peak. In the winter, the 
cooling load is small. Even under strong-incentive electrical rates, less money can be saved by shifting 
the load from on-peak to off-peak and since the COP of the small chiller is significantly lower than the big 
chiller’s, the saving from shifting the load is not sufficient to compensate for the inefficiency of the small 
chiller. 
It can be concluded from Table 22 that, without appropriate control, not only does the TES system possi-
bly not save money, but it may actually cost more money than a system without active storage. 

3.4 Assumptions 
3.4.1 Building Mode and Sequential Optimization 
It is necessary to use some simplifications to help the optimization routine find globally optimal solutions. 
In this chapter, the building mode and sequential optimization techniques are used in all of the optimiza-
tion runs.  
The zone air temperature setpoints are optimized using the IMSL BCPOL routine to minimize total electri-
cal costs. After the optimal zone setpoints are found, the plant cooling load profile can be obtained by 
running the simulation program once more. Then this plant load profile and other non-cooling electrical 
loads can be transferred to the dynamic programming module to find the optimal charging discharging 
rates of the ice tank to yield the minimal total electrical cost. 
The active storage charging/discharging rate is optimized using dynamic programming. Since dynamic 
programming itself can only minimize incrementally additive energy cost, a demand cost limit is added as 
a hard limit at each calculation of instant cost in the backward propagation process of the dynamic pro-
gramming.  Each time when the instantaneous cost is calculated, the demand cost is calculated and 
compared with the demand cost limit. When this instant demand cost is larger than the demand cost limit, 
a penalty value is added to the instant cost. Therefore, the backwards propagation process is forced to-
wards a route that has a demand cost lower that the given demand limit, i.e., it observes the preset de-
mand ceiling. Given different demand limits, different route of optimal charging/discharging rate can be 
found. Thus, an outer loop that provides different demand limits is added to help dynamic programming to 
minimize energy cost while search for lowest demand cost.  
The demand limit has to be chosen appropriately. The demand cost of a nighttime setback control is cho-
sen to be the highest demand limit. The demand cost when there is no cooling load, i.e., non-cooling elec-
trical loads only, is chosen to be the lowest demand limit. And the demand limits used in the dynamic pro-
gramming is increased from the lowest demand limit to the highest demand limit. Then a comparison of 
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the total electrical costs under these different demand limits is performed to find the best demand limit 
that gives the lowest total electrical cost. This completes the optimization of the passive and active build-
ing thermal storage inventory. 
This process can be described as in the following figure and is called non-feedback sequential optimiza-
tion because after the active system is optimized, the solution is not fed back to the passive system to 
adjust the optimization of the passive system. 

  D emand Cost Limit
 

IceTank 
Charging 
/DisCharging 

DP Optimizing Load profile Passive System 
Active System Optimization   

Setpoints    
 

Figure 40: Non-feedback sequential optimization 
 
A feedback sequential optimization takes the optimized active storage charge/discharge rates and feeds 
those back to optimize the passive system and the results are compared until convergence is reached. 
 

Demand Cost Limit 

Y DP Optimizing 
Active System

ULoad profile Passive Sys-
tem Optimiza-
tion 

Converg-
ing?

Setpoints 

N 

 
Figure 41: Sequential optimization with feedback 

 
Table 23 compares some of the optimization results from no-feedback and from onetime feedback 
sequential optimization. 
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Table 23: Comparison of no-feedback sequential optimization and feedback sequential optimization 

H-2-SUMMER H-1-SUMMER L-2-SUMMER L-1-SUMMER
BASE-CASE 257.48 288.78 263.31 294.53
No-feedback 148.15 269.19 149.15 275.17
SAVING -42.5% -6.8% -43.4% -6.6%
Feedback-once 147.68 269.73 149.04 274.86
SAVING -42.6% -6.6% -43.4% -6.7%

H-2-SPRING H-1-SPRING L-2-SPRING L-1-SPRING
BASE-CASE 192.78 215.97 200.37 223.78
No-feedback 129.01 210.1 130.75 218.09
SAVING -33.1% -2.7% -34.7% -2.5%
Feedback-once 127.58 210.02 130.85 213.44
SAVING -33.8% -2.8% -34.7% -4.6%

SUMMER

SPRING

 

 
It can be seen that the difference of savings between no-feedback sequential optimization and onetime 
feedback sequential optimization ranges from 0.0-2.5%. Therefore, no-feedback sequential optimization is 
sufficiently accurate for the project. The optimization results in this document are therefore conducted with 
no-feedback sequential optimization. 

