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Abstract

Tapioca starch, poly(lactic acid), and Cloisite NA* nanocomposite foams, with four clay contents (1, 3, 5, 7, wt %), were prepared
by melt-intercalation method. Selected structural, thermal, physical, and mechanical properties were characterized using X-ray
diffraction (XRD), scanning electron microscopy, differential scanning calorimetry, and an Instron universal testing machine, re-
spectively. XRD results indicated that the 1 wt % nanocomposite foam did not show the characteristic basal reflection of the nano-
clay. The 3, 5, and 7 wt % nanocomposite foams produced a mixture of intercalated and tactoid structures. The d,;-spacing of 3,
5,7 wt % nanocomposite foams produced increases of 11.40, 11.15, and 10.67 A, respectively, compared to that of the pristine clay.
The morphological study showed that the nanocomposite foams exhibited a noticeably reduced cell size, more compact cells, and
increased cell density. Increasing clay content caused a decrease in melting temperature (T, ). Bulk spring index and bulk com-
pressibility were influenced (P < 0.05) significantly with the addition of different amounts of clay.

Keywords: compatibility, foam extrusion, organoclay, nanocomposites, differential scanning calorimetry

Introduction

Poly(lactic acid) (polylactate or polylactide) (PLA)
is a polyester, and is synthesized from L- and D-lac-
tic acid, which are produced from the fermentation of
sugar and (poly)saccharides such as sugar feedstocks
and corn, wheat, and other starch sources. The lactic
acid is converted to PLA either by ring-opening polym-
erization or by condensation polymerization. PLA is in-
soluble in water and has good moisture and grease re-
sistances. Its mechanical properties can be modified by
varying its molecular weight and crystallinity. [1] PLA
is used widely as a biodegradable and renewable plas-
tic for uses in service ware, grocery, waste-composting
bags, mulch films, controlled release matrices for fertil-
izers, pesticides, and herbicides. [2] However, PLA is
expensive because of the complicated synthesis.

Starch is a natural polymer, inexpensive, readily
available, and often used as a filler for the replacement
of petroleum-derived synthetic polymers to decrease
environmental pollution. However, starch has severe
limitations because of its solubility and poor water-re-
sistance, making starch products very sensitive to the
relative humidity at which they are stored and used. [3]
Starch-polyester blends are being produced with the ob-
jective of maintaining the excellent physical properties

of the polyesters while reducing cost. A process was de-
veloped at the University of Nebraska-Lincoln to pro-
duce starch-based plastic foam with 70% starch com-
bined with a variety of ingredients and plastics. [4] Fang
and Hanna [5] found that addition of PLA to regular and
waxy corn starches improved the physical and mechani-
cal properties of the foams. Recently, formation of nano-
composites with the aim of improving functional prop-
erties has become popular. One of the most promising
nanocomposites is formed from organic polymer and
inorganic clay minerals consisting of layered silicates.

Polymer nanocomposites are a class of reinforced
polymers containing small quantities (1-5 wt %) of nano-
metric-sized clay particles. Smectite-type clays, such as
hectorite, synthetic mica, and montmorillonite, are em-
ployed as fillers to enhance the properties of compos-
ites. The functional properties of the nanocomposites
are improved markedly compared to those of the un-
filled polymer or conventional composites. These im-
provements included high moduli, [6] [7] increased ten-
sile strength [8] and thermal stability, [9] decreased gas
permeability, [10] flammability [11] and water absor-
bance, [12] and increased biodegradability. [13]

Of the four methods (solution intercalation, in situ po-
lymerization, melt intercalation, and template synthesis)
which have been used to synthesize nanocomposites,
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melt intercalation is the most appealing approach be-
cause of its versatility, compatibility with polymer pro-
cessing equipment, and because it is an environmentally
friendly process that requires no solvent and is suitable
for industrial uses. [14] [15] In melt intercalation the clay
and polymer are added together above the melting tem-
perature of the polymer. They may be held at this tem-
perature for a period of time, put under shear, or other
conditions to encourage intercalation and exfoliation of
the clay. [16]

Generally, polymer/layered silicate composites are
divided into three main types: tactoid, intercalated, and
exfoliated nanocomposites. In a tactoid, the polymer is
unable to intercalate between the silicate sheets and the
properties of the composites stay in the same range as
the traditional microcomposites. Intercalated nanocom-
posites occur when a small amount of polymer moves
into the gallery spacing between the silicate platelets.
When the silicate layers are dispersed completely and
uniformly in a continuous polymer matrix, an exfoliated
or delaminated structure is formed. [17] The intercalated
and exfoliated nanocomposites currently are of primary
interest because their properties are significantly im-
proved, even at low clay concentrations. However, the
formation of intercalated or exfoliated nanocomposites
depends on the type of organoclay, [9] [18] the clay con-
tent, [19] [20] and the processing conditions. [21]

The objective of this study was to prepare tapioca
starch (TS)/PLA/Cloisite NA*™ nanocomposite foams of
different clay contents via melt-intercalation and to in-
vestigate the influence of clay content on selected struc-
tural, morphological, thermal, physical, and mechanical
properties of the foams.

