
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department
of

9-2009

Exploiting Set-Level Non-Uniformity of Capacity Demand to Exploiting Set-Level Non-Uniformity of Capacity Demand to

Enhance CMP Cooperative Caching Enhance CMP Cooperative Caching

Dongyuan Zhan
University of Nebraska-Lincoln, dzhan@cse.unl.edu

Hong Jiang
University of Nebraska-Lincoln, jiang@cse.unl.edu

Sharad C. Seth
University of Nebraska-Lincoln, seth@cse.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/csetechreports

 Part of the Computer and Systems Architecture Commons, and the Computer Sciences Commons

Zhan, Dongyuan; Jiang, Hong; and Seth, Sharad C., "Exploiting Set-Level Non-Uniformity of Capacity
Demand to Enhance CMP Cooperative Caching" (2009). CSE Technical reports. 113.
https://digitalcommons.unl.edu/csetechreports/113

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17225408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csetechreports
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csetechreports/113?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages

__
* This paper has been submitted to IPDPS 2010.

1

Exploiting Set-Level Non-Uniformity of Capacity Demand

to Enhance CMP Cooperative Caching*
Dongyuan Zhan, Hong Jiang, Sharad C. Seth

Dept. of CSE, University of Nebraska – Lincoln
Email: {dzhan, jiang, seth}@cse.unl.edu

Abstract

As the Memory Wall remains a bottleneck for Chip

Multiprocessors (CMP), the effective management of CMP last

level caches becomes of paramount importance in minimizing

expensive off-chip memory accesses. For the CMPs with private

last level caches, Cooperative Caching (CC) has been proposed to

enable capacity sharing among private caches by spilling an

evicted block from one cache to another. But this eviction-driven

CC does not necessarily promote cache performance since it

implicitly favors the applications full of block evictions regardless

of their real capacity demand. The recent Dynamic Spill-Receive

(DSR) paradigm improves cooperative caching by prioritizing

applications with higher benefit from extra capacity in spilling

blocks. However, the DSR paradigm only exploits the

coarse-grained application-level difference in capacity demand,

making it less effective as the non-uniformity exists at a much

finer level.

This paper (i) highlights the observation of cache set-level

non-uniformity of capacity demand, and (ii) presents a novel L2

cache design, named SNUG (Set-level Non-Uniformity identifier

and Grouper), to exploit the fine-grained non-uniformity to further

enhance the effectiveness of cooperative caching. By utilizing a

per-set shadow tag array and saturating counter, SNUG can

identify whether a set should either spill or receive blocks; by

using an index-bit flipping scheme, SNUG can group peer sets for

spilling and receiving in an flexible way, capturing more

opportunities for cooperative caching. We evaluate our design

through extensive execution-driven simulations on Quald-core

CMP systems. Our results show that for 6 classes of workload

combinations our SNUG cache can improve the CMP throughput

by up to 22.3%, with an average of 13.9%, over the baseline

configuration, while the state-of-the-art DSR scheme can only

achieve an improvement by up to 14.5% and 8.4% on average.

1. Introduction
As Chip MultiProcessors (CMP) are becoming

predominant in processor chip manufacture, computer
architects are challenged to architect CMPs for their full
performance potentials. One of the key research issues is to
reduce the high cost of CMPs’ off-chip memory accesses
that are generally determined by three factors: access
latency, bandwidth and the number of off-chip accesses.
While there are techniques such as 3D memory stacking [1],
prefetching [2] and optical I/Os [3] that can help reduce (or
hide) the long latency and increase the bandwidth of
DRAM accesses, on-chip Last Level Caches (LLC) play an
irreplaceable role in reducing the number of DRAM
accesses by keeping as much data as possible on-chip for
future references, which necessitates a very effective
management of CMP LLCs.

In CMPs, two typical cache organizations are available
for architecting the on-chip LLCs. The entire LLC can be
either shared among all cores by address interleaving, called
shared LLC, or statically partitioned with each cache slice
privately used by a core, called private LLC. In this paper,
for simplicity and without loss of generality, the CMP LLCs
are assumed to be L2 caches, and L2S is short for the
shared L2 organization while L2P is short for the private L2
organization. The L2S organization provides a natural way
of capacity sharing since the entire L2 capacity is accessible
to all cores. But the interleaved addressing can result in too
many remote L2 accesses that are penalized by the
Non-Uniform Cache Access (NUCA) time [4]. The L2P
organization, on the other hand, provides good data
proximity to the requesting cores, since each core only

2

places its own cache blocks in the local private L2 cache,
but with the drawback of limited L2 capacity to each core.
Recent studies [5, 6] have advocated the L2P cache
organization since it has a lower L2 access latency, lower
requirement for on-chip interconnects, better performance
isolation and easier support for resource management.
Moreover, L2P has been evaluated to outperform L2S when
the CMP core count scales [6].

However, due to the limited cache capacity accessible
to each core, the miss rate of L2P can be higher than L2S
when a core’s cache resource requirement exceeds its local
private L2 capacity. The rigid constraint that a core can only
access its private cache prevents cores from sharing their L2
capacity. To break this barrier, Chang and Sohi [7] proposed
the mechanism of Cooperative Caching (CC) to allow
cross-chip data transfers between different “private” L2
caches and enable capacity sharing by entitling each cache
to utilize the capacity of others as victim caches. But in
their proposal, cooperative caching is performed regardless
of the performance implication: whenever a block is evicted
from its own private cache, cooperative caching attempts to
retain the block in one of the peer L2 caches, whether or not
spilling the block to a peer cache will help the overall
performance. For instance, a streaming application can
actually always prevail in cooperative caching since it
continuously replaces cache blocks; but having its victim
blocks cooperatively cached will not benefit its
performance at all. Instead, retaining its victim blocks can
adversely hurt other L2 caches’ performance, since
cooperative caching comes at the cost of occupying other
caches’ capacity.

