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TECHNICAL ARTICLE
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Quality Trends Coinciding with the Return of Fish
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Michael J. Langland
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� US Government 2010

Abstract Acidic mine drainage (AMD) from legacy anthra-

cite mines has contaminated Swatara Creek in eastern

Pennsylvania. Intermittently collected base-flow data for

1959–1986 indicate that fish were absent immediately

downstream from the mined area where pH ranged from 3.5 to

7.2 and concentrations of sulfate, dissolved iron, and dissolved

aluminum were as high as 250, 2.0, and 4.7 mg/L, respec-

tively. However, in the 1990s, fish returned to upper Swatara

Creek, coinciding with the implementation of AMD treatment

(limestone drains, limestone diversion wells, limestone sand,

constructed wetlands) in the watershed. During 1996–2006, as

many as 25 species of fish were identified in the reach

downstream from the mined area, with base-flow pH from 5.8

to 7.6 and concentrations of sulfate, dissolved iron, and dis-

solved aluminum as high as 120, 1.2, and 0.43 mg/L,

respectively. Several of the fish taxa are intolerant of pollution

and low pH, such as river chub (Nocomis micropogon) and

longnose dace (Rhinichthys cataractae). Cold-water species

such as brook trout (Salvelinus fontinalis) and warm-water

species such as rock bass (Ambloplites rupestris) varied in

predominance depending on stream flow and stream temper-

ature. Storm flow data for 1996–2007 indicated pH, alkalinity,

and sulfate concentrations decreased as the stream flow and

associated storm-runoff component increased, whereas iron

and other metal concentrations were poorly correlated with

stream flow because of hysteresis effects (greater metal con-

centrations during rising stage than falling stage). Prior to

1999, pH \ 5.0 was recorded during several storm events;

however, since the implementation of AMD treatments, pH

has been maintained near neutral. Flow-adjusted trends for

1997–2006 indicated significant increases in calcium;

decreases in hydrogen ion, dissolved aluminum, dissolved and

total manganese, and total iron; and no change in sulfate or

dissolved iron in Swatara Creek immediately downstream

from the mined area. The increased pH and calcium from

limestone in treatment systems can be important for mitigat-

ing toxic effects of dissolved metals. Thus, treatment of AMD

during the 1990s improved pH buffering, reduced metals

transport, and helped to decrease metals toxicity to fish.

Keywords Acidification � Acid mine drainage �
Aquatic restoration � Fish � Metals � Storm flow � Sulfate

Introduction

Drainage from abandoned mines affects the water quality

and aquatic ecology of streams and lakes in coal and metal

mining regions worldwide (Nordstrom 2000; Wolkersdor-

fer and Bowell 2004). In the Appalachian coalfield of the

eastern USA, acidic mine drainage (AMD) from legacy

mines has rendered many streams fishless (Herlihy et al.

1990). In Pennsylvania, AMD from abandoned coal mines

is the leading cause of nonpoint-source (NPS) pollution,

degrading approximately 8,800 km of streams (Pennsyl-

vania Dept of Environmental Protection 2004, 2007) and

accounting for lost revenues of approximately $93 million

annually because of recreational fishing losses (Pennsyl-

vania Dept of Environmental Protection 2009).

Effects of AMD are complex but can be categorized as

acidity, metal toxicity, sedimentation, and salinization.

AMD commonly has acidic pH (\4.5) and elevated con-

centrations of sulfate (SO4
2-), iron (Fe2?, Fe3?), aluminum

(Al3?), manganese (Mn2?), zinc (Zn2?), nickel (Ni2?),

copper (Cu2?), lead (Pb2?), and other solutes that result
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from the oxidation of pyrite (FeS2) and the subsequent

dissolution of aluminosilicate, oxide, and carbonate miner-

als by acidic water (Blowes et al. 2003; Cravotta 2008;

Nordstrom 2000). Low pH and elevated concentrations of

dissolved metals in the water column and pore water of

stream sediment can be stressful or toxic to fish and aquatic

macroinvertebrates (Baker and Schofield 1982; Butler et al.

1973; Courtney and Clements 2002; Dsa et al. 2008; Mac-

Donald et al. 2000; US EPA 2002). The transport of dis-

solved metals across biological membranes and/or ingestion

of contaminated food or sediment with subsequent transport

across the gut are the primary routes of toxic exposure

(Havas and Rosseland 1995). Additionally, dissolved Al3?

and Fe3? can precipitate on the gills or equivalent organs,

suffocating aquatic organisms (Cleveland et al. 1991; Havas

and Rosseland 1995; Henry et al. 1999).

The severity of metals toxicity tends to be greater under

low-pH conditions than under near-neutral conditions.

Accordingly, the US EPA (2002) recommends pH 6.5–9.0

for protection of freshwater aquatic life, and the Com-

monwealth of Pennsylvania (2002) stipulates that effluent

discharged from active mines must have pH 6.0–9.0 and

alkalinity greater than acidity. Near-neutral pH could result

from dissolution of limestone and other calcareous bedrock

by the AMD or from mixing of acidic AMD with neutral,

carbonate-buffered surface water (Broshears et al. 1996;

Henry et al. 1999; Schemel et al. 2000). At near-neutral

pH, concentrations of dissolved Al3? and Fe3? are limited

by the precipitation of hydrous oxide and hydroxysulfate

minerals, and the transport of other toxic metals, such as

Cu2?, Pb2?, Ni2?, and Zn2?, typically is attenuated owing

to adsorption to such minerals (Bigham and Nordstrom

2000; Cravotta 2008; Webster et al. 1998; Winland et al.

1991). Nevertheless, even if concentrations of solutes in

the water column are below toxicity thresholds, the accu-

mulation of metal-rich solids within the streambed can

degrade the benthic habitat and affect trophic structure and

reproduction (Cannon and Kimmel 1992; Dsa et al. 2008;

Havas and Rosseland 1995). Accordingly, strategies to

treat the AMD before it discharges to streams commonly

implement steps that increase pH and alkalinity, promote

the oxidation of Fe2? and Mn2?, and facilitate the pre-

cipitation and settling of hydrous oxides of FeIII, MnIII–IV,

Al, and other metal-rich compounds (Johnson and Hallberg

2005; Ziemkiewicz et al. 2003).

Chemical conditions in streams may rebound quickly

following neutralization of AMD; however, the recovery of

aquatic invertebrates, zooplankton, and fish may take dec-

ades (Herricks 1977; Monteith et al. 2005; Vrba et al. 2003).

Instead of continuous accrual of species over the improving

chemical gradient, recovery tends to be punctuated, with

groups of taxa added as particular chemical thresholds are

attained (Monteith et al. 2005). Impediments to ecological

recovery of acidified systems include inadequate or unsta-

ble water quality, residual effects of degraded substrate or

habitat, inadequate or inaccessible supply of organisms for

recolonization, and community-level competition and

dynamics (Herricks 1977; Nelson and Roline 1996; Short

et al. 1990; Yan et al. 2003).

