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Abstract

A generalized Meiklejohn–Bean model is considered in order to derive an analytic expression for the dependence of

the exchange bias field on the layer thickness involved in ferromagnetic/antiferromagnetic heterosystems, on the
orientation of the applied magnetic field with respect to the magnetic easy axes and on the quenched magnetization
MAF of the antiferromagnetic pinning layer. While MAF is a well-known feature of field-cooled dilute antiferromagnets,

it seems to occur quite generally also in pure AF pinning substrates. The new analytic expressions are successfully
compared with recent experimental results and Monte Carlo investigations. r 2001 Elsevier Science B.V. All rights
reserved.

PACS: 75.70.Cn; 75.10.Hk
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1. Introduction

The Stoner–Wohlfarth model is a well-estab-
lished phenomenological approach in order to
describe coherent hysteretic magnetization reversal
processes of single domain particles and magnetic
thin films [1]. Although it does not take into
account the influence of domain formation, its
simplicity makes it a favorable first approach in
order to interpret experimental data. E.g., it has
been successfully applied in a phenomenological
description of the exchange bias effect, which is
observed in ferromagnetic (FM)/antiferromagnetic
(AF) heterostructures. After field cooling of FM/
AF layered heterosystems to below the AF N!eeel

temperature, the hysteresis loop of the FM film is
shifted along the magnetic field axis by the
exchange bias field m0He: This shift reflects the
unidirectional anisotropy, which originates from
the FM/AF coupling at the interface. The coupling
has been introduced into a phenomenological free
energy expression by Meiklejohn and Bean (MB)
[2,3]. The bilinear exchange between the FM/AF
interface magnetic moments gives rise to the
unidirectional anisotropy energy.

In the limit of infinite anisotropy of the
antiferromagnet, the MB model yields the
simple, but powerful formula m0He ¼ �JSAFSF=
ðMFMtFMÞ [2,3]. It exhibits the well-known
dependencies of m0He on the FM layer thickness
tFM [4], on the magnetization of the FM layer [5]
and on the interface magnetic moments SAF

and SF: No information about the origin of
SAF and SFM is provided by the MB model. In
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addition, the coupling constant J enters the MB
approach only as a phenomenological constant.
A lot of theoretical work, which tackles the
microscopic foundation of these parameters or
develops alternative descriptions of the undirec-
tional anisotropy, has been done [6]. Nevertheless,
the simple MB formula already points out the
necessity of net magnetic moments at the inter-
face, not only on the FM, but also on the AF
side in order to obtain finite exchange bias.
Without exception this holds also in the case
of so-called compensated AF surfaces, where
SAFa0 requires deviations from the ideal AF
order [7].

In the framework of the present analysis we
point out the implications of the MB model on
the m0He vs. tAF dependence which is, e.g.,
observed in experiments on NiFe/FeMn hetero-
structures [8] and in Monte Carlo studies on
Ising systems of FM and diluted AF layers [9]
exhibited in Figs. 1 and 2, respectively. It turns
out, that both non-vanishing AF magnetization
MAF and a finite angle y between the applied
magnetic field and the magnetic easy axes tune
the details of the tAF dependencies. We exploit the
full capability of the MB approach in analytic
expressions and overcome restrictions due to
partial solutions accounting either for y [10,11]
or tAF [12] alone.

2. Model and analysis

We start from the free energy per unit area [2,3]
completed by adding a Zeeman term involving
MAF;

F ¼ � m0HMFMtFMcos ðy� bÞ

� m0HMAFtAF cos ðy� aÞ

þ KFMtFM sin2 b

þ KAFtAF sin2 a� JSAFSFM cos ðb� aÞ: ð1Þ

Here H is the applied magnetic field and MFM=AF;
tFM=AF; KFM=AF; SFM=AF are the absolute values of
the magnetization, the layer thickness, the uniaxial
anisotropy constant, and the interface magnetic
moments of the FM/AF layer. The latter ones can
be interpreted as macroscopic moments because
the MB model assumes parallel orientation of all
FM moments during the entire process of coherent
rotation. Hence, the FM spins fulfill the condition