Experimental

Materials

Semicrystalline PLA resin of MWn 85,000 was pro-
duced by Cargill (Minneapolis, MN). It contained ~93%
L-lactide, 2% D-lactide, and 5% mesolactide. It was in
the form of 2-4 mm spheres. The thermal properties
measured by differential scanning calorimetry (DSC)
showed a melting point of 174°C. The true density of
PLA resin was 1.22 g/cm?. PLA usually is used as amor-
phous material in molded products because of its low
rate of crystallization, though it is semicrystalline poly-
mer. Commercially available TS was purchased from
Starch Tech (Minnesota, MN). TS was agglomerated
into spherical granules of 2-4 mm diameter to facilitate
feeding into the extruder. The moisture content of the
TS was adjusted to 18%, dry basis, with distilled water
prior to extrusion. TS and 10% PLA were blended with
0.5% sodium bicarbonate, 0.5% citric acid, and clay in a
Hobart mixer (Model C-100, Horbart Corp., Troy, OH)

and stored in plastic jars prior to extrusion. PLA content
of 10% was selected based on preliminary experiments.
Fang and Hanna [5] used three levels of polymer con-
tent (10, 25, 40%) in their study of mechanical proper-
ties of starch-based foams. They found that at 10% PLA
content, the foams possessed the highest spring index
and intermediate compressibility and Young’s modulus
values. They concluded that for practical applications,
the bulk mechanical properties were more meaningful.
Sodium bicarbonate and citric acid were added to de-
grade the biodegradable polymer into chains of between
1000 and 100,000 Da or ~500 to 50,000 monosaccharide
groups to promote expansion. [4]

Table I shows the six different formulations used.
Natural montmorillonite under the trade name of
Cloisite NA* (cation exchange capacity (CEC) = 92.6 m
equiv./100 g) was obtained from Southern Clay Prod-
ucts (Gonzalez, TX). The particle size range of the nano-
clay was 2-13 nm. PLA and the nanoclay were dried in
the oven at 70°C for at least 24 h.

Extrusion

A twin-screw extruder (Model DR-2027-K13, C. W.
Brabender, S. Hackensack, NJ) with co-rotating mixing
screws (Model CTSE-V, C. W. Brabender) was used to
conduct extrusions. The conical screws had diameters
decreasing from 43 to 28 mm along their length of 365
mm from the feed end to the exit end. On each screw,
there was a mixing section, in which small portions of
the screw flights were cut away. The mixing section en-
hanced the mixing action and also increased the resi-
dence time of the sample in the barrel. A 150-rev/min
screw speed was used for all extrusions. The tempera-
ture at the feeding section was maintained at 50°C, the
second barrel section at 120°C, the third barrel section
at 150°C, and die section at 170°C. A 3-mm diameter
die nozzle was used to produce continuous cylindrical
rope-like extrudates which were cut by a rotary cutter.
The extruder was controlled by a Plasti-Corder (Type
FE 2000, C. W. Brabender). Data including screw rotat-
ing speeds, barrel temperature profiles, pressure pro-
files, and torque readings were recorded for subsequent
analyses. Extrusion conditions selected were based on
preliminary studies and previous experiments.

Table I. Clay Contents Used in the Preparation of Tapioca
Starch-PLA (TS/PLA) Nanocomposite Foams

Samples Cloisite NA* (wt%)

TS -
TS/PLA -
TS/PLA+NA1
TS/PLA+NA3
TS/PLA+NA5
TS/PLA+NA7

N U1 W=
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X-ray diffraction

The X-ray patterns of the samples were obtained us-
ing a Rigaku D/Max- B X-ray diffractometer (Tokyo, Ja-
pan) with Cu Ka radiation (\ = 1.544 A) at a voltage of
40 kV and 30 mA. Samples were scanned in the range
of diffraction angle 26 = 2°-10° with a scan speed of 1°/
min at room temperature.