Despite historical degradation from AMD, reproducing

populations of brook trout (Salvelinus fontinalis) and other

native fishes recently have been documented in several

streams in the Anthracite coalfield of eastern Pennsylvania

(Cravotta 2005; Cravotta and Bilger 2001; Cravotta and

Kirby 2004) that had been considered fishless prior to

recent surveys. The recent appearance of fish coincides

with improved water quality of the streams and associated

AMD sources, characterized by near-neutral pH, increased

alkalinity, and decreased concentrations of acidity and

dissolved metals (Raymond and Oh 2009; Wood 1996).

Because of progressive improvement in water quality and

the recovery of native fish populations described in this

paper, the upper Swatara Creek was recently characterized

by the US EPA (2007) as a ‘‘nonpoint-source success

story.’’

This paper tests the hypothesis that AMD treatment has

improved downstream water quality and promoted the

return of fish and other aquatic life to the upper Swatara

Creek and its major tributaries during the period 1996–

2007. The paper evaluates a unique combination of data

from annual surveys of fish populations, continuous records

of stream flow, temperature, pH, and other chemical data

for stream segments downstream from AMD sources dur-

ing the study period. A companion paper (Cravotta 2010)

describes the hydrochemical characteristics of the AMD

sources and evaluates the effectiveness of specific treat-

ment systems within the upper Swatara Creek Basin during

the study period.

Description of Study Area

Swatara Creek drains an area of 1,472 km2 in the Ridge and

Valley physiographic province of eastern Pennsylvania,

flowing 115 km from its headwaters in the Southern

Anthracite coalfield of Schuylkill County to its mouth on the

Susquehanna River at Middletown, Dauphin County (Berg

et al. 1989). Approximately 75% of the 112 km2 area of the

upper Swatara Creek Basin, upstream from the US Geo-

logical Survey (USGS) stream flow-gaging station at Ravine

(Fig. 1, #01571820), is underlain by anthracite-bearing

bedrock. During the late 1800s through the 1940s, extensive

underground mines were developed to depths as great as

1,000 m (Eggleston et al. 1999; Wood et al. 1986). Current

land use in the upper 112 km2 area is classified as 86.6%

forested, 4.9% agricultural, and 6.4% ‘‘barren, mined.’’
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Prior to recent restoration efforts in the Swatara Creek

Basin, surface water could drain to numerous abandoned

underground mines through mine openings and subsidence

pits. Further downstream, contaminated groundwater dis-

charged from more than 40 AMD sources, degrading

Swatara Creek and rendering the uppermost 20 km fishless

for most of the twentieth century (Jackson 1987; Shoe-

maker 1932). Because of low pH and metals contamination

from the AMD, Pennsylvania included upper Swatara

Creek on the state’s 303(d) list of impaired waters in 1996

and designated the upper basin a ‘‘high priority watershed’’

for reducing NPS pollution (Pennsylvania Dept of Envi-

ronmental Protection 2007).

Various low-cost methods of treatment were imple-

mented at or near the largest AMD sources, including open

limestone channels, anoxic and oxic limestone drains,

limestone diversion wells, hydrated lime dosing, and aer-

obic wetlands (Fig. 1b). Specific details on most of the

AMD treatments, installed during 1995–2001, and their

water-quality effects are reported by Cravotta (2010).

Additionally, surface reclamation of abandoned mine land

(AML) areas ranging from 7.7 to 35 ha over a total area of

230 ha or 2.3 km2 was implemented during this period

(Pennsylvania Dept of Environmental Protection 2004).

Methods of Data Collection and Analysis

To provide detailed information at a range of scales, the

USGS collected hydrologic data at more than 80 locations

in the upper Swatara Creek Basin during 1996–2007

(USGS, variously dated). For this paper, a subset of the
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monitoring data collected at primary stream flow-gaging

stations on Swatara Creek, Good Spring Creek, and Lor-

berry Creek were used (Fig. 1b).

Fish were collected annually in Swatara Creek at Ravine

and Newtown, Good Spring Creek at Tremont, and Lor-

berry Creek near Ravine (Fig. 1b) by electrofishing over a

150 m reach consisting of mixed riffle, run, and pool

habitats (Barbour et al. 1999). Stream habitat characteris-

tics were recorded for each site, and individual fish were

identified and measured before releasing most specimens.

To evaluate the cumulative effects of AMD remediation

and the transport of pollutants from the mined part of the

upper Swatara Creek Basin to unmined areas downstream,

in 1996, the USGS reestablished ‘continuous-record’ sta-

tions for stream flow and water-quality monitoring on

Swatara Creek at Ravine (#01571820; 1996–2007) near the

outlet of the 112 km2 upper basin, on Swatara Creek at

Newtown (C3, #0157155014; 1996–2007) near the head-

waters, and on Swatara Creek at Pine Grove (#01572025;

1996–2000) approximately 6 km downstream from the

mined area (Fig. 1b). These sites had been monitored

previously by USGS and others (Fishel 1988; Growitz et al.

1985; McCarren et al. 1964; Stuart et al. 1967). Addi-

tionally, continuous-record stream flow and water-quality

gaging stations were established on Swatara Creek at

Newtown (C1, #0157155010; 1996–2007), upstream of

limestone diversion wells, and on Lorberry Creek at Mol-

lystown (#01571778; 1999–2007) (Fig. 1b).

The continuous-record stations were equipped with

automatic stage-recording, water-quality monitoring, and/or

water-sampling devices. The stream stage was measured

continuously with a pressure transducer, and the tempera-

ture, pH, and specific conductance (SC) were measured

continuously with a multi-parameter sonde. The stage and

water-quality values were recorded at 15 min intervals. To

estimate continuous stream flow, stage-discharge ratings

were developed for each site on the basis of instantaneous

stream flow for a range of stream stages. Stream flow

typically was measured by wading across the channel with

a vertical-axis current meter.

Instantaneous data for temperature, SC, pH, redox

potential (Eh), and dissolved oxygen (DO) were measured

using standard field methods when continuous-record data

were retrieved at stream flow-gaging stations or when

water-quality samples were collected. Fixed-interval grab

samples, mostly at base-flow conditions, were collected at

4- or 6-week intervals from well-mixed zones in the stream.

For Swatara Creek at Ravine (#01571820), Swatara Creek

at Newtown (#0157155014), and Lorberry Creek at Mol-

lystown (#01571778), numerous additional base-flow and

storm flow samples were collected using pumping samplers

containing 24-1 L polyethylene bottles. Storm flow samples

submitted for analysis were selected to cover rising, peak,

and falling stages of the hydrograph. Storm flow samples of

Swatara Creek at Ravine were analyzed for more than 60

events during the study. Bulk precipitation samples were

also collected and analyzed for a few of the storms.