To overcome the shortcoming of cooperative caching,
Qureshi [8] has recently proposed the Dynamic
Spill-Receive (DSR) paradigm to regulate block spilling and
receiving in response to different applications’ cache
resource demand. In the DSR paradigm, applications are
classified into two categories: taker applications and giver
applications. Taker applications can have their performance
improved with additional cache capacity, while giver
applications can contribute part of their cache capacity to
others with little performance degradation. When taker and

giver applications are co-scheduled on a CMP, taker
applications’ L2 caches can spill victim blocks to those of
giver applications, but not vice versa. While this
application-level approach is shown to improve the overall
performance when the non-uniformity of cache resource
demand explicitly exists at the application-level, it becomes
less effective for applications of which such non-uniformity
exists at a finer granularity as demonstrated in this paper.

The objective of this paper is to establish that the
non-uniformity exists at the cache set-level in capacity
demand and then exploit this non-uniformity to further
enhance the effectiveness of cooperative caching. The key
insight of this work is that differentiating the cache resource
demand only at the application level is insufficient for
enhancing cooperative caching when performance-sensitive
non-uniformity of capacity demand does not surface to the
application level but instead exists at the cache set level.
This paper then presents a novel L2 cache design, called
Set-level Non-Uniformity identifier and Grouper (or
SNUG), which identifies and flexibly groups cache sets
with complementary capacity demand for cooperative
caching. Evaluation results show that the SNUG cache
design can significantly boost the effectiveness of
cooperative caching.

The main contributions of this work are:
 The key observation on the cache set-level

non-uniformity of capacity demand.
 A novel L2 cache design (SNUG) that exploits

the set-level non-uniformity to significantly
enhance the performance of cooperative caching.

 The key conclusion and performance results
through extensive execution-driven simulations.

The rest of the paper is organized as follows. Section 2
introduces the research motivation based on the evidence of
cache set-level non-uniformity of capacity demand. Section
3 elaborates the design issues of our proposed SNUG L2
caches. Section 4 shows the experiment setup used for
evaluation and Section 5 provides an analysis of the
obtained results. Related work is discussed in Section 6 and
the paper concludes with a summary in Section 7.

3

2. Motivation
Previous studies [8, 9] have revealed that applications

have diverse requirement for cache resource. They tried to
utilize the application-level difference in resource demand
to optimize the usage of CMP L2 caches for
multi-programmed workloads. Distinct from previous work,
however, we take further steps to evidence the existence of
non-uniformity of capacity demand at the cache set level.
To accomplish this goal, we need to first develop a group of
mathematical models that accurately quantify a cache set’s
requirement for capacity. With the models, we can
characterize the cache set-level non-uniformity of capacity
demand. Finally, we argue that this fine-grained
non-uniformity can be utilized to further optimize the
utilization of CMP L2 caches for multi-programmed
workloads, achieving better performance than the

state-of-the-art application-level approaches.
2.1 Quantification of Set-Level Capacity Demand

We start with defining the notation and terms used in
this discussion in Table 1.
2.1.1 Quantifying Set-level Capacity Demand

Since a cache set can be treated as an array of blocks,
under a fixed block size, we can use the number of blocks
in a set to measure the amount of cache resource possessed
by the set. Intuitively, if a set has enough blocks during a
specific time interval, there will be no capacity or conflict
misses on the set, because these two kinds of misses happen
only when the set resource is limited. Therefore, if we
denote the capacity demand of a particular set during a
certain time interval as _ , , where is
the index of the set and is the interested time interval, we
can define it as the minimum number of blocks required to
resolve all capacity and conflict misses for the set.

We introduce another function, _ , ,
which means the number of misses on set S during interval

 when has blocks. Under the LRU replacement
policy that has the stack property [20], the following
relationship always holds true: _ , , 0

_ , , 1 _ , ,∞ . From
this property, we can also infer that _ , , is
monotonically non-increasing for the given and when
only increases. Ideally, if set could get an infinite
number of blocks (∞) during interval , then there
would be no capacity or conflict misses on the set. At the
other extreme, if set had no blocks at all (0), all
accesses to the set during interval I would miss.
Consequently, _ , ,∞ is equal to the number
of compulsory misses on set S during interval I, while

_ , , 0 is equivalent to the number of
accesses to set S during interval I.

On the other hand, during interval , if set ’s
capacity demand is satisfied, which means that set S gets as
many blocks as _ , , then only
compulsory misses can happen to set S. Thus, we give a
quantitative definition of _ , in
Formula (1).

Table 1. Glossary of Notation and Terms Used
Symbol Annotation

 the total number of sets in an L2 cache

 #blocks (associativity) owned by a set, 0 ∞

 the index of a set, 0 1

 a fine-grained sampling interval for characterization

_ , ,
the number of misses on set with blocks

during the sampling interval

 _ , ,
the number of hits on set with blocks during

the sampling interval

_ ,
the number of blocks required by the set during

the sampling interval

a value of asssociativity large enough to

approximate ∞

the associativity (integral power of 2) of the

baseline private L2 cache

 the number of buckets/sub-ranges of [1,

The j bucket, which is the sub-range

· 1, · , where 1

, ,

a membership function used to indicate if the

number of blocks required by set is categorized

into the j bucket during interval

_
1 The size of the j bucket during interval

4

_ , min
. . _ , , _ , ,∞ 0

(1)

Because it is impractical to measure
_ , ,∞ when the set associativity is ∞ ,

and also because the function _ , , is
monotonically non-increasing for the given and when
only increases, we can use a finite number
that is large enough to approximate ∞. Then, we can use
Formula (2) to quantify the capacity demand of a set.