Scanning electron microscopy

The morphologies of TS/PLA and TS/PLA nanocom-
posite foams were observed under a scanning elec-
tron microscopy (SEM) (Hitachi S-3000N, Tokyo, Ja-
pan). Before testing, the samples were mounted on
SEM stubs with double-sided adhesive tape and then
coated with platinum under vacuum to make the sam-
ple conductive.

Differential scanning calorimetry

DSC measurements were performed with a Mettler
DSC (Columbus, OH). About 10 mg of dried, ground
samples were placed in aluminum sample pans. The
samples were heated from 25 to 200°C at a heating rate
of 10°C/min in a nitrogen atmosphere. The sample was
kept at 200°C for 1 min for the elimination of the previ-
ous heat history and was subsequently cooled to 25°C
at 10°C/min. The melting temperature (T,) was deter-
mined as the temperature at the maximum value of the
melting peak.

Unit density

Unit densities of the foams were determined using a
glass bead displacement method originally developed
for determining the volume of cookies [22] with modifi-
cations. [23] Glass beads of 0.1 mm diameter were used
as the displacement medium. A mean value was ob-
tained by averaging five replicates.

Bulk spring index

Bulk spring index (BSI) measurements were made us-
ing an Instron universal testing machine (Model 5566,
Instron Engineering Corp., Canton, MA). A cylindri-
cal aluminum container with a volume of 365 cm?® (6.93
cm in diameter and 9.68 cm in depth) was used to con-
fine the bulk samples. [24] The forces required to ini-
tially compress the samples to 80% of their original vol-
umes and the forces required to recompress the same
samples 1 min after releasing the initial load were re-
corded. BSI was calculated by dividing the recompres-
sion force by the initial compression force and has an
ideal value of 1. A mean value was obtained by averag-
ing five replicates.

Bulk compressibility

Bulk compressibility was calculated using the same
data collected in the BSI test. It was calculated by divid-
ing the peak force required to compress (deform) the
sample by 80% [to 20% of their original dimension (di-
ameter)] by the initial axial cross-sectional area of the
foams. [24] A mean value was obtained by averaging
five replicates.

Statistical analyses

All results reported are means of two or more replica-
tions. The radial expansion ratio, unit density, BSI, and
bulk compressibility data were analyzed using the gen-
eral linear models (GLM) in SAS analysis program (SAS
Institute, Cary, NC). Duncan’s multiple range tests were
conducted to check for significant (P < 0.05) differences
between treatment groups.

Results and Discussion

A preliminary study using Cloisite Na* at 3 wt %
was conducted to determine the extent of intercala-
tion and its influence on the structural, morphologi-
cal, thermal, physical, and mechanical properties of
the nanocomposite foams. In this study, four differ-
ent relative contents of Cloisite Na* at 1, 3, 5, and 7 wt
% were added to the TS/PLA matrices to study the
most suitable clay content and its implication on these
properties.

Structural properties of TS/PLA/Cloisite NA*
nanocomposites

Wide-angle X-ray diffraction (WAXD) is a classical
method for determining the gallery height (d-spacing
distance) in clay particles. [25] The d-spacing can be de-
termined from the diffraction peak in the XRD patterns,
and be expressed by Bragg’'s equation (A = 2d,,,,sin0)
where d,,, is the interplanar distance of the (001) diffrac-
tion face, 0 is the diffraction position, and A is the wave-
length. [14] During melt intercalation, the insertion of
polymer into the organoclay galleries forces the platelets
apart and increases the d-spacing, resulting in a shift of
the diffraction peak to lower angles.

WAXD diffractograms for the four nanocomposite
foams are shown in Figure 1. Line a in Figure 1 is the dif-
fraction spectra of pristine Cloisite NA* clay. The pris-
tine Cloisite NA* clay had one peak at the diffraction
angle 20 of 7.22°. The WAXD diffractogram for the 1 wt
% clay content nanocomposite did not show the charac-
teristic basal reflection of the nanoclay as shown by line
b in Figure 1. This is possibly evidence of exfoliation be-
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Normalised Intensity (a.u.)

26 (deg.)

Figure 1. X-ray patterns of (a) Cloisite NA*, and its nanocomposite foams with tapioca starch and PLA (TS/PLA) at different clay

contents (b) 1 wt %, (c) 3 wt %, (d) 5wt %, and (e) 7 wt %.

cause of the nonexistence of the peak. Since the concen-
tration of the nanoclay used was low, at 1 wt %, and at
this time no other characterizations were available to be
employed to confirm the exfoliated structure for proper
interpretation of the data.