%
sFM
i ¼

%
sFM 8i; and the interaction of the micro-

scopic spins at the interface can be transformed
into an interaction of the macroscopic interface
moments according to

P
i; j

%
si
FM

%
s j
AF

p

%
SFM

%
SAF:

They are coupled via J; the exchange interaction
constant. y; b and a are the angles between H;

Fig. 1. Dependence, He vs. tAF; of the exchange bias field in

Ni80Fe20/FeMn [8]. The line shows the best fit of Eq. (7) to the

data at tAF > 3 nm.

Fig. 2. Data from Monte Carlo simulations [9] of the exchange

bias field as a function of the number of AF layer monolayers,

tAF; are shown for 40% (circles), 30% (triangles in the inset),

and 60% (squares in the inset) quenched site dilution of the AF.

The bold solid line is a best fit of Eq. (9) to the data at 40%

dilution.
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MFM;MAF and the FM/AF anisotropy axis, which
are aligned in parallel for simplicity (see Fig. 3).

The AF magnetization, MAF; is generally
assumed to be zero. This is reasonable in the case,
where the sublattice magnetizations mutually
compensate in the long-range AF ordered state.
However, this is no longer the case in diamagne-
tically diluted AF systems. They are known to
decay into a random-field-induced domain state
with frozen excess magnetization when cooling to
below TN in an external magnetic field [13]. This
mechanism seems to control the appearance of
interface magnetization, SAFa0; at compensated
AF surfaces and thus enables exchange bias [7,9].
On the other hand, also the excess bulk magneti-
zation, MAFa0; of a quenched AF domain state
may be important by virtue of the corresponding
Zeeman energy term in Eq. (1). Surprisingly,
metastable domain states can also be induced in
non-diluted AF pinning layers. They are probably
due to interface roughness [14–17] and give rise to
both MAF and excess susceptibility.

In the case of infinite anisotropy KAF; the
minimization of the free energy yields a ¼ 0:
Hence, in the case of strong but finite anisotropy,
a series expansion of Eq. (1) with respect to a ¼ 0
is reasonable. It reads

FE � JSAFSFM cos b� m0HMFMtFM cos ðy� bÞ

� m0HMAFtAF cos yþ KFMtFM sin2b

þ a �JSAFSFM sin b� m0HMAFtAF sin y
� �

þ a2 KAFtAF þ 1
2JSAFSFM cos b

�
þ 1

2m0HMAFtAF cos y
�
: ð2Þ

This expression is minimized with respect to b and
a; which is physically equivalent to the determina-
tion of the equilibrium angles beq and aeq of
vanishing torque. qF=qa ¼ 0 yields

aeq

¼
JSAFSFM sin bþ m0HMAFtAF sin y

2KAFtAFþJSAFSFM cos bþm0HMAFtAF cos y

ð3Þ

From qF=qb ¼ 0 we determine the magnetic
fields Hc1 and Hc2: They fulfill the condition
MHðHc1Þ ¼ MHðHc2Þ ¼ 0; where MH ¼ MFM

cos ðy� bÞ is the magnetization component of
MFM pointing parallel to the applied magnetic
field (see Fig. 3). MH is the experimentally rele-
vant FM magnetization component, which is
measured by standard scalar magnetometry. In
order to obtain explicit expressions for Hc1

and Hc2 we insert a ¼ aeq; b1ðMH ¼ 0Þ ¼ y� p=2
and b2ðMH ¼ 0Þ ¼ y� 3p=2 into qF=qb ¼ 0: Ex-
pansion of qF=qb to first order with respect to
MAFE0 yields two corresponding linear equa-
tions in H; which provide Hc1 and Hc2; respec-
tively. The exchange bias field is then calculated
according to

He ¼ ðHc1 þHc2Þ=2: ð4Þ

Although the calculation is straightforward, the
result is lengthy. In order to simplify the resulting
expression, He is again expanded into a Taylor
series with respect to MAFE0 and 1=KAFE0 up to
first and second order, respectively. The approx-
imation of strong anisotropy, 1=KAFE0, is con-
sistent with the series expansion, Eq. (2). One