_ , min

. .
_ , , _ , , 0

(2)

Alternatively, since _ , , 0 is equivalent

to the number of accesses to set S during interval , the
total hits on set S during interval when the set has
blocks (denoted as _ , ,) can be expressed as
 _ , , _ , , 0 _ , , .
Therefore, Formula (2) can be rewritten as follows:

_ , min
. .
_ , , _ , , 0

(3)

Practically, Formula (3) is more convenient than

Formula (2), because it is much easier to locate a position in
the LRU stack when an access to a set is a hit [21].
Equivalently, _ , , is actually the total
number of hits on the LRU positions that are less than or
equal to on set S during interval .
2.1.2 Characterizing Set-Level Non-Uniformity of

Capacity Demand
From the analysis above, we can infer that
_ , is in the integer range

1, . Without loss of accuracy, we divide the
integer range 1, into M sub-ranges (a.k.a.,
buckets) of equal length , , … , ,

where · 1, · for

1 . Then, for a given interval I, set S is said to be

categorized into if and only if the value of
_ , is in the integer range

· 1, · . Further, because any two

adjacent buckets have no intersection, the value
_ , will be in one and only one bucket’s

range. Therefore, we can differentiate two cache sets in
terms of their capacity demand if their

_ , values belong to different
buckets. Here, we restrict that both and M are
integral power of 2.

To identify if set S is categorized into the jth bucket
during interval I, we can define a membership function

, , to indicate if set S has capacity demand
that is in the range of during interval I, which is
formulated in (4):

, ,

1, if _ ,
0, otherwise

4

For all of the N sets in an L2 cache, we are interested

in knowing how many sets are categorized into each one of
the M buckets during the sampling interval I, because any
two sets that are categorized into different buckets show
different set-level capacity demand. Here, we normalize the
number of sets that are categorized into the jth bucket during
time interval I by the total number of sets N, define it as the
size of the bucket for that interval, and denote the value as

_ . The formal definition of _
is shown in Formula (5).

_
1

∑ , ,
 (5)

In summary, we can characterize the set-level

non-uniformity of capacity demand for all of the N sets in
an L2 cache using Formula (5).
2.2 Methodology of Characterization

We experiment on all 26 SPEC2000 benchmarks [10]
using the sim-cache tool of Simplescalar [11], and analyze

5

the set-level capacity demand distributions of their L2
caches. The configurations of L1 and L2 caches are listed in
Table 4 in Section 4. Specifically, there are 1024 sets in the
L2 cache (N=1024). All of the benchmarks are executed
with the reference data inputs. For each benchmark, we fast
forward the execution by 6 billion cycles and then simulate
the caches until 1000 sampling intervals of which each
contains 100K L2 accesses are encountered. Therefore, the
variable I is in the range [1,1000]. Within a sampling
interval I, for an L2 set S, we sample the number of hits on
set S at each LRU position A that is less than or equal to

, and then find the minimum (a.k.a.
_ ,) such that _ , ,

 _ , , , where is assumed
to be double in this paper.

Since is assumed to be double of
(16) in this paper, we divide the entire range
1, into 8 buckets {[1,4], [5,8], …, [29,32]}.

Then, for all of the 1024 sets and 1000 sampling intervals,
we can obtain the normalized size of each bucket,

_ for 1 8 , which is actually the
distribution of set-level capacity demand for all of the L2
sets during the entire sampling period.
2.3 Characterization Conclusions

To summarize, we find that among the 26 SPEC2000
benchmarks, there are 7 applications (ammp, apsi, galgel,
gcc, parser, twolf, vortex) that show strong set-level
non-uniformity of resource demand. Figures 1 - 3 illustrate
the distribution of set-level capacity demand for three
applications, among which ammp and vortex show strong
set-level non-uniformity of capacity demand but applu does
not. In Figure 1 - 3, the 8 legends on the right side of the
figure represent the 8 buckets, the x axis shows the 1000
sampling intervals, and the y axis shows the distribution
breakdown for the 8 buckets.

For instance, although both ammp and vortex have
been shown to benefit from additional cache resource in
previous research [12], Figure 1 and 2 clearly indicate that
both of them exhibit significant set-level non-uniformity of
capacity demand. For ammp, about 40% sets require only 1
- 4 blocks during the entire sampling period. For vortex,

from the sampling interval 405 to about 792, about 15%
sets require only 1 - 4 blocks, about 9% sets require 5 - 8
blocks, and over 7% sets require 9 - 12 blocks. In contrast,
for the streaming application applu, almost all sets require
only 1 - 4 blocks during the whole sampling period.

Figure 1. Distribution of Set-level Capacity Demand for ammp

Figure 2. Distribution of Set-level Capacity Demand for vortex

Figure 3. Distribution of Set-level Capacity Demand for applu

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 101 201 301 401 501 601 701 801 901

>=29

25~28

21~24

17~20

13~16

9~12

5~8

1~4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 101 201 301 401 501 601 701 801 901

>=29

25~28

21~24

17~20

13~16

9~12

5~8

1~4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 101 201 301 401 501 601 701 801 901

>=29

25~28

21~24

17~20

13~16

9~12

5~8

1~4

6

Figure 4. The SNUG L2 Cache Organization for a Quad-Core CMP

3. The SNUG Architecture
SNUG is designed to exploit the fine-grained set-level

non-uniformity of capacity demand to enhance the
performance of cooperative caching. It aims to accomplish
two specific goals: identifying the capacity demand for each
L2 set, and grouping peer sets (from different cores) that
have complementary set-level capacity demand for flexible
cooperative caching.