3.4.2 Typical Day Optimization 
The way the building thermal mass level affects the optimal zone air setpoints varies according to the 
thermal history of the thermal mass. Optimization based on different initial thermal histories may lead to 
completely opposite results, e.g. first-day optimization and typical-day optimization. In a first day optimiza-
tion, the day that will be optimized is the first day after past conventional controls, i.e., yesterday was still 
conventional control and today is going to be optimized. In a typical-day optimization, the day that needs 
to be optimized is a day following an optimized day, i.e., today is going to be optimized and yesterday was 
optimized. Table 24 compares the total electrical costs of optimizing zone air setpoints of a heavy-mass 
building and a light-mass building under first day optimization. Figure 42 and Figure 43 shows the indoor 
air temperatures and big chiller electrical use. 
 

Table 24: Light-mass and heavy-mass building under first day optimization 

Heavy Mass Light Mass

Night Setback Control Total Elec. Cost ($) 221.6 263.0

Optimal Control Total Elec. Cost ($) 183.6 205.5

Savings -17.1% -21.9%  
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Figure 12: Optimizing zone setpoints of a light mass building under first day optimization 
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Figure 43: Optimizing zone set points of a heavy mass building under first day optimization 

From Table 24, it can be observed that the light-mass building saves more than the heavy-mass building 
does when the passive thermal inventory is optimized. As shown in Figure 42 and Figure 43, the light-
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mass building exhibits more precooling than the heavy mass building does. This is because under first-
day optimization yesterday was still under nighttime setback control. The indoor air temperature during 
the night is high. Heavy mass buildings stores more heat in the building mass than light-mass buildings. 
Therefore, the next morning, it will take more chiller power in the heavy-mass building to cool this thermal 
mass down. Balancing the advantage of precooling and the disadvantage of precooling a heated heavy 
mass, the optimization routine chooses not to precool the heavy-mass building as much as it does to the 
light-mass building. Therefore, it appears that the light mass building offers a greater potential for savings 
than the heavy-mass building does. This is not correct. 
It is the typical day performance that is of greater interested in this report. Therefore, the results of the 
simulations in this report are all based on a typical day instead of a non-typical day such as the first day. 
Since indoor air temperature is a more direct reflection of the results of the control than the setpoints, it is 
shown in the figures instead of the setpoints in this report. 

3.5 Continuous Time Block Optimization with Moving Length ML = 24 hours 
In this section, we want to study the effects of building mass, electrical utility rate, season, plant size and 
thermal comfort on optimization. In order to focus on these parameters only, results of predictive optimiza-
tion with moving length ML = 24 hours are presented, also known as continuous time block optimization 
(CTBO). This way, all the optimizations are done to minimize the electrical cost of hour one to hour 24 of 
the optimized day and there is no extra cost from the next day involved, which will at times affect the con-
clusions on the effects of the parameters that are studied in this section. In reality, closed-loop predictive 
optimal control with moving length ML < 24 hours are more appropriate and but also more complicated to 
analysis. Results of predictive optimization with moving length less than 24 hours are discussed below. 

3.5.1 Effect of Building Mass 
Three building mass levels are considered, i.e. light-mass, heavy-mass and medium-mass. Table 25 
summarizes the results of optimization the passive thermal inventory for different building mass levels 
under different rate structures and seasons. 

Table 25: Summary of passive thermal storage optimization 

LIGHT MEDIUM HEAVY LIGHT MEDIUM HEAVY LIGHT MEDIUM HEAVY
NIGHT-SETBACK CTRL. 355.2 352.1 348.1 355.2 352.1 348.1 317.4 313.9 310.3
OPTIMAL CTRL. 354.8 351.8 347.6 332.2 329.5 326.9 229.1 219.9 216.9
SAVINGS -0.1% -0.1% -0.2% -6.5% -6.4% -6.1% -27.8% -29.9% -30.1%

LIGHT MEDIUM HEAVY LIGHT MEDIUM HEAVY LIGHT MEDIUM HEAVY
NIGHT-SETBACK CTRL. 276.7 270.9 267.6 276.7 270.9 267.6 247.7 242.0 238.9
OPTIMAL CTRL. 272.7 266.8 264.6 260.0 249.1 251.4 189.4 182.9 182.4
SAVINGS -1.4% -1.5% -1.1% -6.0% -8.1% -6.1% -23.5% -24.4% -23.7%