Whole-water samples were analyzed in the laboratory

within 24 h of collection for pH and alkalinity to a pH 4.5

endpoint (American Public Health Association 1998a).

Samples for ‘dissolved’ (filtered through a 0.45 lm pore

size membrane) and total (whole-water; in-bottle digestion

with nitric acid (HNO3) and hydrochloric acid (HCl)) metal

analysis were stored in acid-rinsed polyethylene bottles and

acidified with HNO3. The water samples were analyzed for

major ions and trace metals by inductively coupled plasma

atomic emission spectrometry (ICP-AES), ion chromatog-

raphy (IC), colorimetry, and electrometric titration at the

Pennsylvania Department of Environmental Protection

(PaDEP) Bureau of Laboratories facility in Harrisburg, PA,

during 1996–2000, at the US Department of Energy (US-

DOE) laboratory in Pittsburgh, PA, during 2001–2002, and

at the Actlabs laboratory in Toronto, Ontario, during 2003–

2007. Although similar analytical procedures were used,

the laboratories reported different limits of detection for

aluminum and trace metals. Data for environmental water-

quality and quality-assurance samples collected during the

study were stored in the USGS National Water Information

System (NWIS) database (http://waterdata.usgs.gov/pa/

nwis/qw).

Hardness was computed from the concentrations of

dissolved calcium and magnesium in mg/L as CaCO3 (2.5

CCa ? 4.1 CMg). The net acidity, which is similar in value

to the ‘hot peroxide’ acidity (American Public Health

Association 1998b), was computed considering positive

acidity contributions from protons and concentrations of

dissolved iron, manganese, and aluminum, and negative

contributions from alkalinity as described by Kirby and

Cravotta (2005). Because the hot acidity values obtained

for this study did not include negative values, only the net

acidity is evaluated in this paper.

To compare hydrologic conditions among sites during

the study with the long-term record, stream flow duration

records (probability plots) for the Ravine and Newtown

stream flow-gaging stations were displayed with records

for stations on Swatara Creek at Pine Grove (#01572025)

and Harper Tavern (#01573000), which were 7.7 and

48.0 km downstream from Ravine, respectively. Daily

mean stream flow values for these sites also were used with

the PART hydrograph-analysis computer program (Rutl-

edge 1998) to estimate annual mean stream flow and base-

flow and surface-runoff contributions during the study.

Interbasin variability during the study was indicated by the

stream flow ‘yield’, computed by dividing the annual

stream flow by the estimated drainage area at the gaging

station.

Mine Water Environ

123

http://waterdata.usgs.gov/pa/nwis/qw
http://waterdata.usgs.gov/pa/nwis/qw


A multivariate approach was used to estimate chemical

concentrations and annual loads and corresponding trends

in these parameters for the 1997–2006 period for Swatara

Creek at Ravine (#01571820) and Swatara Creek at New-

town (#0157155010 and #0157155014). This approach,

described by Langland et al. (2006), uses the log-linear

7-parameter ESTIMATOR regression model of Cohn et al.

(1989) with daily mean stream flow and time parameters to

estimate the continuous distribution of daily concentration

values. The daily concentration estimates are multiplied by

daily mean stream flow and integrated over time to indicate

annual loads. By dividing the annual load by the annual

stream flow, the annual mean flow-weighted concentration

was computed for each year of the study. The flow-

weighted concentration computed on this basis is consid-

ered an unbiased estimate of the mean concentration

(Langland et al. 2006).

In accordance with Langland et al. (2006), flow-adjusted

trends were estimated considering the time terms in the

log-linear regression model. The flow-adjusted trends,

expressed as percent difference, indicate the overall change

between the start date (1997) and the end date (2006) of the

study and are mathematically identical for concentration

and load. Changes were considered significant only if the

confidence interval of the modeled value at the end of 2006

was entirely greater than (upward trend) or entirely less

than (downward trend) the modeled starting value. The

results of flow-adjusted trend analysis can be interpreted to

indicate changes in water quality that result from factors

other than stream flow, such as changes in land use or other

management practice (Helsel and Hirsch 2002).

Results

Return of Fish Populations, 1996–2006

During the 1990s, native fish populations returned to upper

Swatara Creek. No fish were found during ecological sur-

veys of Swatara Creek at Ravine prior to 1990 (Jackson

1987; Shoemaker 1932). Yet, in 1996, six species of fish,

including blacknose dace (Rhinichthys atratulus), brook

trout (Salvelinus fontinalis), and white sucker (Catostomus

commersoni) were captured by electrofishing (Table 1).

The colonizing fish are assumed to have originated from

wild stocks in unaffected or marginally affected tributaries

and downstream reaches in the watershed. From 1996 to

2002, the number of fish species in Swatara Creek at

Ravine increased annually to 25 species (Table 1; Fig. 2).

However, during high base-flow conditions in 2003 and

2004, fewer fish were captured than preceding years

(Fig. 2). When the surveys were resumed in 2005 and

2006, base-flow conditions were comparable to earlier

survey conditions and large numbers of fish of various

species were captured.

The number of fish species and total number of fish

counted during annual surveys were negatively correlated

with the minimum stream flow during the week of the

survey (Spearman’s rho = -0.70 and -0.89, respectively)

(Fig. 2a, b) and positively correlated with the maximum

pH (Spearman’s rho = 0.60 and 0.81) and SC (Spearman’s

rho = 0.84 and 0.90) during the week of the survey.

Although not correlated with the water temperature during

the survey, the abundance of brook trout, a cold-water

species, was negatively correlated with the maximum daily

temperature during summer months preceding the survey

(Fig. 2c). The water temperature during summer months,

pH, and SC generally decreased with increased stream

flow. Furthermore, higher flow conditions on the date of

the survey increased water depth, turbidity, and velocity of

transport of stunned fish resulting in reduced capture effi-

ciency. Fish species that were counted at a high frequency

during the higher stream flow conditions, notably rock bass

(Ambloplites rupestris), were concentrated near large rocks

and boulders along the stream bank and were more easily

captured than other fish species at higher flows.

In 1996 and 2006, stream flow conditions of Swatara

Creek at Ravine during the dates and weeks of fish surveys

were similar (Fig. 2). Despite similar survey conditions and

methods, only 76 fish of 6 species were collected in 1996

compared to a total of 195 fish of 16 species in 2006. A

fraction of the fish species identified at Ravine was found at

upstream sites on Good Spring Creek at Tremont, Lorberry

Creek at Lorberry Junction, and Swatara Creek at Newtown

during the study (Table 1). Comparing survey results for

1996 and 2006, increases in fish-species diversity were also

apparent for Good Spring Creek at Tremont (5 species in

1996; 9 species in 2006) and Swatara Creek at Newtown

(0 fish in 1996; 2 brook trout in 2006) (Fig. 2). Although

stream flow and water quality were variable, the aquatic

habitat conditions in Swatara Creek at Ravine and upstream

sites of fish surveys were unchanged during 1996–2006.

