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Abstract

We review Late Cenozoic climate and environment changes in the western interior of China with an emphasis on lacustrine records

from Lake Qinghai. Widespread deposition of red clay in the marginal basins of the Tibetan Plateau indicates that the Asian monsoon

system was initially established by �8Ma, when the plateau reached a threshold altitude. Subsequent strengthening of the winter

monsoon, along with the establishment of the Northern Hemisphere ice sheets, reflects a long-term trend of global cooling. The few cores

from the Tibetan Plateau that reach back a million years suggest that they record the mid-Pleistocene transition from glacial cycles

dominated by 41 ka cycles to those dominated by 100 ka cycles.

During Terminations I and II, strengthening of the summer monsoon in China’s interior was delayed compared with sea level and

insolation records, and it did not reach the western Tibetan Plateau and the Tarim Basin. Lacustrine carbonate d18O records reveal no

climatic anomaly during MIS3, so that high terraces interpreted as evidence for extremely high lake levels during MIS3 remain an

enigma. Following the Last Glacial Maximum (LSM), several lines of evidence from Lake Qinghai and elsewhere point to an initial

warming of regional climate about 14 500 cal yr BP, which was followed by a brief cold reversal, possibly corresponding to the Younger

Dryas event in the North Atlantic region. Maximum warming occurred about 10 000 cal yr BP, accompanied by increased monsoon

precipitation in the eastern Tibetan Plateau. Superimposed on this general pattern are small-amplitude, centennial-scale oscillations

during the Holocene. Warmer than present climate conditions terminated about 4000 cal yr BP. Progressive lowering of the water level in

Lake Qinghai during the last half century is mainly a result of negative precipitation–evaporation balance within the context of global

warming.

r 2007 Published by Elsevier Ltd.

1. Introduction

The dryland ecosystem on the northern Tibetan Plateau
(Fig. 1A) is vulnerable to climate changes and human
impacts. Degradation of grasslands, contraction of lakes,
and desertification have become major environmental
problems in recent years, affecting socio-economic devel-
opment in the region. Restoring these lands or reversing

these processes requires knowledge about the baseline
conditions of the drylands and the dynamics of landscape
change, particularly during past interglacials when climate
boundary conditions were similar to the present. Studying
Late Cenozoic climate changes on the Tibetan Plateau also
is crucial for understanding the complex interaction among
the atmosphere, lithosphere, hydrosphere, cryosphere, and
biosphere of the Earth system on a longer time scale. Long,
undisturbed lacustrine sediment sequences are important
for addressing these questions. Previous studies reveal that
sediment cores from Lake Qinghai contained abundant
information about regional environmental history at
various time scales. Because most of these results appear
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in Chinese-language journals, they are not accessible to the
international community. In addition, future studies of
drill cores from the Lake Qinghai Drilling Project, jointly
funded by the Chinese Academy of Sciences (CAS) and the
International Continental Drilling Program (ICDP), re-
quire background information about previous studies of
climate and environment changes in this area. Hence, this
review of paleoenvironmental studies was undertaken
before the Lake Qinghai Drilling Project retrieved its cores
from Lake Qinghai in late 2005.

The importance of Lake Qinghai sediment records for
understanding past global changes has been increasingly
recognized since the 1870s (cf. Chen et al., 1990), due to its
unique geographical location (Fig. 1A). Preliminary
geological and geomorphologic mapping in the lake area
were performed during the first half of the 20th century
(Shi et al., 1958; Chen et al., 1964). However, limnological
studies using modern techniques did not start until the
1960s, when fundamental data on lake biology, water
chemistry, and hydrology were first obtained during a
multi-disciplinary expedition (Lanzhou Institute of Geol-
ogy and Chinese Academy of Sciences (LZIG-CAS), 1979).
Yang and Jiang (1965) examined Quaternary vegetation
history by analyzing pollen assemblages of a 210-m-long
drill core (QH5) on the Erlangjian terrace (Fig. 1B).
Interest continued to increase in the 1980s. Approximately
80 cores were drilled around the lake by the Qinghai
Geological and Mineral Resource Administration. Two of
these cores (DH-54 and DH-64) reached depths of 500 and
300m below the sediment surface, respectively, and thus
provide long potential records of Quaternary climate
changes. Coordinated by the Institute for Salt Lake
Studies, CAS, a Sino-Swiss-Australian cooperative project
was implemented in 1984, aiming to elucidate the recent

climate history of the area. In 1987, a 155-m-long drill core
(QH86) from the Erlangjian terrace (Fig. 1B), along with
three short piston cores, numbed QH85-14, QH85-15, and
QH85-16, from the southern sub-basin of the lake, were
recovered. 210Pb and 137Cs dating (Huang and Sun, 1989)
of these piston cores, along with a variety of other analyses,
including pollen (Du et al., 1989; Kong et al., 1990; Shan et
al., 1993), carbon (Kelts et al., 1989; Huang and Meng,
1991), elemental and isotope geochemistry (Zhang et al.,
1989a, b, 1994; Lister et al., 1991; Sun et al., 1991) have
been carried out. These proxies reveal Lateglacial to
Holocene changes in lake hydrology and catchment
environment associated with the advance and retreat of
the Asian summer monsoon front (Wang and Shi, 1992;
Wei and Gasse, 1999; Yu and Kelts, 2002).
The foci of ongoing paleolimnological studies are on