Lines c-e in Figure 1 are the spectra of the 3,5, 7 wt %
clay content nanocomposites having two peaks, at (001)
and (002) d-spacings. In these three nanocomposites, the
first diffraction peaks (001) d-spacings were observed to
shift to lower angles compared to that of pristine nano-
clay, indicating that intercalation of TS/PLA polymer
into the nanoclay layers occurred. The first diffraction
peaks (001) d-spacings for 3, 5, 7 wt % clay occurred at 20
= 3.74°, 3.78°, and 3.86°, respectively. Intercalation was
greater with the filler contents of 3 and 5 wt % clay con-
tent, as shown by the sharp ascent of the diffraction pro-
file baselines at low angles indicating that they had sim-
ilar intercalation properties. The first diffraction peaks
(001) d-spacings for both of these intercalated nanocom-
posites were narrow, indicating a strong intercalated be-
havior and a high stacking order of the successive clay
layers in the nanocomposites. Similar occurrences were
observed by Kumar et al. [26] and Ranade ef al. [27]

The higher clay content of 7 wt % tended to have the
same diffraction profile, with a slightly higher first dif-
fraction peak (001) d-spacing angle at 20 = 3.86°. How-
ever, the broader peak indicated some level of reduc-
tion in the clay platelets per stack in the polymer matrix.
This could have been due to either the processing used
or to the favorable interaction between the Cloisite NA*
clay and the TS/PLA. [26]

The second diffraction peaks (002) d-spacings for
3,5, 7wt % clay content occurred at 20 = 7.52°, 7.59°,

and 7.67°, respectively. These peaks appeared smaller
and broader indicating that a small fraction of the clay
was still present as agglomerated sheets which contrib-
uted to a tactoid structure. The moderate surface polar-
ity of Cloisite Na* was responsible for the formation of a
partially intercalated TS/PLA nanocomposite. The Na*
cation gave Cloisite Na* the proper hydrophilicity and
compatibility with TS which favored partial intercala-
tion. This was due to the polymers being too hydropho-
bic to migrate into the hydrated Na* interlayer space.
[28] From the above results, it was concluded that a mix-
ture of intercalated and tactoid structures formed dur-
ing extrusion of TS, PLA, and Cloisite Na*. Similar ob-
servations were reported by Di ef al. [25]

The peak of the pristine Cloisite NA* clay (20 = 7.22°)
shifted to 3.74° for the 3 wt % nanocomposite foam (Table
II). The d,-spacing of 3 wt % nanocomposite foam was
23.62A,a11.40 A i increase compared to that of the origi-
nal Cloisite NA* (12.22 A). The dyo,-spacings of the 5 and
7 wt % nanocomposite foams were 23.37 and 22.89 A,

Table II. Diffraction Peaks, d,-Spacings and Ad,,,,-Spacings
of Cloisite NA* and its Nanocomposite Foams with Tapioca
Starch (TS/PLA) at Different Clay Contents

Materials Diffraction peak dj,,-Spacings Ad,,-Spacings
(20, degree) (A) A

NA 7.22 12.22 —

TS/PLA+NA1 No Peak — —

TS/PLA+NA3 3.74 23.62 11.40

TS/PLA+NA5 3.78 23.37 11.15

TS/PLA+NA7 3.86 22.89 10.67
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Figure 2. Scanning electron micrograph of tapioca starch and
PLA (TS/PLA) composite foam (magnification 35%).

respectively. The increase of d,,,,-spacings of 5 and 7 wt
% clay content nanocomposite foams were 11.15 and
10.67 A, respectively. These data show that the nano-
clay was intercalated to lesser extents as the clay content
increased.

It is believed that the greater the d,-spacings, the
greater the interaction of polymer molecular chain with
clay layered silicate. [14] The interactions between a
polymer and nanoclay depend on the compatibility of
the surface polarities of the polymer and the organoclay.
[29] Polar-type intercalations are also critical for the for-
mation of intercalated or exfoliated nanocomposites via
polymer melt intercalation. [30]

Typical SEM micrographs of TS/PLA foam (Figure
2),and 1, 3, 5, and 7 wt % clay nanocomposites (Figure
3) are presented. The TS/PLA foam exhibited cell struc-
ture with large cells. The nanocomposites showed a no-
ticeably reduced cell size, more compact cells, and in-
creased cell density. This indicated that the dispersed
organoclay particles acted as nucleating sites for cell
formation. [31] The higher clay content nanocomposite
foams had more compact cells and higher cell densities
than the lower clay content nanocomposite foams.