As indicated by box plots summarizing water-quality

data for the sites where fish surveys were conducted,

Swatara Creek at Ravine and Good Spring Creek at Tre-

mont generally exhibited net-alkaline water quality with

consistently near-neutral pH during the study (Fig. 3);

these two sites also had the largest stream flow and yielded

the greatest numbers of fish compared to Lorberry Creek

and Swatara Creek at Newtown (Fig. 2). In contrast, the

water quality for Lorberry Creek and Swatara Creek at

Newtown frequently was acidic, with corresponding values

of pH ranging to 5.5 and less during the study (Fig. 3).
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Streamwater Quality and Stream flow

Temporal variability in stream flow is one of the most

important factors affecting water quality. Although annual

stream flow was within the normal range during 1996–1998

and 2005–2007, it was lower than normal in 1999–2001

and greater than normal in 2002–2004 (Figs. 4a, 5a).

Hydrograph separation with PART (Rutledge 1998) indi-

cated the total stream flow at Ravine during the study was

composed of about 75% base flow and 25% storm runoff.

Generally the runoff associated with storm flow events

lasted from hours to several days.

Expressed as the yield, where stream flow is divided by

drainage area, the upstream station on Swatara Creek at

Newtown had lower annual mean stream flow (54.0 cm/

year) than downstream gaging stations on Swatara Creek at

Ravine (69.5 cm/year), Pine Grove (65.1 cm/year), and

Harper Tavern (63.4 cm/year). Relatively small stream

flow yields for Swatara Creek at Newtown are consistent

with this drainage area losing water to the underground

mine that flows eastward to the Otto Colliery in the adja-

cent watershed (Gannett Fleming Corddry and Carpenter,

Inc. 1972). In contrast, large stream flow and base-flow

yields for Lorberry Creek (109 and 84.7 cm/year, respec-

tively) are consistent with groundwater inflows from out-

side the delineated watershed. The Rowe Tunnel drains the

Lincoln Mine pool that extends beneath the Lorberry Creek

and Lower Rausch Creek watersheds.

At Ravine, the continuously recorded pH ranged from

4.7 to 8.2 and SC ranged from 27 to 540 lS/cm during the

study (Figs. 4, 6); pH and SC values generally decreased

with increased stream flow (Fig. 6). Minimum values of pH
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Fig. 2 Annual electrofishing

survey results at selected sites*

in Swatara Creek Basin, 1996–

2006: a total number of fish at

each site; b number of fish

species at each site;

c percentage of brook trout

relative to total number of fish

at Swatara Creek at Ravine.

*Lorberry Creek was not

surveyed before 2002. In a and

b, solid black line indicates

observed streamflow for

Swatara Creek at Ravine during

survey; vertical error bars
indicate range of daily mean

streamflow at Ravine during the

week before the survey. In c,

solid black line indicates daily

mean temperature in July and

August; vertical error bars
indicate associated range of

daily mean temperature; dashed
horizontal line indicates

maximum temperature

permitted for ‘‘cold-water

fishery’’ in July and August

(Commonwealth of

Pennsylvania 2002)
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Fig. 3 Boxplots summarizing hydrochemical characteristics of stream

water at sites of annual fish surveys in Swatara Creek Basin, PA, over 3-

year intervals: (1) 1996–1998, (2) 1999–2001, (3) 2002–2004, (4)

2005–2007. Shaded area of box indicates the ‘‘interquartile’’ range

(IQR = 25th to 75th percentile); horizontal line inside the box indicates

the median; vertical lines extend to extreme values within 1.5 times the

IQR; symbols indicate outlier values
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and SC were recorded for storm flow, implying that storm

runoff that mixes with base flow is both acidic and dilute,

as explained in more detail below.

One could hypothesize that with the implementation of

limestone-based treatment systems at many of the AMD

sources in the Swatara Creek Basin during the late 1990s

(Fig. 1b), stream flow would not be affected, but pH,

alkalinity, and calcium concentrations would increase at

downstream sites. Frequency distribution plots of contin-

uous-record stream flow, pH, SC, and temperature of

Swatara Creek at Ravine for 3-year intervals during 1996–

2007 (Fig. 4) show that the stream flow distribution during
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Fig. 4 Probability plots of

continuously measured

(recorded at 15-min intervals)

data for Swatara Creek at

Ravine, PA, September 1996

through September 2007:

a, streamflow; b, pH; c, specific

conductance; d, temperature.
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frequency that values were

exceeded during 3-year

intervals
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1996–1998 was comparable to the long-term distribution.

However, during the 1996–1998 period, Swatara Creek had

a greater frequency of low values of pH and SC and a

smaller range in temperature compared to later periods

(Figs. 4, 5). The decrease in the frequency of low values of

pH and SC and the increase in the range of temperature

after 1998 coincide with, and could result from, the

implementation of AMD treatments. Limestone diversion

wells, limestone drains, and limestone channels are sources

of dissolved solids (as calcium and alkalinity) that would

tend to increase the pH and SC. Constructed wetlands and

the diversion of streams from mines to surface channels

would have little effect on dissolved solute concentrations

but could affect water temperature. After 1998, maximum

stream temperatures increased during summer months and

decreased during winter months (Fig. 5). This increased

range in maximum temperature is consistent with increased

thermal exchange with the ambient atmosphere that could

result from the impoundment of AMD in wetlands and the

restoration of stream flow at mine-infiltration sites. Evap-

oration of stream water during low-flow periods would tend

to amplify these effects on temperature and SC.

During 1996–2007, stream-water-quality samples for

chemical analysis were collected for a wide range of

hydrologic conditions. The samples collected with auto-

mated sampling devices during storm events were identified
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Fig. 5 Time-series plots of the
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PA, June 1996 through June

2007: a, streamflow; b, pH; and

c, temperature. In b and c,
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as rising, peak, and falling ‘storm flow’ samples on the basis

of the hydrograph for Swatara Creek at Ravine on the date

of sampling. Samples collected during relatively stable

stream stage between storm events were characterized as

normal, low, and high ‘base-flow’ samples.