high-resolution changes in lake hydrology and regional
climate, based on multiple stratigraphic analyses of short
cores, i.e. QING-6, QHE-2, QING-10, QHN3/1, QH0407-
C, and GAHAI-1 (Fig. 1B). A group from the University
of Lanzhou and University College London (Guo et al.,
2002a; Henderson et al., 2003; Shi et al., 2003; Zhang et al.,
2003; Henderson, 2004), and one from the Institute of
Geography and Limnology, CAS, (Shen et al., 2001; Liu et
al., 2002; Zhang et al., 2002a, b, 2004; Liu et al., 2003a, b, c;
Shen et al., 2005) have played leading roles in this wave of
investigation. However, systematic studies of modern
conditions and limnological processes are rare (Chinese
Academy of Science Lanzhou (CAS-LZ), Research Center
for Resource and Environment of Western China, Chinese
Academy of Sciences (RCREWC-CAS), 1994). Numerical
models have been used to try to understand the hydro-
logical and chemical evolution of the lake under various
scenarios of climate forcing (Qin and Huang, 1998a, b; Yan
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Fig. 1. (A) Relief of the western interior of China; numbered circles indicate sites discussed in the text. 1. Lake Qinghai; 2. Xifeng loess site; 3. Qarhan

Playa; 4. Kunteyi Playa; 5. Dunde Ice Core; 6. Lake Co Ngoin; 7. Zoige Basin; 8. Guliya Ice Core; 9. Lake Tianshuihai; 10. Lake Man Co; 11. Lake

Balikun; 12. Luochuan loess site. (B) Bathymetry of Lake Qinghai. Solid dots show the location of cores discussed in the text.
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et al., 2002), although few data exist to constrain such
models.

Here we compile and synthesize previously published
results of paleolimnological studies of Lake Qinghai. We
then compare paleoclimate records from the Tibetan
Plateau and nearby areas for four time intervals (Late
Cenozoic, the Last Interglacial, Marine Isotope Stage
(MIS) 3, and the Postglacial), three of which are currently
represented by data from Lake Qinghai, in an effort to
synthesize paleoclimate information from the Tibetan
Plateau.

2. Environmental setting

2.1. Neogene climate history

The inception and subsequent intensification of the
Asian monsoon have long been ascribed to the upward/
outward growth of the Tibetan Plateau (Ruddiman et al.,
1989; Molnar et al., 1993; An et al., 2001; Li et al., 2001;
Liu and Yin, 2002), within the context of global cooling
during the Neogene (Maslin et al., 1998; Hay et al., 2002;
Gupta et al., 2004). Although magneto-stratigraphy of
loess-soil sequences and other sediment records from
surrounding areas provide an a priori constraint on the
uplift history of the Tibetan Plateau (Quade et al., 1989;
Rea et al., 1998; An et al., 2001; Dettman et al., 2003), the
timing and mechanisms have been the subject of debate
(Harrison et al., 1992; Coleman and Hodges, 1995; Chung
et al., 1998). Independent geological evidence reveals that a
modest uplift in the eastern Tibetan Plateau began at
�40Ma (Harrison et al., 1992; Chung et al., 1998), as a
result of the Indio-Asian collision. However, persistent dry
conditions following the Paleocene–Eocene thermal max-
imum in Qaidam Basin (Wang et al., 1999) suggest that the
plateau did not reach an elevation high enough to modify
the prevailing atmospheric circulation pattern.

Extensive uplift about 22Ma is indicated by widespread
failures of the Paleogene planation surfaces and increased
sedimentation rates in the neighboring basins (Zhang et al.,
2001). This large-scale surface uplift, along with substantial
retreat of the Paratethys Sea (Ramstein et al., 1997), is
believed to have initiated desertification of the Asian
interior (Guo et al., 2002b). A weak Asian summer
monsoon circulation may have been established when the
plateau reached a threshold elevation of �1500m (Ruddi-
man and Kutzbach, 1989). Palynological evidence from
Qaidam Basin (Wang et al., 1999) and Linxia Basin (Ma et
al., 1998) indicate that dry conditions were not fully
established in the western interior of China until �15Ma.
This signals the initial cooling of the Late Cenozoic (Zhou
and Zhu, 2001). Superimposed upon this general trend
were two drying episodes that occurred at about 14 and
8Ma (Guo et al., 2002b), the first of which can be
correlated to the initial growth of the Antarctic Ice Sheet
and probably associated with internal feedbacks in the
climate system. A wealth of evidence suggest that the latter

can be attributed to the Tibetan uplift (An, 2000), which
raised the plateau surface to its present altitude and thus
gave rise to the modern Asian summer monsoon. Wide-
spread red clay deposition beginning �8Ma in the
marginal basins of the Tibetan Plateau (An, 2000) and
increased dust transport to the North Pacific (Rea et al.,
1998) indicate that the Asian winter monsoon was also
established at that time. Superimposed upon a global
cooling trend was the gradual strengthening of the Asian
winter monsoon from 3.6Ma onward, thereby leading to
thick loess deposition along the margin of deserts and gobis
(An, 2000) and dust deposition in the North Pacific (Rea et
al., 1998). In this context, Lake Qinghai lies at the
transition from the arid to the semi-arid zones, where the
climate is controlled by the Asian summer monsoon, the
Asian winter monsoon, and the westerlies. It is thus well
suited to monitor changes in Late Cenozoic climate.