Figure 4 illustrates a high-level view of a Quad-core
CMP with SNUG. Each core has a split private L1
instruction/data cache and a SNUG slice consisting of a
private L2 cache capable of cooperative caching, a shadow
L2 cache that is used to monitor the set-level capacity
demand in the L2 cache, and an L2 write-back buffer that
frees the private L2 cache from write back stalls and
supports direct data read from the buffer [13]. Within a
SNUG L2 slice, the shadow L2 cache has the same number
of sets as the L2 cache, and a one-to-one correspondence is
maintained between two sets that have the same index in
the L2 cache and its shadow cache. The shadow set is
intended to monitor the capacity demand of the L2 set for
evicted blocks that are accessed again. As Figure 4 shows, a
shadow set block has all the usual fields as an L2 set block
except for the data field. In addition, there is a per-set
saturating counter associated with each shadow set. The
design and working principles of a shadow L2 set will be

elaborated in Section 3.2, and a detailed overhead analysis
of this organization appears in Section 3.4 showing that the
SNUG overhead falls in the range of 2-6%.

During program execution, the SNUG operation
alternates between two stages, as shown in Figure 5. The
first stage is used to identify the status of each L2 set as
either a giver (G) or taker (T) using the per-set capacity
demand monitor. Then, at the beginning the second stage,
the dynamic status of L2 sets is used for regrouping them
for spilling and receiving. Each two-stage cycle defines a
sampling period: Stage I determines the G/T status of each
set after a sampling epoch of 5 million cycles, then Stage II
follows for 100 million cycles until the start of the next
sampling period. A novel index-bit flipping scheme
determines the constraints observed in grouping the sets.
Typically, Stage I is much shorter than Stage II and the total
time for the two is shorter than a program-phase during
which the program shows relatively stable set-level capacity
demand.

Figure 5. The G/T Sets Identification and Grouping Stages

7

3.1 Identifying Taker and Giver Sets
In this part, we first explain the structures of the L2

sets and the shadow sets (shown in Figure 4) and how they
are updated. Then we describe a HW scheme for measuring
the set-level capacity demand and identifying the
giver/taker status of each set based on the measurement.
3.1.1 The Structures of Private & Shadow L2 Sets

In an L2 cache, shown in Figure 4, besides the typical
fields such as tag, valid, dirty, LRU and data, each cache
line is augmented with a CC bit that indicates whether this
cache line is owned by the local processor core (when
CC=0) or it is cooperatively cached (when CC=1). Another
bit f is used in the index-bit flipping scheme, only takes
effect when the CC bit is set. If the f bit is one, it means that
the line is cooperatively cached with the last bit of its
original set index flipped. There is also a G/T bit
corresponding to each L2 set, which is used to indicate
whether the set is a giver (when G/T=0) or taker (when
G/T=1) set. The G/T bits for all L2 sets form a G/T vector,
each entry of which is addressable independent of
addressing the L2 sets.

Each entry in a shadow set has a tag field, a valid bit
and LRU bits. The shadow set retains the “shadows”,
namely the tag fields, of locally evicted lines from the
corresponding private L2 set: when an L2 set needs to
replace a line by the LRU policy, and the victim line is
owned by the local processor core, the shadow set will
retain the tag field of the victim line in one of its entries and
set it valid. Additionally, the shadow L2 set maintains its
own independent LRU ranking for all of its valid entries
and uses it for replacement. We require that the shadow set
entries be strictly exclusive with the local lines in the
corresponding L2 set in terms of their tag fields. Therefore,
if a formerly evicted block with its tag present in the
shadow set is revisited by the local core, two actions must
be performed: (1) the shadow entry that has the target tag
needs to be invalidated after the corresponding block enters
the real set; (2) a hit on the shadow set is signaled to operate
its saturating counter.
3.1.2 Monitoring Set-Level Capacity Demand

If an L2 set and its corresponding shadow set have the

same associativity, the private and shadow sets implicitly
form two buckets as defined in Section 2. Then, we can use
the per-set saturating counter to monitor the set-level
capacity demand, based on which set-level takers and givers
are identified and grouped for cooperative caching.

Since an L2 set and its shadow set form two buckets,
according to Formula (3), we can use the ratio

 to

measure the potential performance benefit in terms of hit
rate increase if the capacity of the L2 set is doubled in terms
of the number of cache blocks. If is greater than a
predefined threshold, 1⁄ , where is an integer, we
claim that doubling the capacity of the L2 set can lead to an
increase in the hit rate by 1⁄ . This is because "σ 1 "⁄
is equivalent to

"# 1⁄

2 # 0".
To implement this idea, we define operations on a

saturating counter as follows (also shown in Figure 6): (1)
every hit on the shadow set increments the saturating
counter by 1; (2) after every hits to the private or
shadow sets, the saturating counter is decremented by 1.
Then, the outcome of the two operations can be reflected by
the MSB (most significant bit) of the saturating counter.
This is shown for an example in Figure 7: if a k-bit
saturating counter is initialized to the value 2k-1-1, which
means that all bits except the MSB of the counter is set to
one, a one-valued MSB of the counter indicates that the L2
set has a higher capacity demand than that provided by its
local L2 cache, and that doubling its capacity can lead to an
increase in hit rate by at least 1⁄ .