Base Flow

Current and historical data from 1959 to 2007 for Swatara

Creek at Ravine indicate progressive improvement in stream

water quality (Fig. 7). Although stream flow at times of

collection of historical (1959–1985) and current (1996–

2007) base-flow samples generally was comparable, sulfate

decreased from a median of about 150 mg/L in 1959 to

75 mg/L in 2007; pH increased sharply from 3.5–4.4

(median & 4) to 4.6–7.0 (median & 6.5) after 1995

(Fig. 7). Concentrations of dissolved iron and aluminum

generally decreased with increased pH. The decrease in

concentrations of sulfate and associated AMD contaminants

in Swatara Creek prior to remedial work in 1995–2001 could

have resulted from a progressive decrease in contaminant

loading from AMD sources after the initial flooding of the

abandoned mines. Flooding of a mine can result in the: (1)

dissolution of accumulated pyrite-oxidation products, (2)

reduction in the access of oxygen to the subsurface with a

corresponding decrease in the pyrite oxidation rate, and (3)

progressive dilution of initially acidic water by alkaline

groundwater inflows. Such processes could account for

gradual improvement in AMD and surface-water quality that

has been ongoing for decades throughout the region, par-

ticularly in the Northern, Western, and Southern Anthracite

coalfields (Wood 1996). The associated increase in pH of

Swatara Creek probably was caused by the onset of car-

bonate buffering that occurred when the rate of alkalinity

production equaled or exceeded acid production. The

implementation of limestone-based treatment systems dur-

ing 1995–2001 would be expected to enhance the potential

for carbonate buffering.

Storm Flow

Storm-runoff events can occur year round in the study area

and can have a dramatic effect on stream flow. Generally,

monthly runoff as a fraction of total stream flow (estimated

with PART, Rutledge 1998) was greatest during the late

summer and early fall, when seasonal low base flow was

punctuated by large storms of tropical origin. Months with

an exceptionally high fraction of storm flow during the study

included October 1996 (47%), September 1999 (58%),

September 2001 (46%), October 2003 (45%), September
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2004 (70%), and October 2005 (52%). Several examples of

storm hydrographs during September and October 1996–

2006 with associated stream chemistry are illustrated in

Fig. 8. The same vertical axes for stream flow, SC, and

sulfate; pH; and concentrations of suspended solids, total

iron, and dissolved iron were used so that storm character-

istics can be compared. Although each storm hydrograph is

unique, owing to variations in storm duration, intensity, and

runoff contribution, some features are consistent among the

hydrographs. Specifically, as stream flow increased during

storm events, the pH, SC, and sulfate concentration

decreased, whereas the concentrations of suspended solids

and total and dissolved iron increased (Fig. 8). Other sam-

pled hydrographs for all months of the year exhibited

comparable patterns, except that storm events during 1996–

1998 exhibited greater propensity for change in pH, with

lower extremes (Fig. 4b) than later years.

Six bulk precipitation samples were collected during

June 1999–June 2000 at Ravine or Pine Grove. The rain had

the following median and range values: pH = 4.7 (4.1–6.2),

SC = 18 lS/cm (6–78 lS/cm), sulfate = 2.4 mg/L (\1–

5.9 mg/L), and total iron = 0.053 mg/L (0.043–0.077 mg/

L). Only one rain sample had pH [ 5; the high pH value for

this sample may represent the influence of dust or other

debris.

Discussion

Correlations among Stream Flow, Metals,

and Suspended Solids

The pH, SC, sulfate, and other chemical concentrations

varied in response to changes in stream flow. Generally,

base-flow samples had higher pH, SC, alkalinity, hardness,

and concentrations of dissolved major ions and lower

concentrations of total metals compared to storm flow

(Figs. 8, 9).

As stream flow at Ravine increased during storm flow

events, pH, SC, and concentrations of sulfate and manga-

nese typically decreased, and concentrations of suspended

solids, iron, aluminum, and other metals in whole-water

samples typically increased (Figs. 8, 9). Similar trends for

dissolved and suspended solids during storm flow on

Swatara Creek in 1959 were reported by Stuart et al. (1967,

Fig. 8). However, the trends for pH, SC, and sulfate are

inconsistent with the work of others who evaluated impacts

of acid rain on small streams in unmined, forested water-

sheds of the Appalachian Mountains of northeastern USA.

For example, Corbett and Lynch (1982) showed pH typi-

cally decreased while sulfate increased with stream flow in

Appalachian headwater streams during storm events.
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Fig. 7 Long-term water-quality data for base flow of Swatara Creek

at Ravine, 1959–2007: a, pH; b, dissolved sulfate; c, dissolved iron;

d, dissolved aluminum. Data from McCarren et al. (1964), Stuart et al.
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Cravotta (2000) demonstrated that the decreases in pH,

SC, and concentrations of major ions during storm events

for Swatara Creek could result from mixing of weakly

acidic storm runoff having pH 4.0–4.5 and low dissolved

solids with poorly buffered stream water having pH 6.0–6.5

and high sulfate. The storm runoff is derived from acidic

rainfall with minor contributions from pyrite-oxidation

products and carbonate minerals (Olyphant et al. 1991).

Typically, the greatest changes in SC and pH occurred

with the largest changes in stream flow (greatest dilution by
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stormflow events, Swatara Creek at Ravine, PA. October 19–21,
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2–4, 2006. Values shown for SC and suspended solids (divided by 10)

and concentration of SO4 (divided by 3) as sulfur
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storm runoff). The minimum SC typically occurred with

peak stream flow, whereas the minimum pH lagged by

several hours, generally occurring during the falling stage.

In contrast, concentrations of suspended solids generally

increased to peak values during the initial rising stage and

decreased prior to peak stage. Although the concentration

of total iron included contributions from suspended parti-

cles, peaks for total iron tended to be achieved after the

peaks for suspended solids, possibly reflecting a time lag

for iron-laden water and associated sediment from the

upper, mined part of the watershed to reach Ravine.

Generally, concentrations of suspended solids and total

iron and other metals at a given stream flow during a storm

event were greater during the rising stage than the falling

stage (Fig. 8). This ‘hysteresis’ effect can be explained as

resulting from the accumulation of metal-rich sediments

(FeIII, MnIII–IV, and Al oxyhydroxides and clay minerals)

within the streambed during base-flow conditions, scour

and transport of the streambed deposits during rising storm

flow stage, and dilution during falling stages. Small storm

events can scour metal-rich sediments from the streambed

with little dilution of the concentrations, resulting in
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Fig. 9 Relations between streamflow and concentrations of water-

quality constituents in base flow (open diamond symbol) and

stormflow (cross symbol) samples, Swatara Creek at Ravine, PA.

Hardness was computed from dissolved Ca and Mg in milligrams per

liter (2.5 CCa ? 4.1 CMg). Spearman rank correlation coefficient, r;

values [0.138 or \-0.138 are significant (p \ 0.001). Dashed

horizontal lines, except for Mn, indicate criteria continuous concen-

tration (CCC) values for protection of freshwater aquatic organisms

(US Environmental Protection Agency 2002); dashed lines for Mn

indicate PaDEP standard for daily mean concentration (Common-

wealth of Pennsylvania 2002)
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concentrations of total metals and suspended solids that are

comparable with or greater than those of large storms.