2.2. Geomorphologic and tectonic backgrounds

Lake Qinghai (361150–381200N, 971500–1011200E) is
situated on the northeastern Tibetan Plateau, and is the
largest inland water body of China by surface area. The
lake is developed within a basin surrounded by three
mountain ranges (Bian et al., 2000): Datong Mts to the
north, Riyue Mts to the east, and Qinghai Nanshan Mts to
the south. These mountains, with general elevations above
4000m, account for ca 70% of the drainage area. The lake
basin is open to the west, from where it receives its major
runoff from the Buha River, which, along with other major
rivers, have created fluvial plains and deltas in the western
and northern shores. Dunes and beach ridges are common
along the eastern shore, reflecting a prevailing westerly
wind pattern. Fault escarpments and terraces are exten-
sively developed along the southern shore, where faulting
and block tilting are still active. Glacial and periglacial
landforms can be found on Qinghai Nanshan Mts (Porter
et al., 2001), whereas small modern glaciers only occur on
mountains in the upper Buha River drainage basin.
The Late Cenozoic tectonic evolution of the region

represents the history of growth of northeastern margin of
the Tibetan Plateau (Molnar et al., 1993). A northwest-
dipping thrust fault is present along southern range-front
of the Qinghai Nanshan Mts The mountain range is thus a
tectonic ramp that thrusts southward over the Gonghe
basin. The Riyue Shan fault zone consists of a high-angle,
right-lateral strike–slip fault in the middle of the range and
a west-dipping, low-angle thrust fault along the eastern
range-front of the mountain. Therefore, Lake Qinghai is
basically a piggyback basin behind the thrust ramps to the
south and west.
The onset of Cenozoic tectonics in the Lake Qinghai

region is believed to be either Late Miocene or early
Pliocene along the Qinghai Nanshan fault, which caused
uplift of the Qinghai Nanshan Mts (Metivier et al., 1998),
thereby separating Lake Qinghai from the Gonghe basin.
The uplift of the Riyue Shan Mts intersects the NWW-
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trending Qinghai Nanshan Mts near Lake Qinghai during
the late Pleistocene (Yuan et al., 1990). This uplift
eventually blocked the river system that used to drain
Lake Qinghai to the east, and isolated Lake Qinghai to
form the closed intra-mountain piggyback basin that we
see today.

2.3. Climate and vegetation

Lake Qinghai lies in the transition from semi-arid to arid
zones, where mean annual precipitation is �360mm (CAS-
LZ and RCREWC-CAS, 1994), decreasing along a
gradient from surrounding mountains (�400mm) to the
lake area (e.g. �220mm on Mt Haixin). The annual
precipitation also shows temporal variability and most
(60%) falls in summer months (June–August). With much
sunshine (3640 h/a) and high insolation (�6.5� 1015 J/
m2 a), annual mean evaporation is �800mm. It decreases
from the lake area (�1000mm) to surrounding mountains
(�310mm). More than 60% of the evaporation occurs in
summer. Annual mean temperature is ca �0.7 1C and
exhibits remarkably high seasonality, varying from ca
�11 1C in winter to ca 12 1C in summer. Winds blow
onshore at daytime and offshore at night with an average
speed of 4–6m/s.

The lake has a drainage area of 29 660 km2, which is
mainly vegetated by montane shrubs, alpine steppes, and
high-alpine meadows. The vegetation shows a distinct
vertical zonation (Chen and Peng, 1993). Forests are rare
and scattered. Major tree species are Sabina przewalskii,
Sabina vulgaris, Salix oritrepha, Picea crassifolia, Populus

cathayna, and Populus simonii. Shrubs, dominated by
Caragana jubta, Potentilia fruticosa, Potentilia glabra,
Myricaria sgamosa, Hippophae neurocarpa, and Cotonea-

ster acutifolius, appear locally and mainly colonize on the
base of the southern slopes. Alpine steppes, composed of
Achnatherum splandens, Kobresia pygmaea, Kobresia hu-

mulis, Kobresia bellardii, Kobresia capillifolia, Leontopo-

dium nanum, Androsacatapete, Thylacospermum

caespitosum, Stipa purea, S. breviflora, Artemisia ordosis,
Agropyron desertorum, Carex stenophylla, Oxytropis fal-

cate, and Poa sinoglauce, frequently occur between 3200
and 4500m. Desert steppes, including mainly Artemisia

sphaerocephala, Cxytropis aciphalla, Agropyrom cristatum,
Ephedra intermedia, and Kobresia robusta, occur rarely.
Wetland communities have low species diversity, and the
major species are Triglochin palustre, Triglochin mariti-

mum, Blysmus sinocompressus, Carex spp., and Potentilia

acaulis. Aquatic plants are rare: only two species,
Potamogeton pectinatus and Ruppia maritime, as well as a
few emergent sedge species are found in quiet waters near
the shore (Chen, 1987a, b).

Human impact on modern vegetation of the area, at least
in relation to preservation of pollen spectra, are thought to
be minimal. Archeological sites in the area are rare, and no
late Neolithic sites occur around the margins of Lake
Qinghai (Madsen et al., 2006). Forested areas are

uncommon and scattered, so human deforestation is not
prevalent. Even today, the Lake Qinghai area is remote and
sparsely populated.

2.4. Lake hydrology and water chemistry

The lake basin is located at 3194m above sea level (asl),
with a surface water area of 4400 km2 and volume of
7.16� 1010m3. Five large rivers seasonally discharge to the
lake basin with annul runoff of �1.34� 109m3 (Wang,
2003). Annual sand discharge to the lake is 4.98� 105 T.
The Buha River, with a watershed of 14 337 km2, is the
largest river both by runoff (50% of the total) and sand
discharge (70% of the total). Meltwater from surrounding
mountain glaciers accounts for only 0.3% of the total
runoff. The hydrological residence time of the lake was
estimated as 33 years (Lister et al., 1991). The lakebed is
generally flat, with an average water depth of 21m. The
lake is divided into two nearly equally sub-basins by a
NNW-trending horst, from which an island (Mt Haixin)
emerges. Maximum depth (27m) occurs in the southern
sub-basin (12 km south of Mt Haixin). Several minor fault
scarps also can be found in the lake basin.
The lake water is brackish to saline with an average

salinity of 14.1 g/L and a pH of 9.2. Electrical conductivity
is 20.63ms/cm. Lake water dD is 10.0% (V-SMOW), and
d18O is 1.97% (V-SMOW), values that are much higher
than those of local meteoric precipitation and thus indicate
that the lake is hydrologically closed, and evaporative
(Zhang et al., 1994). In summer, weak thermal stratifica-
tion develops, with an epilimnion of 12–15 1C, and a
hypolimnion of 6 1C (Williams, 1991). The surface water is
usually saturated in summer with respect to its carbonate
minerals, generating a continuous rain of aragonite. The
lake surface is frozen during winter months (December–-
March) with a maximum ice thickness of 0.8m.