LIGHT MEDIUM HEAVY LIGHT MEDIUM HEAVY LIGHT MEDIUM HEAVY
NIGHT-SETBACK CTRL. 187.2 186.1 186.2 187.2 186.1 186.2 166.5 164.6 164.3
OPTIMAL CTRL. 181.5 183.7 176.1 181.5 176.8 169.9 122.9 127.5 127.6
SAVINGS -3.0% -1.3% -5.4% -3.0% -5.0% -8.7% -26.2% -22.6% -22.3%

WINTER

SUMMER

SPRING

NO INCENTIVE RATE WEAK INCENTIVE RATE STRONG INCENTVIE RATE

 
 

As it can be observed in Table 25, the savings potential of light-mass, medium-mass and heavy-mass 
buildings are similar. The heavy-mass building does not have prominent advantage in terms of optimal 
control of passive storages. This is due to many reasons and should be analyzed on a case-by-case ba-
sis. For example, one reason is that in the summer with high incentive electrical rates, the cooling energy 
is less than 50% percent of the total energy used. The cooling energy savings coming from optimal con-
trol of passive thermal storage can only be partially reflected in total energy use. Figure 44 shows the in-
door air temperature and cooling energy use of optimal controlled passive storage of a light-mass building 
and a heavy-mass building. 
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Figure 44: Comparison of optimal control of passive thermal storage of a light mass and heavy mass 

building 
 

From Figure 44, it can be observed that the heavy-mass building shifts more on-peak cooling energy use 
to off-peak than the light mass building does. Actually, in the nighttime setback controls, the light-mass 
building total cooling costs is $137 and the heavy mass building total cooling costs is $131. In the optimal 
control, the light mass building total cooling costs is $71.3 and the heavy mass building total cooling costs 
is $55.4. Therefore, considering cooling costs savings only, the light-mass building saves 47.9% and the 
heavy-mass building saves 57.5%. The difference of mass level can be therefore clearly observed. 
It can also be observed that instead of letting the indoor air temperature float, both optimal controls con-
tinue to cool the building down after on-peak hours. The light-mass building cools for one hour in 19:00 
and the heavy mass building cools continuously to about 19°C starting from 20:00. The reason for cooling 
during this period is due to the typical-day optimization. The optimization is done in a way that it thinks the 
day is a typical-day. Therefore, it keeps control zone air temperature during the night so the thermal his-
tory for the precooling of the morning is controlled not to be too warm to start precooling. This difference 
between typical-day optimization and non-typical day optimization can be seen clearly by comparing Fig-
ure 43 with Figure 44, i.e., optimization of zone temperature setpoints of a heavy-mass building using 
first-day simulation. 

3.5.2 Effect of Economizer 
Due to the availability of a temperature economizer, which adjust fresh air flow rate by comparing the out-
door air temperature and return air temperature, night ventilation can be used to increase the effect of 
passive thermal storage. Figure 45 shows indoor air temperature and outdoor air fraction of optimal con-
trol with or without economizer. Figure 46 shows the electrical energy use of the big chiller. 
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Figure 45: Indoor air temperature and OA fraction of optimal control with or without economizer 
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Figure 46: Chiller electrical energy use of optimial control with or without economizer 
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From the figures, it can be observed that in spring and winter, the economizer can take advantage of cool 
night air to accomplish part of the precooling. Cooling energy is saved. Table 26 summarizes the com-
parison of optimal control with or without economizer. 

Table 26: Comparison of optimal control with or without economizer 

L-2 M-2 H-2
NIGHT SETBACK CTRL:TOTAL COST ($) 247.70 241.95 238.91
OPT. CTRL with ECONOMIZER 189.45 182.89 182.40
SAVINGS -23.5% -24.4% -23.7%
OPT. CTRL without ECONOMIZER 195.83 189.53 187.73
SAVINGS -20.9% -21.7% -21.4%

L-2 M-2 H-2
NIGHT SETBACK CTRL:TOTAL COST ($) 166.47 164.62 164.31
OPT. CTRL with ECONOMIZER 122.90 127.46 127.64
SAVINGS -26.2% -22.6% -22.3%
OPT. CTRL without ECONOMIZER 137.81 134.43 137.77
SAVINGS -17.2% -18.3% -16.2%

SPRING

WINTER

 
 

3.5.3 Effect of Electrical Rate 
Three electrical rate structures are considered, i.e. no-incentive, weak-incentive and strong-incentive. 
Figure 47 shows the indoor air temperature, ice level of optimal control under strong-incentive and weak-
incentive rates. Figure 48 shows the total electrical energy use of optimal control under strong and weak 
incentive rates. Also shown is the indoor air temperature and total electrical energy use of night setback 
control. 
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Figure 47: Optimal control variables under strong and weak electrical rate 
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Figure 48: Optimal control total electrical energy use under strong and weak electrical rate 