Thermal property of TS/PLA/Cloisite NA* nanocomposites

Melting temperature (T,) of TS/PLA and its nano-
composite foams were investigated by DSC. TS foam
had a T, of 162.4°C. The raw PLA was transparent beads
and had a T, of 173.9°C. The TS/PLA foam had a T, of
165.7°C as shown in Table III. Even though the foam con-
sisted of 90% TS, the T, of the TS/PLA foam was close
to that of the pure PLA, indicating that the thermal effect
resulted from PLA, not the starch. [32] Figure 4 shows
the DSC thermographs of the nanocomposites which
show endothermic melting peaks above 160°C. Similar
curves were obtained for all the nanocomposites. At 1
wt % clay concentration, the T, was 171.8°C as shown in
line a of Figure 4. The T,, of 3, 5, and 7 wt % nanocom-
posite foams were 176.0, 172.8, and 160.7°C, as shown
by lines b, ¢, and d in Figure 4, respectively. These tem-
peratures were relatively high considering that the clay
concentration was low, indicating that the clay had an
influence on the thermal transition of the foam. The de-

Figure 3. SEM micrographs of TS/PLA/Cloisite NA* nanoclay foam with (a) 1 wt % clay, (b) 3 wt % clay, (c) 5 wt % clay, and (d)
7wt % clay (magnification 35x).
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Table III. Thermal, Physical, and Mechanical Properties of Tapioca Starch (TS), Tapioca Starch-PLA (TS/PLA), and its Nanocom-

posite Foams with Different Cloisite NA* Contents

Thermal property Physical and mechanical property

Materials T, (°O) Unit density (kg/m?®) Bulk spring index Bulk compressibility (MPa)
TS 1624 75.0 £0.0162 0.931 +0.026° 143 £4.2122
TS/PLA 165.7 48.0 + 0.009° 0.947 +0.0130 7.25 £ 0.540¢
TS/PLA+NA1 171.8 55.8 + 0.005° 0.961 + 0.0022 7.32 £0.256°
TS/PLA+NA3 176.0 56.2 + 0.004P 0.953 £ 0.0022 5.87 +0.262¢
TS/PLA+NAS5 172.8 58.4 + 0.006° 0.947 +0.0112P 7.39 £0.293¢
TS/PLA+NA7 160.7 82.2 +£0.0062 0.956 + 0.0012 11.9 + 0.550°

2 means with same letter within a column indicate no significant (P > 0.05) difference by Duncan multiple range test.

crease in T, , with increasing clay concentration, could
be attributed to the compatibility of this nanoclay with
the starch and PLA matrix, which suppressed the crys-
tallization, therefore lowering the T, . [25] Additionally,
the silicate acted as a nucleating agent, causing the vis-
cosity of the matrix to drop, decreasing the T, . [33] Artzi
et al. [19] observed the same occurrence of decreased T,
with increasing clay content. The influence of nanoclay
on the reduction of crystallization and melting behavior
of PLA became distinct when the concentration of clay
was around 3 wt % due to the intercalated nanostruc-
ture. [28] [34] [35] The enthalpy of the melting peak was
evaluated for all the nanocomposites. The melting en-
thalpies for 1, 3, 5, 7 wt % nanocomposite foams were
72.27, 73.63, 78.82, and 81.86 J/g, respectively, indicat-
ing that the melting enthalpies increased as the clay con-
centration increased.

Physical and mechanical properties of TS/PLA/Cloisite NA*
nanocomposites

Physical and mechanical properties of the foams are
related strongly to the structure of intermolecular ma-
trices. Unit density is an important physical property of
foams. Low unit density is desirable attribute for foams
because of the reduced material cost. Pure TS foam had
a unit density of 75.0 kg/m? (Table III). Addition of PLA
had a significant effect on the unit density of TS/PLA
foam at 48.0 kg/m?. This large decrease in unit den-
sity could have been the effect of the PLA. The adhesion
forces between starch and PLA may have been caused
by polar interactions between the two phases, and be-
cause hydrogen bonding forces existed between the car-
bonyl group on PLA and the hydroxyl groups on starch.
[36] It was observed that the addition of 1, 3, and 5 wt %
clay contents had significant effects on the unit density
of the nanocomposite foams as compared to the pure TS
foam. However, the highest clay content of 7 wt % pro-
duced the highest unit density among all the nanocom-
posite foams. The 1, 3, and 5 wt % nanocomposite foams
had unit densities which were not significantly differ-
ent from each other at 55.8, 56.2, and 58.4 kg/ m3, respec-

tively. The 7 wt % nanocomposite foam had a unit den-
sity of 82.2 kg/ m3, which was not significantly different
from the TS foam and significantly different from the 1,
3, and 5 wt % nanocomposite foams. These results indi-
cated that the addition of PLA and clay had an effect on
unit density of TS foam.