3. Paleolimnological records of Lake Qinghai at different

time scales

3.1. Potential record from long drill cores

Oxygen isotope records of marine cores reveal that the
Earth’s climate system has experienced significant changes
during the Late Cenozoic, characterized by a gradual shift
from an ice-free mode to glacial conditions after �3.6Ma
(Zachos et al., 2001). Northern Hemisphere glaciation
apparently began at about 2.7Ma (cf. Haug et al., 2005). A
leading hypothesis for this transition is the tectonically
induced closure of Pacific–Atlantic seaways (Haug and
Tiedemann, 1998; Cane and Molnar, 2001), which in turn
caused the reorganization of ocean circulation. In contrast
to oceanic changes, extensive uplift of mid-latitude
mountains, particularly the Tibetan Plateau, also has been
suggested as playing a vital role in triggering global climate
changes through physical and weathering processes (Rud-
diman and Kutzbach, 1989; Raymo and Ruddiman, 1992;
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France-Lanord and Derry, 1997). Therefore, dating this
change in terrestrial records, especially those on or close to
the Tibetan Plateau, is important for providing evidence
for the causal relationship between tectonic uplift and
climate changes. Although evidence has been accumulating
from areas surrounding the plateau (Quade et al., 1989;
Prell and Kutzbach, 1992; Rea et al., 1998; An et al., 2001),
long, high-quality records from the Tibetan Plateau itself
are lacking.

Lacustrine sediments from large lakes hold one of the
keys to understanding Late Cenozoic climate changes in
Asian inland (e.g. Colman et al., 1995; Colman, 1996;
Williams et al., 1997). Previous drilling from the Erlangjian
terrace (a spit prograding into Lake Qinghai) reveals that
the lake sediments may have a higher temporal resolution
(Yuan et al., 1990) than the red clay-loess-soil sequences.
Recent geophysical surveys (An et al., 2006) reveal that the
thickness of lacustrine sediments in the lake exceeds 700m.
The age of the basal lacustrine sediments is estimated to be
late Miocene (Yuan et al., 1990). Detailed chronological,
sedimentological, geochemical, and biostratigraphic ana-
lyses of long drill cores from current and ongoing Lake
Qinghai drilling projects have the potential to shed new
light on the timing of Late Cenozoic tecto-climate events
and the dynamics of the Asian monsoon system during the
last eight million years.

3.2. The QH86 record

3.2.1. Stratigraphy and chronology

Core QH86, drilled from the Erlangjian terrace on the
southern shore in 1987, is the longest sediment sequence of
Lake Qinghai to date (Yuan et al., 1990). The upper 80m
of the core consists of continuous lacustrine silty clay
interrupted rarely by coarse sand and silt. This stratigraphy
reveals a generally stable sedimentary environment within

the lake basin, interspersed with episodic fluctuations of
lake level. The record below 80m reveals that the lake
basin was shallow, but not subaerially exposed during
previous glaciations, as indicated by a thick layer of fine
sandy sediments interbedded with silt and gravel between
127 and 140m. The Brunhes/Matuyama (B/M) paleomag-
netic polarity boundary (�0.8Ma) occurs at 120m,
yielding an average sediment accumulation rate of about
0.16mm/a. Assuming a constant accumulation rate, full
lacustrine conditions (at �80m) were established in the
lake basin after �0.5Ma (Yuan et al., 1990). However,
Ruppia seeds were found at �96.5m, and freshwater algae
account for 69% of the total pollen at �120m (Shan et al.,
1993), implying that episodic lacustrine conditions oc-
curred much earlier. Twelve uranium-series ages on
authigenic carbonates were obtained by Shan et al.
(1993). Although no details on the ages were given, they
lead to an age–depth relationship for the upper 80m of the
core of: Age ¼ 4234�Depth+11 414.

3.2.2. Pollen assemblages

Pollen analyses of 90 samples from the upper 80m of
cores from QH86 were performed by Shan et al. (1993).
Pollen grains are poorly preserved below this level, and
only a few grains were found. The relative abundances of
major taxa in this core are presented in Fig. 2. Pollen
assemblages are dominated by dwarf shrubs and herbs,
which account for ca 80% of the total palynomorphs and
mainly include Ephedra, Nitaria, Artemisia and Chenopo-
diaceae. Abundances of arboreal pollen, including Abies,
Picea, Pinus, Cedrus, Tsuga, Betula, Corylus, Alnus,
Ulmus, Juglans, Tilia, and Rhus, are very low, generally
less than 20% of the total. Wetland and aquatic herbs,
including Compositae, Umbelliferae, Polygonaceae, Cy-
peraceae, Typha, Potamogeton, and Ruppia, are very rare.
Seven local pollen zones (Fig. 2) were defined (Shan et al.,
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1993), and the original interpretations are summarized
below. The age of major pollen zone boundaries was
calculated from the age–depth model described above.

Zone I (77.93–62.21m; 342–275 ka): this zone is domi-
nated by dryland herbs such as Artemisia and Chenopo-
diaceae. Tree pollen only account for 14%, with a
maximum occurring at around 78m. High values of
Polypodiaceae spores occur around 75m, indicating a
period of wetland expansion possibly associated with lake-
level rise.