Fig. 3. Vector diagram involving the angles a; b; and y related

to the orientation of the net AF magnetization MAF; the

magnetization of the ferromagnet MFM and the applied

magnetic field H with respect to the easy axis of the antiferro-

and ferromagnet designated by the corresponding anisotropy

constants KAF and KFM; respectively. MH indicates the

projection of MFM onto the field direction.
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finally obtains

m0He ¼ �
JSAFSFM cos y

MFMtFM

�
JSAFSFM cos y

16K2
AFM

2
FMt2AFt

2
FM

�

�ð�4JKAFMAFSAFSFMt2AF

þ J2MFMS2
AFS

2
FMtFM

þ JKFMMAFSAFSFMtAFtFM � JSAFSFM

�ð�4JKAFMAFt
2
AF þ 3JMFMSAFSFMtFM

þ 4KFMMAFtAFtFMÞcos 2y

þ 3JKFMMAFSAFSFMtAFtFM cos 4y Þ
�
:

ð5Þ

In the limit of infinite anisotropy KAF; Eq. (5)
yields the y-dependent expression

m0He ¼ �
JSAFSFM cos y

MFMtFM
; ð6Þ

which has already been derived in Ref. [10].
In particular, Eq. (6) provides, again, the basic
MB expression in the case y ¼ 0; which implies
parallel orientation of the applied field with the
easy axes.

The simplest possible tAF dependence is derived
from Eq. (5) in the limit MAF ¼ 0 and y ¼ 0 and
finite, but strong anisotropy KAF: It reads

m0He ¼ �
JSAFSFM

MFMtFM
þ

J3S3
AFS

3
FM

8K2
AFMFMtFMt2AF

: ð7Þ

Eq. (7) qualitatively explains the steep increase and
the subsequent saturation of jm0Hej with increasing
AF layer thickness. Such behavior is not described
within the alternative random field approach of
Malozemoff [14], but has been reported by various
authors [8,18,19]. While Xi and White [18]
introduced a more complicated ansatz involving
a helical structure of the AF magnetic moments, it
is the aim of this analysis to stress the capabilities
of the MB model.

The existence of a critical AF layer thickness
was already pointed out by MB. It can simply be
motivated from Eq. (3) on applying the condition
aeq5p; as required within the scope of validity of

Eq. (2). In the limit MAF ¼ 0; Eq. (3) yields

aeq ¼
sin b

2KAFtAF=JSAFSFM

� �
þ cos b

: ð8Þ

In order to prevent the unphysical divergence of
aeq for any direction of MFM; 0pbpp; the
condition KAFtAFj j > JSAFSFM=2

�� �� has to be ful-
filled and, hence, the existence of a critical AF
layer thickness becomes obvious. Substitution of
the conventional expression of the critical AF
layer thickness [2,3] tcrAF ¼ JSAFSFM=KAF

�� �� yields
jaeqjo1=

ffiffiffi
3

p
for 0pbpp; which proves that in fact

aeq5p is fulfilled for tAF > tcrAF:
Fig. 1 shows the best fit of Eq. (7) to the m0He

vs. tAF data [8] of a Ni80Fe20 layer with thickness
tFM ¼ 6:5 nm deposited on top of FeMn for
3otAFo12 nm. The two-parameter fit yields
JSAFSFM=ðMFMtFMÞ ¼ 0:013 T and J3S3

AFS
3
FM=

ð8K2
AFMFMtFMÞ ¼ 1:08�10�19 T=m2: With tFM ¼

6:5 nm and MFMðNi80Fe20Þ ¼ 0:73MA/m [20],
we obtain the coupling energy JSAFSFMj j ¼
6�10�5 J=m2 and the AF anisotropy KAF ¼
7:3�103 J/m3. The latter one is of the same order
of magnitude as the KAF-values obtained, e.g.,
by Mathieu et al. [21] from Brillouin light
scattering investigations and by Parkin et al. [12]
from torque measurements. The above expression
of the critical thickness then yields tcrAF ¼ 8 nm,
which lies, however, 2.7 times above the steep
increase of m0He vs. tAF shown in Fig. 1.
Apparently, the situation can be improved by
setting tcrAF ¼ JSAFSFM=2KAF; which emerges
as the lower bound of tAF values fulfilling the
condition KAFtAFj j > JSAFSFM=2