Storm flow hysteresis patterns indicated for Swatara Creek

and other streams can be affected by preceding conditions,

with large peak concentrations following relatively stable

base flow and diminished peak concentrations during suc-

ceeding storms of the same magnitude (Bowes et al. 2005;

Caruso 2005).

Because of the hysteresis effect, stream flow and con-

centrations of metals in Swatara Creek at Ravine were

poorly correlated (iron and aluminum) or not correlated

(manganese, nickel, zinc) (Fig. 9). However, concentra-

tions of total metals were strongly correlated with the

concentration of suspended solids (Cravotta and Bilger

2001). The correlations between concentrations of sus-

pended solids and total metals are consistent with sus-

pended solids that contained approximately 10% iron, 5%

aluminum, and lesser amounts of manganese and trace

metals, which were the reported concentrations in fine

streambed sediments in the study area (Cravotta and Bilger

2001).

Concentrations of aluminum, nickel, zinc, and other

trace metals commonly were detected in the unfiltered

samples but not in the corresponding filtered samples.

Hence, the ‘dissolved’ chemical concentrations did not

include substantial contributions from \0.45 lm colloids

(e.g. Schemel et al. 2000). Furthermore, when detected in

both unfiltered and filtered samples, the total concentra-

tions of iron and aluminum, and, to a lesser extent, man-

ganese, nickel, and zinc, commonly exceeded those in

filtered samples (Fig. 10) indicating a major fraction of

these metals was associated with suspended particles. In

contrast, equivalent values for total and dissolved con-

centrations of manganese, nickel, and zinc frequently were

reported in base-flow samples (Fig. 10), indicating that a

major fraction of these metals was transported as dissolved

ions and, possibly, fine colloids that could pass through

filters.

Water-Quality Trends

The interpretation of trends in concentrations and loads of

chemicals collected at different time intervals was com-

plicated by changes in stream flow and associated effects on

the pH and chemical concentrations. Although the annual

stream flow and annual loads for all chemicals changed in
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Fig. 10 Relations among concentrations of dissolved and total metals

in stream water sampled during base-flow (open diamond symbol) and

stormflow (cross symbol) conditions, Swatara Creek at Ravine, PA.

Values farther to right of diagonal line indicate decreasing fraction of

dissolved ions (\0.45 lm) contributing to total concentration. Data

plotted only if total and dissolved concentration above limit of
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for daily mean concentration (Commonwealth of Pennsylvania 2002)
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parallel, during the study period, the flow- weighted con-

centration (FWC) values for different chemicals exhibited

temporal variations not correlated with stream flow

(Fig. 11). For Swatara Creek at Ravine, the FWC values for

hydrogen ion, alkalinity, and dissolved iron had similar

trends, decreasing from high values during 1997–1998 to

minimum values in 2001–2003 and then increasing during

2003–2006. In contrast, FWC values for manganese and, to

a lesser extent, sulfate exhibited possible downward trends,

whereas those for dissolved aluminum were more erratic.

For Swatara Creek at Newtown, FWC estimates were

computed for the sites upstream (#0157155010) and

downstream (#0157155014) of limestone diversion wells

using the stream flow record from the downstream site

(Fig. 12). During 1997–2003, the FWC values for hydro-

gen ion and metals were lower and those for alkalinity were

higher at the downstream site compared to the upstream

site. These differences in water quality between the two

sites were expected because of the continuous addition of

alkalinity and pulverized limestone to the stream by the

diversion wells. However, the diversion wells were dam-

aged by storms associated with Hurricane Ivan in Sep-

tember 2004 and were not operated continuously thereafter.

After 2004, the FWC values for hydrogen ion increased

and those for alkalinity decreased at the downstream site,

while differences between the FWC values at the two sites

became smaller for dissolved iron and manganese.

Flow-adjusted trends, which are identical for concen-

tration and load of the particular chemical, were expressed

as percent change between the 1997 start time and 2006

end time (period of continuous stream flow record). Flow-

adjusted trends for Swatara Creek at Ravine (Fig. 13)
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Fig. 11 Annual mean streamflow for Swatara Creek at Ravine

(01571820; black line) and corresponding ‘‘calendar year loading’’
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indicated significant decreases in hydrogen ion, dissolved

and total manganese, total iron, and dissolved aluminum;

no change in alkalinity, sulfate, or dissolved iron; and

increases in calcium. The lack of trend in sulfate indicates

that the AMD contaminant loading rate was unchanged

during the study. The decrease in hydrogen ion and

increase in calcium could result from the dissolution of

limestone in various AMD treatment systems. Although

generated by limestone dissolution, the lack of trend in

alkalinity could indicate alkalinity was consumed during

neutralization reactions that buffered the pH to be near

neutral. Combined with decreases in iron, manganese, and

aluminum, these flow-adjusted trends support the hypoth-

esis that AMD treatment has increased pH and decreased

the transport of dissolved metals during the study.

Ecological Ramifications

The increase in fish populations of Swatara Creek and its

tributaries during the late 1990s coincided with the

implementation of limestone-based treatment systems at

many of the AMD sources (Fig. 1b). Possible effects of

such treatments include increased concentrations of cal-

cium and alkalinity with associated buffering of pH to be

near neutral, which could benefit fish and other aquatic

organisms that are intolerant of low pH and sensitive to

toxic metals. Because of solubility and adsorption, the

concentrations of dissolved metals would tend to decrease

with increased pH (Cravotta 2008; Webster et al. 1998),

plus added calcium and alkalinity may be important in

mitigating toxic effects of metals (Di Toro et al. 2001;

Paquin et al. 2000; Yan et al. 2003). The protective effect

of calcium can result from competition between Ca2? and

the free metal ion (Cu2?, Cd2?, Pb2?, Ni2?, Zn2?) for

binding sites on the gill or other sites of toxic action

(commonly termed ‘biotic ligand’), whereas the protective

effect of alkalinity can result from the formation of metal-

bicarbonate complexes that render the free metal ion

unavailable for biological uptake (Balistrieri and Blank

2008; Mager et al. 2010).
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Fig. 12 Annual mean streamflow for Swatara Creek at Newtown

(0157155014; black bar) and corresponding flow-weighted concen-

tration (FWC) of chemicals upstream (0157155010; left bar) and

downstream (0157155014; right bar) of diversion wells, 1997–2006:

a, hydrogen ion; b, alkalinity; c, sulfate; d, dissolved iron; e,

dissolved manganese; f, dissolved aluminum
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To maintain its designated use as a cold-water fishery,

Swatara Creek and other such streams in Pennsylvania must

have DO concentrations greater than 5.0 mg/L at all times

and temperatures less than 18.9�C during July and August

(warmest months) (Commonwealth of Pennsylvania 2002).