Zone II (62.21–51.81m; 275–230 ka): pollen concentra-
tions are very low, and only a few Pinus and Ephedra pollen
grains were found. These low pollen concentrations most
likely indicate a period of extremely low lake levels and
sedimentary conditions not conducive to pollen preserva-
tion.

Zone III (51.81–38.60; 230–175 ka): dryland herbs, such
as Artemisia, dominated the alpine meadow landscape.
Abundances of tree pollen decreased to 8%. Polypodiaceae
and Pediastrum occurred episodically, indicating a period
of variable lake level.

Zone IV (38.60–25.71m; 175–120 ka): tree pollen con-
tinued to decrease. Fern spores and aquatic pollen are very
rare. Artemisia pollen decreased substantially, concurrent
with the maximum abundance of Chenopodiaceae pollen.
This pollen assemblage indicates a transition from alpine
meadow to an alpine steppe landscape associated with
increasing dry conditions during the penultimate glacia-
tion.

Zone V (25.71–12.25m; 120–63 ka): pollen assemblages
are still dominated by Artemisia and Chenopodiacea, but
tree pollen, including Picea, Betula, and Pinus, increased
gradually and reached 15%. This pollen assemblage
indicates a landscape of alpine steppe with scattered mixed

forests of coniferous and broad-leaved trees. Polypodiaceae
and Pediastrum occurred again at about 25m with an
abundance reaching 39%, reflecting a substantial expan-
sion of wetland, most likely associate with lake-level rise at
about 95 ka.
Zone VI (12.25–6.52m; 63–39 ka): this zone is marked by

a gradual decrease in tree pollen. Abundances of Artemisia

pollen increased first, followed by Chenopodiaceae. Such a
succession from a landscape of alpine steppe with scattered
mixed forests to an alpine steppe indicates increasingly dry
conditions during MIS 4.
Zone VII (6.52–3.50m; 39–26 ka): this zone is marked by

considerable increases in tree pollen, along with a modest
rise in the abundance of aquatic herbs and ferns.
Abundances of Artemisia and Chenopodiaceae pollen
decreased substantially. This pollen assemblage points to
landscapes of mixed forests with coniferous and broad-
leaved trees, suggesting warmer and wetter than present
conditions during MIS 3 (but see Section 4.2.2).

3.3. The QH85 and QH2000 records

3.3.1. Stratigraphy, chronology, and sedimentation rates

Preliminary geophysical investigations of the lake floor
topography and sediments were conducted during the
Sino–Swiss–Australian project, using high-resolution
(3.5 kHz) seismic-reflection techniques and coring. Seismic
profiles reveal a pronouncedly layered feature of sediments
and two units can be identified (Kelts et al., 1989). The H-
series is 6–7-m-thick and thins gradually towards the shore.
This unit appears to represent continuous and undisturbed
lacustrine sediments (Fig. 3). A strong reflection (from the
Q-reflector) could be correlated with the top of a yellowish
silty sandy layer at Sites QH85-14B and QH85-16A. This
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Fig. 3. Correlation of total organic carbon (TOC), total nitrogen (TN), carbonate, arboreal pollen, and organic carbon isotope records between Cores

QH2000 (Shen et al., 2005) and QH85-14 (Du et al., 1989; Kelts et al., 1989; Huang and Meng, 1991). Dashed lines indicate boundaries of major changes.
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layer is present in the entire basin and probably indicates a
period of extremely low lake level. This inference is
supported by the stratigraphy of Core QH2000 (Shen et
al., 2005), where massive yellow-brownish sand occurs at
�7.7m (Fig. 3). Extrapolations of radiocarbon chronolo-
gies for these cores suggest that the upper part of this layer
was deposited at �19 000 cal yr BP (Table 1; Fig. 3),
approximately the Last Glacial Maximum (LGM). Satellite
images show an underwater beach ridge in the eastern part
of the lake and a 6-km-long underwater channel in the
western part (Yuan et al., 1990), which were interpreted to
have developed during the LGM. These findings imply that
the lake level was much lowered during the LGM,
presumably controlled by a dry, cold climate (Lister et
al., 1991; Shen et al., 2005).

Dating sediment cores from Lake Qinghai is problematic
because of potential hard water effects, which have been a
great challenge to paleolimnological studies. Terrigenous
plant macrofossils in the almost treeless watershed are rare,
and thus bulk organic matter (OM) usually is used for
radiocarbon dating. However, OM may have been
reworked and delivered to the lake from various pre-aged
sources by river and groundwater discharges. Linearly
fitting the calibrated radiocarbon ages of OM to depth in
cores (Table 1) gives a sediment–surface intercept of 1039
years for Core QH2000 (Shen et al., 2005), 439 years for
QH85-16A (Zhang et al., 1994), and 1100 years for Core
QH85-14B (Kelts et al., 1989). These core–top apparent
ages could be ascribed to a hard-water effect or reservoir

age inherited from the catchment. A radiocarbon age of
661732 yr BP for dissolved organic carbon (DOC) was
reported by Henderson (2004). The finite age of modern
lake water DOC again indicate the inputs of older OM by
river and groundwater discharges. In contrast, the dis-
solved inorganic carbon (DIC) in lake water is dated to be
post-1950 (Henderson, 2004), indicating that 14C-rich DIC
added from the post-nuclear testing atmosphere is offset by
the pre-aged DIC derived from catchment weathering.
Another complication is that radiocarbon ages of carbo-
nates from some short cores are about 1000 years older
than those of OM samples from the same horizon
(Henderson, 2004). This may be due to the introduction
of detrital carbonates from the catchment. If so, using
stable isotopes of lacustrine carbonate as a climate proxy
would also be problematic.
Sedimentation rates in the lake subbasins during the last