 
It can be observed that under strong electrical rate incentives, both passive and active thermal storage 
are made use of substantially. Before the building is occupied at 8:00, zone temperature is precooled to 
18-20°C during the night and the ice tank is charged full. When building begins to be occupied and elec-
trical rate becomes on-peak, zone air temperatures are kept at the highest limit of 24°C. The ice tank is 
not discharged immediately but is discharged during the whole on-peak period. Therefore, a big portion of 
on-peak energy is shifted to off-peak time. And the daily peak demand appears at 8:00 when off-peak 
demand rate is used. 
Under the weak electrical rate, since the energy cost rate is flat throughout the day and the demand rate 
is 5$/kW off-peak and 10$/kW on-peak, there is not much the ice tank can do to shift the load due to the 
lower COP of the ice tank dedicated chiller. Only one hour before the on-peak rate started, i.e., at 8:00, 
the passive storage is precooled. The purpose of this one-hour precooling is to shift the peak demand 
from 14:00 during the on-peak period to 8:00 in the off-peak period. Cost saving is achieved by this peak 
demand shifting. 
Table 27 summarized the results of optimization both the passive and active thermal inventory for differ-
ent electrical rate structures. Comparing the optimally controlled TES system with a TES-less system un-
der night time setback control (base-1), it can be observed that the higher incentive the rate structure is, 
the more savings can be obtained by shifting on-peak load to off-peak period by using both passive and 
active thermal inventories. Comparing an optimally controlled TES system with a chiller-priority controlled 
TES system; it can also be observed that optimal control saves more than chiller-priority control does. 
When using chiller-priority control, there are numerous cases that it cost more than without ice tank sys-
tem. However, using optimal control can always achieve savings or at least will not cost more than no ice 
tank system. 
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Table 27: Summary of effect of electrical rate structure 

L-0 L-1 L-2 M-0 M-1 M-2 H-0 H-1 H-2
base - 1 294.5 294.5 263.3 292.0 292.0 260.4 288.8 288.8 257.5
Optimal CTRL Savings 0.0% -6.7% -43.4% 0.0% -6.8% -42.4% 0.0% -6.8% -42.5%
base - 2 327.9 327.9 221.6 325.4 325.4 218.8 322.1 322.1 215.8
Optimal CTRL Savings -10.2% -16.2% -32.7% -10.2% -16.4% -31.4% -10.3% -16.4% -31.3%

SPRING L-0 L-1 L-2 M-0 M-1 M-2 H-0 H-1 H-2
base - 1 223.8 223.8 200.4 218.8 218.8 195.4 216.0 216.0 192.8
Optimal CTRL Savings -1.0% -4.2% -34.7% -1.7% -6.3% -33.8% -1.3% -2.7% -33.1%
base - 2 266.3 250.0 135.4 266.2 250.0 135.4 266.0 249.7 135.3
Optimal CTRL Savings -16.8% -14.2% -3.4% -19.2% -18.0% -4.5% -19.8% -15.9% -4.7%

WINTER L-0 L-1 L-2 M-0 M-1 M-2 H-0 H-1 H-2
base - 1 149.3 149.3 131.1 148.3 148.3 130.1 147.9 147.9 129.6
Optimal CTRL Savings -0.6% -6.6% -17.1% -1.9% -8.4% -16.4% 0.0% -6.5% -16.2%
base - 2 260.7 243.8 133.7 260.7 243.8 133.7 260.7 243.8 133.7
Optimal CTRL Savings -43.1% -42.8% -18.7% -44.2% -44.3% -18.7% -43.3% -43.3% -18.7%

SUMMER

SPRING

WINTER

 
 

3.5.4 Effect of Season 
Three seasons are considered, i.e. summer, spring, winter. Figure 49 shows the indoor air temperature, 
ice inventory level of optimal control in summer and spring. Figure 50 shows the total electrical energy 
use of optimal control in summer and spring. Also shown is the indoor air temperature and total electrical 
energy use of nighttime setback control. 
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Figure 49: Indoor temperature and ice level of optimal control in summer and spring 
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Figure 50: Total energy use of optimal control in summer and spring 

 
It can be observed that in summer and spring, both passive and active storage are optimized so that al-
most all of the cooling-related electrical energy of the total electrical energy is shifted to off-peak hours. In 
the summer, cooling electrical energy is about 50% of total electrical energy used. In spring, cooling elec-
trical energy is about 34% of total electrical energy used. Under strong-incentive rate, there is more en-
ergy shifted to off-peak hours in summer than in spring or winter. If the plant size is large enough, a large 
amount of savings can be achieve in summer than in spring or winter. The seasonal effect can also be 
observed in Table 27. 