The minimum DO concentration at Ravine was 8.7 mg/L

during July 1997. However, the stream water temperature

occasionally exceeded 18.9�C during low-flow conditions

in summer (Figs. 2c, 5c), and concentrations of metals

periodically exceeded water-quality criteria for protection
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Fig. 13 Estimated flow-adjusted trend (X) and confidence interval

(CI) bar for chemicals in Swatara Creek at Ravine (01571820; lower
black bar) and Swatara Creek at Newtown downstream (0157155014;

middle blue bar) and upstream from diversion wells (0157155010;

upper red bar), 1997–2006. If the CI is completely negative

(downward trend) or completely positive (upward trend), the trend

is significant
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of aquatic organisms (Figs. 9, 10). Although elevated

temperatures can produce faster rates of iron oxidation and

associated metals removal in AMD treatment systems, the

prolonged exposure of stream water or AMD to ambient air

temperatures or sunlight can produce temperature extremes

that are not suitable for brook trout and other cold-water

species.

The overall fish-community structure in Swatara Creek

at Ravine could be characterized as transitional between

cold-water and warm-water classifications. Although spe-

cies abundance varied from year to year, the majority of the

species collected during 1996–2006 was considered to have

moderate tolerance to low pH and pollution (Table 1).

Several of the fish taxa are intolerant of pollution and low

pH, such as river chub (Nocomis micropogon), longnose

dace (Rhinichthys cataractae), northern hog sucker (Hy-

pentelium nigricans), and shield darter (Percina peltata)

(Table 1). As the maximum stream temperature increased

during summer months (Figs. 2c, 5c), competition between

cold- and warm-water species could have been a factor

affecting species abundance. For example, at Ravine dur-

ing 1997–1998, cold- and cool-water species predomi-

nated, including blacknose dace, creek chub (Semotilus

atromaculatus), fallfish (Semolitus corporalis), white

sucker, brook trout, and tessellated darter (Etheostoma

olmstedi) (Table 1). In 1999, cool-water species including

smallmouth bass (Micropterus dolomieu), river chub

(Nocomis micropogon), and fallfish were dominant, with

substantially fewer blacknose dace, tessellated darter, and

brook trout. Likewise, when rock bass, a warm-water

species, were abundant in 2003 and 2006, the number of

brook trout greatly diminished, possibly reflecting varia-

tions in stream flow during the survey in addition to the

variations in maximum stream temperature (Fig. 2). As

observed elsewhere (Snucins and Gunn 2003), the range

expansion of smallmouth bass and associated warm-water

fish could be an important factor affecting food-web

structure and the recovery of trout and associated cold-

water fish in acid-stressed systems.

Base flow during the study met Commonwealth of

Pennsylvania (2002) chemical water-quality standards;

however, storm flow commonly did not meet pH standards

(6.0–9.0) or concentrations of total iron (1.5 mg/L daily

mean), dissolved iron (0.3 mg/L maximum), and total

manganese (1.0 mg/L maximum) (Figs. 9, 10). Further-

more, although concentrations of dissolved metals in fil-

tered samples generally met US Environmental Protection

Agency (US EPA) criteria continuous concentration (CCC)

limits for protection of freshwater aquatic organisms, the

concentrations of total metals in unfiltered storm flow

samples (Figs. 9, 10) commonly exceeded CCC values for

iron (1.0 mg/L) and aluminum (0.087 mg/L) and occa-

sionally exceeded CCC values for nickel (0.052 mg/L) and

zinc (0.120 mg/L) (US EPA 2002). The CCC limits indi-

cate potential for adverse effects resulting from long-term

(30 day) exposure. Although storm conditions lasting only

hours to days accounted for most exceedances of water-

quality criteria, impounding the storm water could prolong

exposure (Fishel 1988). Decreased concentrations of sul-

fate, alkalinity, and hardness during storm flow conditions

(Fig. 9) could increase the bioavailability of metals

because of decreases in complexing ligands and competing

cations (Ca2?, Mg2?) (Balistrieri and Blank 2008; Mager

et al. 2010).

Metal-rich suspended solids and streambed sediments

represent a potential source of dissolved metals. Solid forms

of the metals could be ingested by aquatic organisms with

subsequent uptake of dissolved species within the gut.

Dissolved metals also could be derived by recrystallization

of metastable solid phases to more stable phases (Bigham

and Nordstrom 2000), by dissolution or desorption (Francis

et al. 1989; Webster et al. 1998), and/or by reductive dis-

solution of FeIII and MnIII–IV oxides (Francis and Dodge

1990). These processes could be promoted by decreases in

pH and/or redox potential in the streambed or water column.

Twenty-four of the 33 fish species identified in Swatara

Creek at Ravine during the study had been previously

reported for Pennsylvania streams with pH 4.6–6.4

(Table 1). A subset of these fish was found in Good Spring

Creek at Tremont, Lorberry Creek at Lorberry Junction,

and Swatara Creek at Newtown (Table 1). Concentrations

of dissolved sulfate, iron, and manganese were greater for

Lorberry Creek and Good Spring Creek than Swatara

Creek at Ravine or Swatara Creek at Newtown (Fig. 3).

Although Good Spring Creek and Lorberry Creek had

fewer fish than Swatara Creek at Ravine, these sites had

more fish than Swatara Creek at Newtown (Fig. 2). Such

differences in fish numbers and species diversity reflect

smaller stream flows and limited habitat at the upstream

sites. Sections of the surveyed reach at Newtown flowed

intermittently during the study. Greater species diversity

and larger populations would be expected for larger aquatic

habitats (Vannote et al. 1980). Although fish surveys were

not conducted prior to 2002 for Lorberry Creek, potential

downward trends in acidity and dissolved metals concen-

trations for Lorberry Creek during the study (Fig. 3) could

explain the appearance of blacknose dace, creek chub, and

brook trout in this tributary. These species, which are

moderately tolerant of low pH and pollution (Table 1),

were among the first species found in Swatara Creek at

Ravine during 1996, indicating early stages of its ecolog-

ical recovery. Similarly tolerant fish species have been

identified as early colonists in other systems recovering

from acidification (Cravotta 2005; Short et al. 1990).