200 years have been well constrained by measuring
activities of 210Pb and 137Cs (Huang and Sun, 1989; Zhang,
2003; Henderson, 2004; Xu et al., 2006a). Sedimentary
137Cs signals are exceptionally strong in these cores, and
the post-bomb maximum of 1963 is clear. A rapid increase
in sedimentation rate, along with high values of magnetic
susceptibility after 1952 in Core QH2000 suggests strong
catchment erosion associated with overgrazing and extensive
land reclamation (Zhang et al., 2002a, b). Sedimentation
rates show high spatial variability (Table 2), which is
consistent with preliminary sediment trap studies (CAS-LZ
and RCREWC-CAS, 1994). High values occur in the
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Table 1

Radiocarbon ages of Cores QH85-14B (Kelts et al., 1989), QH85-16A (Zhang et al., 1989b), and QH2000 (Shen et al., 2005), Lake Qinghai, China

Depth (cm) Lab. ID Materials dated d13C (% PDB) Radiocarbon age (yrBP) 2s calibrated age (yrBP)

Core QH85-14B

47.5–49 – Algal threads – 1780723 1820–1610

339.5–341 – Ruppia seeds – 84007130 9600–9000

382–383.5 – Ruppia seeds – 97307130 11 650–10 650

387–395 – Ruppia seeds – 98707170 12 050–10 750

438–440 – Ruppia seeds – 10 9007250 13 350–12 150

Core QH85-16A

14–21 ANU-6020 Organic matter – 6607140 950–400

61–70 ANU-6021 Organic matter – 22807100 2700–2000

151.5–161.5 ANU-6022 Organic matter – 36307100 4250–3600

236–246 ANU-6023 Organic matter – 63707160 7600–6900

321–326 ANU-6024 Organic matter – 75407240 9050–7850

396–406 ANU-6025 Organic matter – 97107200 11 850–10 500

491–503 ANU-6026 Organic matter – 11 5907260 14 000–12 950

Core QH2000

50–51 Tka-12179 Organic matter �25.8 27007100 1820–1350

150–151 Tka-12180 Organic matter �25.8 42407170 3850–2950

150–151 Tka-12181 Organic matter �25.7 40107100 3380–2870

150–151 Tka-12182 Organic matter �25.3 4000790 3360–2880

230–231 Tka-12183 Organic matter �26.7 5060790 4850–4200

355–357 Tka-12184 Organic matter �22.3 67607180 7000–6100

475–477 Tka-12193 Organic matter �22.3 96607140 10 200–9300

545–547 Tka-12185 Organic matter �23.2 14 6807180 16 850–15 550

675–677 Tka-12186 Organic matter �22.8 14 8207180 17 050–15 750

745–747 Tka-12236 Organic matter �25.0 15 610790 18 000–17 050
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eastern sub-basin, consistent with greater shoreline erosion
due to wave activity driven by the prevailing westerly winds.

3.3.2. Climate and environment changes

Detailed records from three sediment cores in the
southern and southeastern part of the lake (Fig. 1B) cover
the Lateglacial and Holocene. Pollen analyses and total
organic carbon (TOC), total nitrogen (TN), grain size, and
carbonate measurements were conducted on Cores QH85-
14 (Du et al., 1989; Kelts et al., 1989; Kong et al., 1990;
Huang and Meng, 1991) and QH2000 (Liu et al., 2002,
2003a–c; Shen et al., 2005) to provide complementary
information on productivity, sedimentation, and climate
change. Core QH1, 350-cm long, was taken just 5m south
to Core QH85-16A (Fig. 1B) by the Lanzhou Institute of
Geology, CAS. This core can be regarded as a replica of the
upper part of Core QH85-16A. Laboratory analyses,
including grain size, organic carbon, trace elements, and
carbon isotopes, were conducted on this core, covering the
last 8500 years (Guo et al., 2002a; Shi et al., 2003).

Proxy records correlate well between Cores QH85-14
and QH2000 (Fig. 3). TOC, TN contents and tree pollen
percentages exhibit parallel changes among the cores. Five
distinct stages of regional climate changes can be defined
(Fig. 3), based on the various proxies. Minor increases in
TOC, TN, and carbonate contents after ca 17 000 cal yr BP
indicate the termination of LGM. But the lake level was
still low, and most of the OM was derived from the treeless
catchment as indicated by less negative d13C compared to
earlier times. A decrease in tree pollen percentages between
12 500 and 11 500 cal yr BP may correlate with the Younger
Dryas stadial (Yu and Kelts, 2002), although chronologies
are uncertain. Steady warming began at 11 000 cal yr BP,
along with higher primary productivity as marked by
significant increases in TOC, TN, and carbonate content.
This trend was frequently punctuated by a number of
centennial-scale cooling, possibly including the ‘‘8.2-ka
event’’, implying unstable climate conditions during the
mid-Holocene climate optimum (Chen et al., 2001;
Wunnemann et al., 2003). A significant shift in climate
conditions occurred at �4000 cal yr BP. The d13C values
continued to become more negative, possibly related to an
increasing input of terrigenous OM as lake level con-
tinuously lowered. However, pollen records indicate that

the C3/C4 ratio of the vegetation did not change
significantly during the Holocene (Shen et al., 2005).