k-bit Saturating Counter

+
Hits on the

Real Set
Hits on the
Shadow Set

1/p

Figure 6. The Operation on a Saturating Counter

8

Figure 7. An illustration of the operations on

a 4-bit Saturating Counter

3.1.3 G/T Sets Identification
 As described above, we can differentiate taker and
giver sets by just checking the MSB of the saturating
counter of each set. A one value of the MSB indicates that
extending the capacity of the set is beneficial, hence the set
should be regarded as a taker and entitled to spill blocks in
cooperative caching; otherwise, the set is defined as a giver
and receives spilled blocks from its peer taker set. Thus, the
MSB of the saturating counter can be directly used to
update the corresponding entry of the G/T vector.
3.2 Grouping Sets for Spilling & Receiving

After the G/T Sets Identification stage, the SNUG
caches enter the Sets Grouping Stage to group different
cores’ sets with complementary capacity demand to perform
block spilling and receiving. The simplest grouping strategy
is to group different cores’ sets with the same index, as is
done in ordinary CC or DSR. But this naïve approach only
allows the sets with the same index to form a receiving &
spilling group. Ideally, we would like to group taker and
giver sets based just on their capacity demand and supply,
independent of their index values. However, this would lead
to significant hardware complexity, as the information of
how sets are globally grouped would need to be stored and
retrieved for each private L2 set. Hence, we propose an
index-bit flipping Scheme that flexibly groups sets with
complementary capacity demand for spilling and receiving

at the low hardware complexity of one f bit per cache line.
The index-bit flipping scheme works as follows. In an

L2 cache, when a taker set needs to spill a local cache line,
the L2 cache will put a CC spilling request together with the
address of the spilled line on the interconnection bus. By
snooping on the bus, other peer caches can detect the CC
request as well as the address of the spilled block. Each
peer cache will look up its own G/T vector to find the G/T
information of the two adjacent entries that have the same
index as the CC-spilling block but with the last index bit
being don’t-care. There can be three cases as shown in
Figure 8. In Case 1, if the set with exactly the same index is
a giver set in the peer L2 cache, then the peer L2 cache will
attempt to retain the spilled block in its set with exactly the
same index. In Case 2, if the set with exactly the same
index in the peer L2 cache is a taker set while the other set
with the last index bit different is a giver set, then this giver
set will attempt to retain the spilled block. In Case 3, if the
corresponding two adjacent sets are both taker sets, then
this peer L2 cache will not respond to the CC request. Any
peer cache that first responds to the CC request on the
interconnection bus will get the spilled block. Based on
whether the block is cooperatively cached in the set with
exactly the same index or with the last index bit flipped, the
f bit of the cooperatively cached block will be set to zero (if
the last index bit is not flipped) or set to one (if the last
index bit is flipped).

Figure 8. The index-bit flipping scheme

Now suppose a block is missed in its local L2 cache,
the cache will signal a retrieving request for the block with

9

its address on the snoop bus. After a peer cache detects the
request, it will first lookup its G/T vector for the
information of the two adjacent G/T bits that have the same
index as the block address but with the ending bit being
don’t-care. If the G/T bit with exactly the same index, or
otherwise with only the last index bit different, indicates a
giver set, then the L2 cache will try to find the block in the
corresponding giver set; if both of the adjacent peer sets are
indicated as taker sets, then it means that the block being
retrieved can’t be located in this L2 cache. This leads to at
most one unambiguous search for the block in a peer L2
cache. Because the cooperatively cached block can only be
located in a giver set of at most one peer L2 cache, then the
peer cache that has the cooperatively cached block will
directly forward the block to the requesting L2 cache. At the
same time, the peer cache will invalidate its cooperatively
cached copy of the block to free space for other blocks. If
no peer caches respond to the retrieving request, the
requested block is not on chip and will need to be fetched
from the main memory.
3.3 Maintaining Cache Coherence

In the SNUG cache design, we use two restrictions to
maintain coherence between different L2 caches. First, only
when a locally evicted block is clean can it be cooperatively
cached in a peer L2 cache. If the block is dirty, it will be
directly put in the local L2 write buffer. Second, if a peer
cache forwards a cooperatively cached block to the original
owner cache of the block, the copy of the block in the peer
cache needs to be invalidated.

3.4 Space & Time Overhead Analysis
Since the SNUG caches require the per-set capacity

demand monitor, the shadow sets and saturating counters
will account for the major hardware overhead in our design.
Then, the storage overhead of the SNUG cache can be
calculated by using Formula (6)

 2

(6)

Table 2 shows the length of each storage field in the

SNUG design if we use the cache configurations in Table 4.
Under such a cache configuration, the storage overhead of
the SNUG cache design is only 3.9% by Formula (6), which
is reasonably low when we consider the abundant silicon
resources available as a result of technology scaling.

However, many processors, such as SUN’s
UltraSPARC-III [22], use 64-bit wide memory addresses. A
longer memory address leads to a longer tag field in the
shadow set that introduces more hardware overhead,
although typically some leading bits of the memory address
are unused (e.g., the leading 20 and 23 bits of the virtual
address and physical addresses are unused in
UltraSPARC-III respectively). We can offset the hardware
overhead by adopting larger cache block size while keeping
the cache capacity fixed. Table 3 shows the hardware
overhead of different memory address and cache line size
combinations for a 1MB private L2 cache.