3.5.5 Effect of Plant Size 
Figure 51 shows the indoor air temperature and ice storage inventory level of two plants of different sizes. 
Plant 1 has big chiller capacity of 200 kW and ice tank size of 300 kWh. Plant 2 has big chiller capacity of 
300 kW and ice tank size of 300 kWh. Figure 52 shows the total electrical energy uses. Summary of re-
sults from different plant sizes is included in Table 28. 
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Figure 51: Indoor temp and ice level of optimal control of two plants 
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Figure 52: Total electrical energy use of optimal control of two plants 
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Table 28: Summary of optimal control costs and savings of different plants 
Chiller 500 KW, Tank 1500 KWH

BASE 257.48
OPTIMAL 148.15
SAVING -42.5%

CHILLER 200 KW, TANK 1500 KWH
BASE 235
OPTIMAL 230
SAVING -2.1%

CHILLER 200 KW, TANK 300 KWH
BASE 235
OPTIMAL 206
SAVING -12.3%

CHILLER 300 KW, TANK 300 KWH
BASE 235
OPTIMAL 157
SAVING -33.2%

CHILLER 300 KW, TANK150 KWH
BASE 235
OPTIMAL 161
SAVING -31.5%

CHILLER 300 KW, TANK400 KWH
BASE 235
OPTIMAL 154
SAVING -34.5%

CHILLER 300 KW, TANK400 KWH
BASE 235
OPTIMAL 163
SAVING -30.6%  

 
It can be observed that as the big chiller sizes down, it has less capability to do precooling, i.e., to make 
use of the passive thermal inventory. As the ice tank is sized down, it has less capacity to make use of  
the active thermal inventory. 

3.5.6 Effect of Thermal Comfort Penalty 
When thermal comfort is considered, the cost function of the optimization routine becomes: 
  (1 )CostFunctionValue TotalElectricalCost ThermalComfortPenalty= +

The thermal comfort penalty coefficient is calculated as follows: 
At hour t, the Fanger PMV value of the building is the PMV value of the most uncomfortable zone, i.e., 

 ( )max  for 1, ,number of zonest jPMV PMV j= = …  

The hourly thermal comfort penalty coefficient at hour t is, 

 
2

0 if 0.5 or if the building is unoccupied
1 if 2.0 and the building is occupied

0.5 if 0.5 < 2.0 and the building is occupied
1.5

t t

t t

t
t t

R PMV
R PMV

PMV
R PMV

= ≤
= >

 − = ≤  

 

And the total thermal comfort penalty coefficient is the sum of hourly thermal comfort penalty coefficient 
over the optimizing period, i.e., 
  t

t
ThermalComfortPenalty PMV=∑
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Figure 53 shows the PMV value of each zone at each hour under optimized indoor air temperature with-
out thermal comfort penalty. Figure 54 shows the PMV value of each zone at each hour under optimized 
indoor air temperature with thermal comfort penalty. 
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Figure 53: Indoor temperature and PMV value of optimal control without thermal comfort penalty 
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Figure 54: Indoor temperature and PMV value of optimal control with thermal comfort penalty 
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It can be observed from the above figures that without thermal comfort penalty, indoor temperature during 
occupied period (8:00-19:00) is kept at 24°C. In the afternoon (after 13:00) most of the zones are too 
warm. Thermal comfort penalty coefficient is 0.182. With thermal comfort penalty, indoor temperature dur-
ing occupied period is kept at 22.8°C. Almost all of the zones are in comfort area (-0.5 ≤ PMV ≤ 0.5). The 
thermal comfort penalty coefficient is reduced to 0.0106. Table 29 summarizes some optimal control 
comparisons with or without thermal comfort penalty. 