Cravotta and Bilger (2001) presented results for macr-

oinvertebrate surveys on Swatara Creek at Ravine
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conducted during 1996–2000. Although such data were not

collected during 2001–2006, a macroinvertebrate survey of

Swatara Creek at Ravine in September 2007 indicated

results comparable to previous assessments (Gary Walters,

Pennsylvania Dept of Environmental Protection 2008,

written commun.). Although 11 benthic macroinvertebrate

taxa (family level), including 3 genera of Ephemeroptera

(mayflies) were found in Swatara Creek at Ravine in 2000,

a few relatively pollution- tolerant taxa dominated. More

than half of the individual specimens identified in 2000

were Hydropsyche and Chironomidae, which are tolerant

of metals and acidic conditions (Courtney and Clements

2002; Short et al. 1990). The lack of taxa richness and

trophic imbalance in Swatara Creek is consistent with the

identified toxic effect levels for metals in the streambed

sediments (Cravotta and Bilger 2001) and implies that

metals in the aquatic environment that are stressful to

macroinvertebrates may not be severely limiting to fish.

Because native fish populations had returned, but the

macroinvertebrate community continued to indicate water-

quality impairment in 2007, Swatara Creek was charac-

terized as ‘‘partially meeting designated uses’’ and was not

removed from the proposed 2008 Pennsylvania 303(d) list

of impaired waters (Pennsylvania Dept of Environmental

Protection 2007).

Summary and Conclusions

Streams affected by AMD commonly have diminished fish

populations because of low pH and/or elevated concen-

trations of iron, aluminum, and other metals from the

AMD. However, as impacts from AMD become less severe

through natural attenuation and/or watershed-restoration

activities, fish populations may rebound. For example,

upper Swatara Creek had been contaminated by AMD for

most of the twentieth century. Because of progressive

improvement in water quality after remedial work in 1995–

2001 and the subsequent recovery of native fish popula-

tions, upper Swatara Creek was recently characterized as a

‘‘nonpoint-source success story.’’

More than four decades of intermittent monitoring of

base flow of Swatara Creek immediately downstream from

the mined area indicated median sulfate concentration

decreased from about 150 mg/L in 1959 to 50 mg/L in

2007 while pH increased from acidic to near-neutral values

(medians: pH & 4 before 1975; pH & 6.5 after 1995).

These long-term trends probably resulted from a decrease

in pyrite oxidation and the onset of carbonate buffering,

because of flooding the mines during the early period and

the dissolution of limestone in treatment systems during the

later period. As a consequence of the improved water

quality, fish populations in Swatara Creek rebounded from

nonexistent during 1959–1990 to as many as 25 species

during 1996–2006, including several taxa that are intoler-

ant of low pH and pollution.

The study demonstrated that stream water quality

improvement and the recovery of fish populations in

Swatara Creek coincided with implementation of AMD

treatments in the upper part of the Swatara Creek watershed

during 1995–2001. The AMD treatments with limestone

added alkalinity, which was needed to maintain near-neutral

pH, and calcium, which can be important to aquatic

organisms for mitigating toxic effects of dissolved metals.

Flow-adjusted trends for Swatara Creek at Ravine indicat-

ing decreases in hydrogen ion and metals and increases in

calcium during 1997–2006 support the hypothesis that the

AMD treatments helped to improve downstream aquatic

quality. The treatments not only reduced the influence of

AMD, but also mitigated fluctuations in pH associated with

episodic acidification during storm events.

Sulfate concentration, SC, and pH of Swatara Creek at

Ravine were inversely correlated with stream flow because

of dilution of poorly buffered stream water with weakly

acidic storm runoff. In contrast, total and dissolved con-

centrations of metals were poorly correlated with stream

flow because concentrations of suspended solids and metals

typically peak prior to peak stream stage (hysteresis). As a

result of scour and transport of the metals in streambed

sediments, concentrations of suspended solids and total

metals in the water column are correlated, and those for

storm flow typically exceed base flow.

Despite near-neutral, cool-water conditions in Swatara

Creek that support a diverse fish population, untreated AMD

and metal-rich streambed sediments represent a substantial,

long-term source of metals. Although the transport of dis-

solved iron, aluminum, and most trace metals typically is

attenuated at near-neutral pH, transport of suspended metals

persists in Swatara Creek, especially during storm flow

conditions. Total iron, manganese, aluminum, and associ-

ated trace metals commonly increase in concentration at the

onset of storm flow conditions; peak metal concentrations

typically are achieved prior to peak discharge. The metal

content of the suspended solids is relatively constant over the

range of stream flow conditions, implying a relatively uni-

form source of material such as streambed deposits.

In general, temporal variations in water quality of low-

order streams, such as the northern part of Swatara Creek, are

difficult to characterize by routine monitoring at monthly or

quarterly intervals. This routine works well to identify

potential long-term trends but is not appropriate to charac-

terize rapidly changing conditions in response to stream

flow. Automated samplers and continuous water-quality and

stream flow monitoring methods generally will indicate

extremes, which can be important with respect to biological

or regulatory thresholds, and can indicate significant
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relations between stream flow, water chemistry, and trans-

port of sediment and associated chemicals. Such monitoring

equipment, used in this study to document extremes during

storm flow conditions, also could be used to document

diurnal variations in water quality during stable base-flow

conditions (e.g. Gammons et al. 2007). Water-quality reg-

ulations established to achieve in-stream water-quality

standards or to maintain designated uses of the water body

(water supply, fishing, etc.), such as total maximum daily

loads (TMDLs), require baseline characterization of pollu-

tant loads over a range of hydrologic conditions in order to

determine required reductions in loading from various con-

taminant sources (Caruso 2005). Data that do not adequately

represent storm flow conditions will underestimate the

annual transport of sediment and associated metals.

Generally, limestone-based treatment systems may be

effective to maintain stream pH in water bodies affected by

AMD and subject to acidification during storms. Never-

theless, neutralization and pH buffering alone will not

remedy the problem of metals transport. Solid forms of the

metals, as particulate and particle coatings, can be ingested

and accumulated by aquatic organisms and can be remo-

bilized by reductive dissolution of FeIII and MnIII–IV oxides

in buried sediment. Additional measures such as wetlands

and holding basins for storm water could be warranted

to prevent metals transport to the stream. However,

impounding water in wetlands and shallow ponds could

increase warming of the water during summer, potentially

leading to temperatures that are not favorable to fish. Thus,

strategies for AMD treatment should be considered that

minimize the potential for excessive warming of the water

while removing toxic metals.

Although the study demonstrated that fish populations

were affected by hydrochemical conditions during the

weeks, months, and years prior to the annual surveys, spe-

cific hydrochemical thresholds critical to population recov-

ery could not be identified. The potential for synergistic

effects of toxic chemical constituents and for complexation

of dissolved metals with inorganic ligands and organic car-

bon (not measured), combined with changes in water tem-

perature complicate the interpretations of ecological

stressors. Supplemental data on populations of fish and other

aquatic organisms before and after extreme hydrologic

events (droughts, storms) coupled with water-quality data,

including inorganic constituents and organic carbon con-

centrations, for such events could be useful to establish

relations between transient water-quality conditions and

specific factors that could be limiting to aquatic organisms.
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