In terms of the time overhead, in our SNUG cache
implementation, we experimentally observed that a
combination of 5 million cycles for the G/T Sets Identifying
Stage and another 100 million cycles for the Sets Grouping
Stage produces a good performance outcome, which is
adopted in Section 5. During the 5 million cycles for G/T
Sets Identification, the cache can still accept retrieving
request but no spilling request from others. At the end of
this stage, each L2 cache maintained a new G/T vector, and
continues to use the set-level G/T information in grouping
sets for spilling or retrieving blocks.

Table 2. The length of each field in the SNUG cache design by

using the cache configuration in Table 4

Field Length Field Length

address length 32 bits LRU field 4 bits

(cache sets) 1024 log p

(the length of the

module p counter)

3 bits

(p = 8)
set associativity 16

size(data block) 64 byte

length (tag field) 16 bits k (= the length of the

saturating counter)
4 bits

CC, f, v, d 1 bit each

10

Table 3. The hardware overhead of different

memory address and block size combinations

 32-bit address 64-bit address

64B/cache line 3.9%
5.8% (assuming only 44

address bits are used)
128B/cache line 2.1% 3.1%

4. Evaluation Methodology

To evaluate SNUG against other last-level cache
management schemes available in the literature, we
simulated a combination of workloads, consisting of 12
programs from the SPEC2000 benchmark suite on
quad-core systems. In this section, we describe the
configuration of our simulation system and the workload
combinations.

Table 4. The configuration of the PolyScalar simulator

Out-of-Order Core

Configuration
Mem Hierarchy Configuration

Processors 4 L1 Lat 1 Cycle

Issue/Commit 8/8 L1I/D
4 way, 32KB, 64B

lines

I-Fetch Queue 8 L1D write back

LSQ Size 64 L2 Lat 10 cycles locally

RUU Size 128 Each

L2

Slice

16 way, 1MB, 64B

lines, write back ALU/FPU/Mult/Div 4/4/1/1

Branch Predictor

2-Level,

1024

Entry,

History

Length 10

Snoop

Bus

16B-wide split

transactional bus, 4:1

speed ratio, 1 cycle for

arbitration

BTB Size
512 Sets

4 way

DRAM

Lat
300 Cycles

Branch Penalty 3 Cycles L2

Write

Buffer

FIFO, Mergeable,

16 entries*64B/entry,

support direct read

RAS Entries 8

Address bits 32

4.1 Simulation Configuration

In our experiment, we use the cycle-accurate

PolyScalar [14], a multi-core simulator with detailed
memory hierarchy model and SimpleScalar out-of-order
cores [11]. We implement and evaluate five L2 cache
organizations, L2P, L2S, CC (Best), DSR, and SNUG.
According to [7], one of the spill-probabilities 0%, 25%,
50%, 75% and 100% that produces the best performance is
selected as CC (Best) for a given workload. Table 4 lists the
configuration shared by the five L2 schemes above. The
difference between the L2 schemes is the remote L2 access
latency: for L2P, CC and DSR, we assume the remote L2
access latency is 30 cycles, while the remote latency for
SNUG is assumed to be 40 cycles to include the additional
delay of looking up the G/T vector of each L2 cache.

For the purpose of thorough comparison, three
standard metrics (shown in Table 5) are used to quantify the
performance [8]: throughput that is the sum of IPCs
(instructions per cycle) evaluates the utilization of a system;
average weighted speedup indicates reduction in execution
time; fair speedup balances both performance and fairness.

Table 5. Performance Metrics

Metric Definition (N is the core count)

Throughput Throughput Scheme ∑ N

Average Weighted

Speedup [15]
 AWS Scheme

N
∑ N

Fair Speedup [16] FS Scheme N ∑

N

4.2 Workload Combinations

Table 6 classifies the 12 SPEC CPU2000 benchmarks
used in our studies. Our evaluation takes into account 6
different classes of workload combinations described in
Table 7. Specifically, workload combination class C1 and
C2 are both stress tests, which means that the four
co-scheduled applications from C1 or C2 are all identical,
but with the assumption that there can be only capacity
sharing among the co-scheduled applications, excluding any
data sharing. The purpose of the stress tests is to see how
different L2 cache designs can respond to applications’
set-level capacity demand, since the identical co-scheduled
applications have the same capacity demand at both

11

application and set levels. Within a class in C3 - C6, all of
the co-scheduled applications are different, and at least two
applications showing set-level non-uniformity of capacity
demand are chosen in each workload combination,

Table 6. Workload Classification & Selection

Application Type
Workload

Class

Application-Level

Capacity Demand
Applications

showing set-level

non-uniformity of

capacity demand

A > 1MB
ammp,

parser, vortex

B < 1MB apsi, gcc

showing set-level

uniformity of

capacity demand

C > 1MB
vpr, art, mcf,

bzip2

D < 1MB
gzip, swim,

mesa

Table 7. Workload Combination Classes & Characteristics

C1
4 identical applications from class A without data sharing (stress

test)

C2
4 identical applications from class C without data sharing (stress

test)

C3
(2 different applications from class A) + (2 different applications

from class C)

C4
(2 different applications from class A) + (1 application from class

B)+ (1 application from class C)

C5
(2 different applications from class A) + (2 different applications

from class D)

C6
(2 different applications from class A) + (1 application from class B)

+ (1 application from class D)

Table 8 shows that 21 workload combinations that are

categorized into the 6 different classes respectively.

5. Result Analysis
 For each instance of simulation, we forward the

execution by 6 billion cycles to bypass the initialization
section of the programs, and then execute each workload
combination with detailed out-of-order core model and
different cache schemes for additional 3 billion cycles. In
the results analysis, the numbers reported for a class of

workload combinations are the geometric means calculated
for all of the workload combinations in a given class.