BSI and bulk compressibility are interrelated proper-
ties. BSI relates to resiliency, and refers to the ability of
a material to recover its original shape after it has been
deformed. A larger BSI indicates a greater degree of re-
bound of a material after being compressed. Bulk com-
pressibility describes the cushioning ability of a material,
and is related to its relative softness or hardness. High
BSI and low compressibility are desirable for loose-fill
packaging material. [37] Pure TS foam had the lowest
BSI of 0.931. Addition of PLA did not have a significant
effect on the BSI of TS/PLA foam (0.947). BSI was influ-
enced (P < 0.05) significantly by the addition of clay into
the TS/PLA matrix. The 1 wt % nanocomposite foam
had the highest BSI of 0.961. The 3, 5, and 7 wt % nano-
composite foams had BSI which were not significantly
different from each other at 0.953, 0.947, and 0.956, re-
spectively. The 5 wt % clay content produced a BSI of
0.947 which was similar to the BSI of TS/PLA foam.

-

ra

Heat Flow Endo (mW)
BN
n

o

Temperature (“C)

Figure 4. DSC thermographs of tapioca starch-PLA/Cloisite
NA* nanocomposite foams at clay contents of (a) 1 wt %, (b) 3
wt %, () 5wt %, and (d) 7 wt %.
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Pure TS foam had a significantly higher bulk com-
pressibility of 14.3 MPa. The bulk compressibility de-
creased to 7.25 MPa, with the addition of PLA. This
could have been due to the PLA reacting readily with
the starch matrix to form strong interactions between
them. [38] Addition of different amounts of clay to the
nanocomposites reduced the bulk compressibility sig-
nificantly (P < 0.05). The 1, 3, and 5 wt % clay contents
produced bulk compressibilities which were not signif-
icantly different from each other at 7.32, 5.87, and 7.39
MPa, respectively. The highest loading of clay (7 wt %)
produced a bulk compressibility of 11.9 MPa which was
significantly different from the bulk compressibility of
the other nanocomposites.

Conclusions

From the WAXD study, the 1 wt % nanocomposite
foam did not show the characteristic basal reflection of
the nanoclay. This was possibly evidence of exfoliation
because of the nonexistence of the peak. Since the con-
centration of the nanoclay used was low (1 wt %) and at
this time no other characterizations were available to be
employed to confirm the exfoliated structure for proper
interpretation of the data. The 3, 5, and 7 wt % nano-
composite foams produced a mixture of intercalated and
tactoid structures. The d,-spacing of 3 wt % clay con-
tent produced an increase of 11.40 A compared to that
of the pristine clay. The d-spacings of 5 and 7 wt %
clay content produced increases of 11.15 and 10.67 A, re-
spectively. These data show that the nanoclay was inter-
calated to a lesser extent as clay contents increased. The
TS/PLA foam exhibited cell structure with large cells.
The nanocomposite foams showed a noticeably reduced
cell size, more compact cells, and increased cell density.
The higher clay content nanocomposite foams had more
compact cells and a higher cell density than the lower
clay content nanocomposite foams.

At1wt % clay concentration, the T,, was 171.8°C. The
T, of 3,5, and 7 wt % nanocomposite foams were 176.0,
172.8, and 160.7°C, respectively. The decrease in T, with
increasing clay concentration could be attributed to the
compatibility of this nanoclay with the starch and PLA
mixture which suppressed the crystallization. It was ob-
served that the addition of 1, 3, and 5 wt % clay contents
had significant effects on the unit density of the nano-
composite foams as compared to the pure TS foam.

BSI was influenced (P < 0.05) significantly with the
addition of different clay contents into the TS/PLA ma-
trix. Addition of different amounts of clay to the nano-
composites reduced the bulk compressibility signif-
icantly (P < 0.05). The 1, 3, and 5 wt % clay contents
produced bulk compressibilities which were not signif-
icantly different from each other at 7.32, 5.87, and 7.39
MPa, respectively. The highest loading of clay (7 wt %)

produced a bulk compressibility of 11.9 MPa which was
significantly different from the bulk compressibility of
the other nanocomposites.
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