3.3.3. Pollen record and vegetation history

High-resolution pollen analyses were conducted on
Cores QH85-14C (Du et al., 1989) and QH2000 (Shen et
al., 2005). Preservation of pollen grains in sediments below
707 cm in Core QH2000 is very poor (o100 grains per
slide), which makes it difficult to infer the composition of
local vegetation. Nonetheless, the presence of Ephedra,
Nitraria, and Chenopodiaceae below 707 cm appears to
indicate a treeless alpine desert landscape during the LGM.
Occurrences of Betula pollen could be the result of
redeposition of former interglacial sediments or related to
long-distance transport (Herzschuh et al., 2006a).
A prominent feature of Postglacial vegetation changes

on the Tibetan Plateau is the Betula expansion (in the
source areas, not necessarily the Qinghai basin) around
11 000 cal yr BP (Herzschuh et al., 2006a), which then was
followed by increases in Pinus around 8000 cal yr BP,
indicating the onset of mid-Holocene Thermal Maximum.
This pattern has been confirmed by a number of
palynological studies in the neighboring areas (e.g. Van
Campo et al., 1996; Tang et al., 2000), so that these pollen
horizons can be used as time markers for synchronizing
paleoclimatic records. Higher percentages of Betula and
coniferous tree pollen have been interpreted as the presence
of mixed forests in the alpine landscape of the Qinghai
basin during the mid-Holocene Thermal Maximum (e.g.
Tang, 2002). However, the distribution of modern vegeta-
tion on the Tibetan Plateau is governed by climate
gradients—montane forests occur to the southeast and
alpine steppe–desert to the western interior (Yu et al.,
2001). No broad-leaved trees grow in the Lake Qinghai
area today. Based on regional distributions of modern
vegetation, the colonization of broad-leaved trees in this
area during the middle Holocene would require more than
a ca 1000m upward shift of timberline and a climate at
least 5 1C warmer than present. However, quantitative
climate reconstructions from fossil pollen in the Qilian
Mountains indicate that the mid-Holocene Thermal Max-
imum in the NE Tibetan Plateau was only 1–2 1C warmer
than today (Herzschuh et al., 2006a). Therefore, we believe
that the broad-leaved tree pollen are exotic and represent
long-distance transport from their source areas when the
early summer monsoon winds are strong. If so, the
application of transfer functions to climate reconstructions
from pollen records in this area would be complicated.

3.3.4. Ostracode carbonate trace elements and lake-water

chemistry

In many lake environments, climate plays a major role in
lake water chemistry by changing the precipitation/
evaporation balance and thus the salinity of lake waters
(Williams, 1966). As in marine carbonates, the Mg/Ca and
Sr/Ca ratios in lacustrine carbonates change as a function
of temperature and salinity, such that the Mg/Ca ratio is a
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Table 2

Sedimentation rates (mm/a) in Lake Qinghai during the last 200 years

Site 210Pb 137Cs 14C Data sources

QH85-14A 0.51 – 0.32 Huang and Sun (1989)

QH85-14C 0.85 – – Huang and Sun (1989)

QH85-16A 0.42 – 0.44 Huang and Sun (1989)

QH2000 1.30 – 0.32 Shen et al. (2001)

QING 6 1.00 0.40 0.50 Henderson (2004)

QING 10 1.30 1.50 0.15 Henderson (2004)

QHE2/01 1.40 1.50 0.42 Henderson (2004)

QH0407-C-2 1.00 – – Xu et al. (2006a)
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reflection of both water temperature and salinity, and the
Sr/Ca ratio is mainly a function of salinity (Chivas et al.,
1986). In lake carbonates, these changes in trace-element
chemistry can be recorded in ostracode shells, where the
trace-element ratios are usually proportional to those in the
ambient waters.

Several attempts to reconstruct salinity from trace
elements in ostracode shells using the methods of Chivas
et al. (1986) have been made for Lake Qinghai. These
studies, including Zhang et al. (1989a, 1994) and Zhang et
al. (2004), used partitioning coefficients determined by
various calibration methods. However, several problems
exist in using either Mg/Ca or Sr/Ca ratios to reconstruct
water temperature or salinity in Lake Qinghai. First,
because of the high Mg content of Lake Qinghai waters
(Table 3), the primary precipitated carbonate is aragonite
(Liu et al., 2003a). Although ostracode shells are made of
low-Mg calcite, they can show evidence of aragonite

overgrowths and possible diagenetic alteration in Lake
Qinghai (Henderson, 1999). Such alteration obviously
limits the usefulness of Mg/Ca ratios. Secondly, existing
calibrations of the partitioning coefficient for Sr/Ca in
relation to salinity are for low-Mg calcite, either in
lacustrine (Chivas et al., 1986) or marine environments.
Such calibrations show a linear relationship between the
Sr/Ca partitioning coefficient and salinity. No accepted
calibration function exists for Sr/Ca in ostracode shells in
the presence of aragonite, as it preferentially absorbs Sr
from lake water during aragonite precipitation, thus
complicating the linear Sr/Ca relationships to salinity in
the calcite shells of ostracodes (Engstrom and Nelson,
1991). Therefore, salinity reconstruction based on trace
element geochemistry of biogenic carbonate is extremely
problematic for Lake Qinghai.

3.3.5. Carbonate stable isotopes and lake hydrological and

thermal conditions

Pioneering stable-isotope measurements on ostracode
shells were conducted by Lister et al. (1991) on samples
from Core QH85-14B (Fig. 4A). This was the longest
lacustrine carbonate oxygen-isotope record from the
Tibetan Plateau at that time, and provides valuable insights
into the dynamics of the Asian monsoon during the
Lateglacial and Holocene (Wei and Gasse, 1999). Similar
changes were revealed subsequently by Zhang et al. (1989a)
from Core QH85-16A (Fig. 4B) and recently by Liu et al.
(2007) from QH2000 (Fig. 4C). High values of d18O prior
to 14 500 cal yr BP reveal cold and dry climate conditions.
Fluctuating but decreasing d18O values occurred after
14 500 cal yr BP, suggesting an unsteady strengthening of
summer monsoon. The advance of monsoon front slowed
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Table 3

Composition and changes of water chemistry in Lake Qinghai (after CAS-

LZ and RCREWC-CAS, 1994; Chen et al., 1990)

Year 1872 1880 1962 1986 1991

K+ 0.12 0.11 0.15 0.16 0.16

Na+ 3.28 3.71 3.26 3.75 3.93

Ca2+ 0.19 0.00 0.01 0.01 0.01

Mg2+ 0.31 0.73 0.82 0.79 0.79

Cl� 1.91 5.40 5.28 5.87 5.79

SO4
2� 0.87 2.11 2.03 2.38 2.35

HCO3
� – – 0.53 0.69 0.68

CO3
2� – 1.73 0.42 0.52 0.52

Salinity 10.97 13.34 12.49 14.15 14.23

Note: Unit in mg/L.