Table 29: Comparison of optimal control with or without thermal comfort penalty 

L-2 M-2 H-2
Night Setback Control:Total Cost ($) 200 195 193

Thermal CMFT penalty 1.07 0.82 0.733

Optimization Without Thermal Comfort Penalty:Total Cost ($) 130.8 129.3 129.0

Thermal CMFT penalty 0.456 0.182 0.117

Total Cost Savings compared with night setback control -34.6% -33.7% -33.2%

Cost function with Thermal CMFT penalty 139.1 131.1 130.2

Thermal CMFT penalty 0.008 0.011 0.012

Total Cost Savings compared with night setback control -30.5% -32.8% -32.6%

L-2 M-2 H-2
Night Setback Control:Total Cost ($) 263 260 257

Thermal CMFT penalty 1.86 1.63 1.53

Optimization Without Thermal Comfort Penalty:Total Cost ($) 149.2 150.1 148.2

Thermal CMFT penalty 0.673 0.245 0.209

Total Cost Savings compared with night setback control -43.3% -42.3% -42.4%

Cost function with Thermal CMFT penalty 157.1 152.5 150.5

Thermal CMFT penalty 0.020 0.013 0.015

Total Cost Savings compared with night setback control -40.3% -41.4% -41.4%

SPRING

SUMMER

 
 

Without thermal comfort penalty, total electrical costs for optimal control are slightly lower than with ther-
mal comfort penalty. The thermal comfort penalty coefficient is high in the case of nighttime setback con-
trol.  
Observing the thermal comfort penalty coefficient in Table 29, it can be found that when conducting opti-
mization without thermal comfort penalty, the light-mass building has a higher penalty than the heavy-
mass building when both indoor air temperatures are about 24°C. This is because the mean radiant tem-
perature of the heavy-mass building is less than that of the light-mass building. Therefore, when thermal 
comfort penalty is introduced in optimization, the light-mass building tends to lose more savings than the 
heavy-mass building does. 

3.5.7 Comparison of Passive Thermal Inventory and Active Thermal Inventory 
Table 30 lists a comparison of optimal control of passive storage only, active storage only and sequential 
optimization of passive and active system. 
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Table 30: Comparison of optimal control of passive and active system 

L-0 L-1 L-2 M-0 M-1 M-2 H-0 H-1 H-2

BASE 295.00 294.53 263.31 292.04 292.04 260.43 288.78 288.78 257.48

ZS 294.14 275.17 179.95 291.67 272.16 166.78 288.16 287.13 164.10

SAVING -0.3% -6.6% -31.7% -0.1% -6.8% -36.0% -0.2% -0.6% -36.3%

TES(NS) 295.00 285.43 183.56 292.04 285.89 181.38 288.78 281.11 178.95

SAVING 0.0% -3.1% -30.3% 0.0% -2.1% -30.4% 0.0% -2.7% -30.5%

TES(ZS) 294.14 275.17 149.15 291.67 272.16 150.12 288.16 273.27 148.15

SAVING -0.3% -6.6% -43.4% -0.1% -6.8% -42.4% -0.2% -5.4% -42.5%

L-0 L-1 L-2 M-0 M-1 M-2 H-0 H-1 H-2

BASE 223.78 223.78 200.37 218.77 218.77 195.40 215.97 215.97 192.78

ZS 220.08 223.78 145.43 215.07 217.66 138.22 213.16 215.87 137.04

SAVING -1.7% 0.0% -27.4% -1.7% -0.5% -29.3% -1.3% 0.0% -28.9%

TES(NS) 223.78 212.45 133.25 218.77 212.47 131.99 215.97 210.92 131.70

SAVING 0.0% -5.1% -33.5% 0.0% -2.9% -32.5% 0.0% -2.3% -31.7%

TES(ZS) 220.08 212.45 130.75 215.07 209.57 129.28 213.16 210.10 129.01

SAVING -1.7% -5.1% -34.7% -1.7% -4.2% -33.8% -1.3% -2.7% -33.1%

SUMMER

SPRING

 
 
It can be observed from Table 30 that optimization of passive system only can achieve savings even 
when there is no incentive in the electrical rate. This is because beside the electrical rate incentive, the 
passive system can also take advantage of the cooler outdoor environment during the night. On the other 
hand, the active system cannot achieve savings when there is no incentive in the electrical utility rate. 
This is due to the lower COP of the dedicated chiller of the active system: the cooling provided by dis-
charging of the ice is less cost-effective than the cooling provided by the big chiller with higher COP di-
rectly. If there is no incentive in the electrical rate, it is better to simply employ the big chiller. 