 Figure 9 shows the throughput results of the L2S,
CC(Best), DSR and SNUG schemes normalized to L2P
(1.0). In class C1 that is the stress test, because all of the
applications have an application-level capacity demand of
over 1MB and also exhibit the set-level non-uniformity of
capacity demand, the SNUG cache organization can take
advantage of the complementary capacity demands of
interleaved taker and giver sets by the index-bit flipping
scheme and then capture more opportunities for cooperative
caching. Therefore, SNUG achieves a throughput
improvement over the baseline L2P cache by 22.3% in class
C1, bettering the performance gain of CC(Best) by 3.5%
and that of DSR by 6.9%. In C2, DSR achieves a
throughput improvement over the baseline by 2.3%, and
performs slightly better than CC(best) (- 0.5 % performance
degradation) and SNUG (- 0.2% performance degradation),
because DSR can assign some of the identical applications
as taker applications while assigning others as giver
applications to achieve biased performance improvement.
In C3, C4, C5 and C6, SNUG outperforms all the other
cache schemes. Overall, on average, SNUG can improve

Table 8. The Configurations of Different Workload

Combinations

C

1

4 ammp

C

3

(ammp+parser)+

(bzip2+mcf)

C

5

(ammp+parser)+

(swim+mesa)

4 parser
(parser+vortex)+

(mcf+art)

(parser+vortex)+

(mesa+gzip)

4 vertex
(vortex+ammp)+

(art+vpr)

(vortex+ammp)+

(swim+gzip)

C

2

4 vpr

C

4

(ammp+parser)+

(apsi)+(bzip2)

C

6

(vortex+ammp)+

(apsi)+(gzip)

4 bzip2
(parser+vortex)+

(gcc)+(mcf)

(parser+vortex)+

(gcc)+(mesa)

4 mcf
(vortex+ammp)+

(apsi)+(art)

(ammp+parser)+

(apsi)+(swim)

4 art
(ammp+parser)+

(gcc)+(vpr)

(vortex+ammp)+

(gcc)+(mesa)

12

the Quad-core CMP throughput by 13.9% for all of the 6
classes of workload combinations, in contrast to 8.4% of
DSR (the second best).

Figure 9. Performance on Throughput Metric

 Because the throughput metric is not fair to the
application with a lower absolute IPC, we also use the
metric of Average Weighted Speedup to consider the change
of relative IPC (the absolute IPC of a scheme over that of
the baseline) of the applications. From Figure 10, it can be
concluded that SNUG can also improve the Average
Weighted Speedup by 13.0%, while DSR, CC(Best) and
L2S improves it by 9.9%, 7.0%, and 2.5%, respectively .

Figure 10. Performance on Average Weighted Speedup

Figure 11 demonstrates the performance on the Fair
Speedup metric (the harmonic mean of programs’ relative
IPCs) that balances both performance and fairness for
different classes of workload combinations as well as
different L2 cache schemes. On average, the SNUG scheme
improves the performance by 10.4%, better than L2S(-1.5%
degradation), CC(Best) (4.2%) and DSR (6.3%).

Figure 11. Performance on Fair Speedup

6. Related Work

Previous Research on Set-Level Non-Uniformity:
Set-level non-uniformity of cache resource demand is a
research focus in the unicore processor cache management.
Hash functions based on prime modulus were proposed to
equalize the number of misses over all cache sets [17], and
the V-Way cache architecture [18] was proposed to vary the
associativity of the last level cache on a per-set basis in
response to the demands of the program. SNUG differs
significantly from these earlier schemes, which aimed at
alleviating set-level non-uniformity of cache demand, in
that it exploits the set-level non-uniformity in cooperative
caching to improve performance.

Improvement on Cooperative Caching: Since
Chang and Sohi [7] introduced the concept of CMP
cooperative caching, there have been several proposals to
improve the original CC scheme from various angles.
Adaptive Selective Replication (ASR) [19] relaxes the
restriction on replicated blocks in cooperative caching. By
dynamically replicating shared read-only blocks in multiple
private cache partitions, ASR can hide the latency of
cross-chip transfer of these commonly used blocks for
multithreaded workloads. Distributed Cooperative Caching
[5] aims to resolve the performance bottleneck imposed by
the centralized coherence engine in cooperative caching. It
simply utilizes the distributed directory caches rather than a
centralized one as the cooperative caching engine to
improve the scalability and power efficiency of cooperative
caching. In another proposal [6], Eisley et al. enable

0.8

0.9

1

1.1

1.2

1.3

C1 C2 C3 C4 C5 C6 AVG

Th
ro
ug
hp

ut
 N
or
m
al
iz
ed

 to
 L
2P

Different Workload Combinations

L2S

CC(Best)

DSR

SNUG

0.8

0.9

1

1.1

1.2

1.3

C1 C2 C3 C4 C5 C6 AVG

A
ve
ra
ge
 W

ei
gh
te
d
Sp
ee
du

p

Different Workload Combinations

L2S

CC(Best)

DSR

SNUG

0.8

0.9

1

1.1

1.2

1.3

C1 C2 C3 C4 C5 C6 AVG

Fa
ir
 S
pe

ed
up

Different Workload Combinations

L2S

CC(Best)

DSR

SNUG

13

on-chip network to propagate the information of invalid
blocks so that victim blocks can be spilled to other caches
with abundant invalid blocks. As the contributions focus on
such factors as scalability and power efficiency of
cooperative caching, their results can be considered
orthogonal to our scheme on improving the effectiveness of
cooperative caching.