�� ��: In that case,
the remaining error is reduced to less than 34%.
Note, however, that the inequality is only a
necessary condition. It is not obvious, that its
lower boundary can be identified with the critical
thickness. This numerical discrepancy may origi-
nate from the strong simplifications, which under-
lay Eq. (7). One of them, the assumption MAF ¼ 0;
will be discussed below.

Besides this numerical inconsistency (see above),
the simple 1=t2AF dependence of Eq. (7) does not
model any kind of a peak-like structure in the
9m0He9 vs. tAF dependence. This is, however,
known from experiments, e.g., on Ni80Fe20/FeMn
[8] or Fe3O4/CoO [22] bilayers as well as from
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Monte Carlo simulations [9]. In accordance with
these findings, Eq. (5) exhibits the possibility of a
competing 1=tAF-term in the case of MAF > 0 and
ya0: The latter condition is not obvious, however,
closer inspection of Eq. (5) shows that the 1=tAF-
terms cancel each other in the case y ¼ 0: This is in
full agreement with the results from Monte Carlo
simulations on heterostructures of diluted anti-
ferromagnets and FM layers [9]. As discussed
above, the diluted antiferromagnet breaks into a
random field domain state on cooling to below the
N!eeel temperature in the presence of an applied
magnetic field. These random field domains carry
a frozen net magnetization MAF: Within the
framework of the MB approach, Eq. (5), this
opens the possibility for a tAF dependence of the
type

m0He ¼ aþ
b

tAF
þ

c

t2AF

: ð9Þ

Fig. 2 shows the result of a best fit of Eq. (9) to
the Monte Carlo data of Ref. [9], which
are obtained on a heterosystem with 40% of
quenched dilution of the AF-sites (see Ref. [9] for
details). The peak structure of 9m0He9 vs. tAF is
qualitatively reproduced with fitting parameters
a ¼ �9� 10�4; b ¼ �0:042; and c ¼ 0:037 invol-
ving units adapted to the Monte Carlo data.
Moreover, the simulations show that the peak
strongly decreases for 30% as well as 60%
dilution. This is reasonable, because the maximum
frozen AF moment is expected to be induced
by the maximum random field. In accordance
with the approximation hrp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p
; the ran-

dom field, hr; maximizes at 50% dilution, x ¼ 0:5
[23]. Obviously, both concentrations reduce the
magnetic moment of the AF layer with respect
to the case of 40% dilution. In agreement with
the MB approach, Eq. (5), a reduction of MAF

gives rise to a reduced peak height. Hence,
in accordance with the results of the Monte Carlo
simulations our analysis suggests that apart from
the random field enhanced AF interface magnetic
moment SAF; the magnetization of the subsequent
AF layers strongly influences the m0He vs. tAF

behavior.

3. Conclusion

We present analytic descriptions of the exchange
bias field of FM/AF heterostructures based on
a generalized Meiklejohn–Bean [2,3] ansatz of
the free energy. They stress explicitly the depen-
dencies on the thicknesses tFM and tAF; on the
orientation angle y of the anisotropy axes with
respect to the external field and on the frozen
magnetization of the antiferromagnet, MAF: With-
in this framework, results from previous experi-
mental investigations and simulations are
successfully described. In particular MAF turns
out to be responsible for the observed peak
structure in the He vs. tAF dependence. While
MAF is a well-known feature of field-cooled dilute
antiferromagnets, it seems to occur quite generally
also in pure AF pinning substrates. This should be
taken into account in future analytic investigations
of the exchange bias which are beyond the MB
approach.
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