3.6 Closed-Loop Optimization with Moving Length ML = 1 hour 
The utility rate selected for this analysis is $0.20/kWh on-peak and $0.05/kWh off-peak, no demand 
charge is levied. The on-peak period is weekdays from 9 AM to 6 PM, off-peak all remaining hours. The 
building is occupied from 7 AM to 5 PM. 
The viewgraphs in this section are created on the basis of simulation in which July 21 in Phoenix, AZ is 
repeated over and over again until steady-state conditions are attained after about 7 identical days. The 
outdoor ambient temperature swings from about 16°C early in the morning to over 38°C at 6 PM. Table 
31 lists the nominal capacities of the base chiller and the active storage and chiller capacities for the five 
investigated cases.  
Case 1 represents the basecase in which cooling loads have to be met without any storage available. 
Case 2 makes use active thermal storage as governed by chiller-priority control, i.e., the downsized base 
chiller meets the cooling loads up to its capacity CCAPbase, thereafter the active storage contributes the 
remainder. The dedicated active storage chiller requires SCAP/CCAPtes = 10 hours to recharge an empty 
storage tank. Case 3 optimizes the passive storage capacity by properly precooling the building structure 
using a fully sized base chiller. In Case 4, the active storage is now optimized instead of governed by a 
simple rule such as chiller-priority. Finally, Case 5 optimizes both active and passive storage media is 
represents the focus of this research. 
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Case 5 is solved in two ways: First, we employ the closed-loop optimization (CLO) described above using 
a moving time window of WL = 24 hours length and hourly updates ML = 1 hour. Second, we optimize 
each 24 hour interval sequentially, i.e. as a series of consecutive time blocks (CTBO) of ML = 24 hours 
length each. The CTBO method does not allow for the consideration of newly available new information 
as it becomes available. However, it represents a reference scenario for comparison as we assume per-
fect prediction for this study. Both, CLO and CTBO should produce similar results. 

Table 31: System Sizing for Investigated Control Strategies 

Case No. Optimization Units Sizing
1 Basecase WITHOUT Active Storage

CCAPbase kW 500
CCAPtes kW 0
SCAP kWh 0

Base chiller fully sized, no active 
storage; night setup.

2 Basecase WITH Active Storage
CCAPbase kW 250
CCAPtes kW 250
SCAP kWh 2,500

Base chiller downsized; chiller-
priority active storage control; night 
setup.

3 Passive Only
CCAPbase kW 500
CCAPtes kW 0
SCAP kWh 0

Base chiller fully sized, no active 
storage; zone setpoints optimized.

4 Active Only
CCAPbase kW 500
CCAPtes kW 250
SCAP kWh 2,500

Base chiller fully sized; optimal 
active storage control; night setup.

5 Active and Passive
CCAPbase kW 500
CCAPtes kW 250
SCAP kWh 2,500

Base chiller fully sized; optimal 
active storage control; zone 
setpoints optimized.  
 

The blue lines in Figure 55 represent the upper and lower temperature bounds for the operation of the 
office building. It can be seen how passive only decides on substantial nighttime precooling down to 
about 21°C zone temperature averaged over all 15 zones. When the temperatures are allowed to float, 
the average zone temperature rises beyond 28°C during unoccupied times. The combined utilization of 
active and passive storage leads to less precooling than in the passive only case. All strategies involving 
passive storage allow for the temperatures to float from the end of occupancy at 5 PM to 6 PM because 
electricity prices are still high during this time. After 6 PM, electricity prices are low and the building is un-
occupied. The consecutive time block optimization (CTBO) of the combined case is much smoother and 
precooling is stronger than for the closed-loop optimization case. 
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Figure 55: Average Zone Temperature Profiles 

The inventory of state-of-charge of the active storage is shown in Figure 56 from midnight to midnight for 
those strategies involving active storage. For the basecase with active storage under chiller-priority con-
trol, the storage is fully charged during off-peak hours and discharged by about 50% during the day. The 
active only optimization discharges fast as of 8 AM, but slows down during the early afternoon hours to 
end up empty by the end of occupancy. The closed-loop optimization of the combined storage discharges 
a full storage evenly to end up empty by 5 PM already. The CTBO approach makes less use of the active 
storage. Thus, there appears to be a trade-off between active and passive storage utilization that has little 
overall cost function impact. 
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Figure 56: Active Storage State-of-Charge Profiles 

Figure 40 illustrates the effect of precooling on the daytime cooling load profile and shows how the build-
ing cooling load is shifted away from the expensive on-peak period to the off-peak period for all cases 
involving passive storage utilization. The passive only approach leads to the lowest on-peak cooling 
loads, next comes the CTBO approach to the combined case and finally the CLO approach.  
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Figure 57: Building Cooling Load Profiles 
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Reducing on-peak electrical demand is a side effect of shifting expensive on-peak cooling loads to off-
peak periods as can be see in Figure 58. While the basecase with active storage under chiller-priority 
control already reduces the demand by 20%, the combined optimization cuts the overall demand nearly in 
half. For CLO of the combined case at the end of occupancy, the demand is raised from its lowest value 
since the active storage is depleted and the base chiller has to pick up the remainder of the load. Since 
demand charges are not imposed in this example, the combined optimization is valid in spite of the ap-
parent demand violation at 5 PM. Active only and passive only are both superior to the basecase with 
active storage, but inferior to the combined case solved by either CLO or CTBO. 
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Figure 58: Total Building Electrical Demand Profiles 