7. Conclusion
Although cooperative caching allows CMP private L2
caches to share their capacity, its effectiveness is limited by
its eviction-driven spilling and receiving. The Dynamic
Spill and Receive (DSR) technique improves cooperative
caching by taking into account the differences in capacity
demand that appear at the application-level. DSR is less
effective when such differences manifest themselves at the
cache set level but not at the application level. Our
investigations reveal that this situation is common,
motivating our proposal of Set-level Non-Uniformity
identifier and Grouper (SNUG) scheme that can exploit the
fine-grained non-uniformity via cooperative caching to
improve the system performance. Experiments show that
for six classes of workload combinations our SNUG cache
can improve the Quad-Core CMP throughput by 22.3% at
best and by 13.9% on average over the baseline
configuration, outperforming the state-of-the-art DSR
scheme that can only achieve an improvement by up to
14.5 % and 8.4 % on average. Our future work would
attempt to extend SNUG to multi-threaded workloads, and
to both intra- and inter-cache accesses.

References
[1] G. Loh. 3D-Stacked Memory Architectures for Multi-Core

Processors. In Proceedings of the 35th International

Symposium on Computer Architecture (ISCA), pp 453 – 464,

June 2008.

[2] C. J. Lee, O. Multu, V. Narasiman. Prefetch-Aware DRAM

Controllers. In Proceedings of the 41st Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO),

pp 200 – 209, November 2008.

[3] L. Young. Optical I/O Technology for Tera-Scale Computing.

In Proceedings of the International Solid-State Circuits

Conference (ISSCC), pp 468 – 470, February 2009.

[4] C. Kim, D. Burger, S. W. Keckler. An Adaptive,

Non-Uniform Cache Structure for Wire Delay Dominated

On-Chip Caches. In Proceedings of the 10th International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pp 211 – 222,

October 2002.

[5] E. Herrero, J. Gonzalez, R. Canal. Distributed Cooperative

Caching. In Proceedings of the 17th International

Conference on Parallel Architectures and Compilation

Techniques (PACT), pp 134 – 143, October 2008.

[6] N. Eisley, L. Peh, L. Shang. Leveraging On-Chip Networks

for Data Cache Migration in Chip Multiprocessors. In

Proceedings of the 17th International Conference on

Parallel Architectures and Compilation Techniques (PACT),

pp 197 – 207, October 2008.

[7] J. Chang, G. S. Sohi. Cooperative Caching for Chip

Multiprocessors. In Proceedings of the 33rd Annual

International Symposium on Computer Architecture (ISCA),

pp 264 – 276, June 2006.

[8] M. K. Qureshi. Adaptive Spill-Receive for Robust

High-Performance Caching in CMPs. In Proceedings of the

15th International Symposium on High-Performance

Computer Architecture (HPCA), pp 45 – 54, February 2009.

[9] A. Jaleel, W. Hasenplaugh, et al. Adaptive Insertion Policies

for Managing Shared Caches. In Proceedings of the 17th

International Conference on Parallel Architectures and

Compilation Techniques (PACT), pp 208 – 219, October

2008.

[10] http://www.spec.org/cpu2000/

[11] T. Austin, E. Larson, D. Ernst. SimpleScalar: An

Infrastructure for Computer System Modeling. Computer,

35(2): 59 – 67, February 2002.

[12] http://terpconnect.umd.edu/~ajaleel/workload/

[13] K. Skadron, D. W. Clark. Design Issues and Tradeoffs for

Write Buffers. In Proceedings of the 3rd International

Symposium on High-Performance Computer Architecture

(HPCA), pp 144 – 155, February 1997.

14

[14] http://www.cs.ucsb.edu/~franklin/PolyScalar/Home.htm

[15] D. M. Tullsen and J. A. Brown. Handling long-latency loads

in asimultaneous multithreading processor. In Proceedings

of the 34th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pp 318 – 327, December 2001.

[16] K. Luo, J. Gummaraju, M. Franklin. Balancing Throughput

and Fairness in SMT Processors. In Proceedings of the

International Symposium on Performance Analysis of

Systems and Software (ISPASS), pp 164 – 171, November

2001.

[17] M. Kharbutli, K. Irwin, Y. Solihin, J. Lee. Using Prime

Numbers for Cache Indexing to Eliminate Conflict Misses.

In Proceedings of the 10th International Symposium on High

Performance Computer Architecture (HPCA), pp 288 – 299,

February 2004.

[18] M. K. Qureshi, D. Thompson, Y. Patt. The V-Way Cache:

Demand-Based Associativity via Global Replacement. In

Proceedings of the 32nd Annual International Symposium on

Computer Architecture (ISCA), pp 544 – 555, June 2005.

[19] B. M. Beckmann, M. R. Marty, D. A. Wood. ASR: Adaptive

Selective Replication for CMP Caches. In Proceedings of the

39th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pp 443 – 454, December 2006.

[20] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger.

Evaluation techniques for storage hierarchies. IBM Systems

Journal, 9(2): 78 – 117, 1970.

[21] M. K. Qureshi, Y. Patt. Utility-Based Cache Partitioning: A

Low-Overhead, High-Performance, Runtime Mechanism to

Partition Shared Caches. In Proceedings of the 39th Annual

IEEE/ACM International Symposium on Microarchitecture

(MICRO), pp 423 – 432, December 2006.

[22] T. Horel and G. Lauterbach. UltraSPARC III:

DesigningThird Generation 64-Bit Performance. IEEE

Micro, 19(3): 73 - 85, May/June 1999.

	Exploiting Set-Level Non-Uniformity of Capacity Demand to Enhance CMP Cooperative Caching
	

	Microsoft Word - SNUG _UNL_ - Copy _2_.docx