For a utility rate without demand charges, we can plot daily profiles of utility cost. The total building hourly 
operating cost including non-cooling cost is shown in Figure 59. The areas under each curve represent 
the total daily operating cost. It is obvious that on-peak cost savings are traded off against nighttime ex-
penses for recharging active and/or passive storage inventories. 
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Figure 59: Total Building Hourly Operating Cost Profiles 

Figure 60 illustrates how the cooling related costs are effectively shifted to nighttime periods. In fact, the 
combined storage cases lead to near-zero cooling costs during the on-peak period, except for the hour of 
5 PM for the CLO case, when the base chiller has to be brought online prematurely. 
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Figure 60: HVAC Hourly Operating Cost Profiles 
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Finally, Table 32 provides an overview of the daily cost savings achieved for this prototypical day in Phoe-
nix, AZ. Based on total utility cost, savings of about 16% can be achieved for either passive or active only 
storage, and about 26% for the combined case when compared to the basecase without storage. Com-
pared to the basecase with active storage under chiller-priority control, savings of about 8% can be 
achieved for either passive or active only storage and about 18% for the combined case. Based on cool-
ing related utility cost only, savings of about 37% can be achieved for either passive or active only stor-
age, and about 57% for the combined case when compared to the basecase without storage. Compared 
to the basecase with active storage under chiller-priority control, savings of about 20% can be achieved 
for either passive or active only storage and about 46% for the combined case. These results show that 
given strong load-shifting incentives, the benefits of the proposed optimization system may be substantial.  

Table 32: Summary of Daily Operating Costs 

Total Building Hourly Operating Cost
Basecase without TES Basecase with TES Passive Only Active Only Active + Passive CLO Active + Passive CTBO

347.42$                         314.97$                   290.46$        289.00$     258.20$                       257.22$                         
Savings BC without TES: 16.4% 16.8% 25.7% 26.0%

BC with TES: 7.8% 8.2% 18.0% 18.3%

HVAC Hourly Operating Cost
Basecase without TES Basecase with TES Passive Only Active Only Active + Passive CLO Active + Passive CTBO

156.65$                         124.20$                   99.69$          98.23$       67.42$                         66.45$                           
Savings BC without TES: 36.4% 37.3% 57.0% 57.6%

BC with TES: 19.7% 20.9% 45.7% 46.5%  
 

3.7 Summary 
In this chapter, predictive optimal control of building passive and active thermal inventory was studied. 
The optimal control of building TES varies depends on many factors including building mass level, electri-
cal rate structure, season, plant/system characteristics etc. Optimal control for a specific case needs to be 
calculated by optimization routines. 
The introduction of thermal comfort penalty in the objective value calculation in optimizing helps to im-
prove the thermal comfort level of the building while maintains cost savings. 
Due to the uncertainty of future weather data, predictive optimal control needs to be updated and the op-
timal control of the building needs to be adjusted. The accuracy of optimal control is determined by factors 
like the weather prediction accuracy, updating frequency, etc. 
On average, predictive optimal control of building passive and active thermal inventory can achieve sav-
ings of 5-45% of total electrical costs. 

4 Conclusion 
Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility 
grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and 
weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either 
by precooling the building’s massive structure or the use of active thermal energy storage systems such 
as ice storage. While these two thermal batteries have been engaged separately in the past, this project 
investigated the merits of harnessing both storage media concurrently in the context of predictive optimal 
control.  
The research results presented in this topical report covers the first of three project phases. Based on the 
dynamic building simulation program EnergyPlus, we added a utility rate module, two thermal energy 
storage models, and incorporated a sequential optimization approach to the cost minimization problem 
using direct search, gradient-based, and dynamic programming methods. The objective function is the 
total utility bill including the cost of heating and a time-of-use electricity rate with demand charges. The 
evaluation of the combined optimal control assumes perfect weather prediction and match between the 
building model and the actual building counterpart. 
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The analysis shows that the combined utilization leads to cost savings that is significantly greater than 
either storage but less than the sum of the individual savings. The findings reveal that the cooling-related 
on-peak electrical demand of commercial buildings can be drastically reduced and justify the development 
of a predictive optimal controller that accounts for uncertainty in predicted variables and modeling mis-
match in real time. 
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