Fig. 4. Comparation of Lake Qinghai ostracode stable oxygen isotope records of Cores QH85-14B (Lister et al., 1991), QH85-16A (Zhang et al., 1989b),

and QH2000 (Liu et al., 2007) with Dunde ice-core record (Thompson et al., 1989). Vertical lines indicate present-day d18O value of lake water. Summer

insolation data are from Berger and Loutre (1991).
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down at about 12 000 cal yr BP, possibly corresponding to
the Younger Dryas stadial (Yu and Kelts, 2002). The
summer monsoon culminated around 10 000 cal yr BP. A
nearly 6% enrichment of d18O from about 11 000 to
4000 cal yr BP suggests a gradual retreat of the summer
monsoon. This trend also can be observed in the Dunde
ice-core d18O record (Fig. 4D). Parallel changes of the
Dunde record with the Lake Qinghai records suggest that,
unlike the Guliya ice core, continuous depletion of heavy
oxygen isotopes in the Dunde ice core may be dominated
by the ‘‘amount effect’’ associated with changes in
monsoon intensity, modulated primarily by summer
insolation to the middle latitudes (Fig. 4E). However,
interpreting stable isotope records in terms of monsoon
variations may be complicated due to spring water
discharge to the lake, evidence of which is shown by the
local presence of tufa (Zhang and Zhang, 1994).

Zhang and Zhang (1994) also reconstructed water
temperature changes during the Holocene by assuming a
temperature dependence of d18O fractionation between
ostracode shells and ambient waters. However, in a
thermally stratified lake with a relatively constant hypo-
limnion temperature (ca 6 1C) like Lake Qinghai, ostracode
d18Oo is largely independent of temperature. Lake water
d18Ow relates to the balance between the intensity of
precipitation associated with the Asian Monsoon and
evaporative effects in the closed basin (Wei and Gasse,
1999; Johnson and Ingram, 2004). Therefore, episodic
depletions of d18Oo during the Lateglacial, e.g. the Bølling
and Allerød interstadials, are likely to be manifestations of
monsoon variations, rather than a signature of glacial
meltwater discharge (e.g. Lister et al., 1991).

Unlike ostracode shells, the oxygen isotopes of authi-
genic carbonates (d18Oc) is controlled by both the
temperature and oxygen isotope composition of surface
water (d18Ow). The d18Oc is systematically higher than
d18Oo in Lake Qinghai, and it has a large variability
because it is subject to temperature effects in addition to
the dominating evaporative effects. Therefore, comparing
d18Oc with d18Oo may provide a new approach to
estimating the vertical thermal structure of the lake (Kelts
and Talbot, 1990), if the vital effects of the ostracodes are
known. An example comes from Core QING6, where a
systematic offset between d18Oc and d18Oo can be observed
(Henderson et al., 2003). Assuming no isotopic stratifica-
tion of the water body, this difference should be a result of
oxygen-isotope fractionation induced by a temperature
gradient between surface and bottom waters. This ob-
servation confirms the presence of a stable thermocline
during summer, as suggested by thermodynamic hydro-
logic models (Qin and Huang, 1998b).

3.4. The QING-6, QING-10, QHN3/1, QH0407-C, and

GAHAI-1 records

Climate changes during the last 1500 years were revealed
by d18O and d13C records of fine-grained carbonate in

Cores QINH-6 and GAHAI-1 (Fig. 1B). These records
show parallel changes and both cores indicate that regional
climate has experienced considerable variability, including
three distinct phases related to the Medieval Warm Period
(A.D. 800–1200), the Little Ice Age (A.D. 1200–1850), and
the post-Industrialization warming (Henderson, 2004).
Comparing the d18O record from Core QH0407-C with
instrumental data suggests that the isotopic composition of
fine-grained carbonates, which are formed in the epilim-
nion of the lake, primarily reflects the isotopic composition
of the near-surface waters, which in turn is controlled by
evaporative concentration associated with summer air
temperature (Xu et al., 2006b). Consistent with these
results are trends in both lake water temperature and
salinity estimated in alkenone-based reconstructions on
Core QHN3/1(Liu et al., 2006). The coherent changes in air
temperature and precipitation are primarily related to
variations of the Asian Summer Monsoon system.

3.5. Recent changes

3.5.1. Lake levels and shorelines

Past lake-level changes can be inferred from elevated
terraces and beach ridges, although these features may be
affected by local tectonics. Lacustrine terraces and beach
ridges along the southern coast of Lake Qinghai have been
described by Yuan et al. (1990) and Wang and Shi (1992).
For example, three terraces can be identified at Jiangxigou.
The first one above the Erlangjian terrace is very broad
(3–4 km), and mainly overlain by fine sand. Its altitude is
about 10m above present lake level. Radiocarbon ages on
organic clay indicate that this terrace was formed between
2000 and 1000 14C yrBP. Below this terrace, six beach
ridges situated at 1.5, 2.0, 3.0, 3.5, 5.7, and 8.7m,
respectively, were found (Yuan et al., 1990; Wang and
Shi, 1992), indicating stillstands of the lake level super-
imposed upon a long-term lowering trend induced by either
climate or tectonic uplift or both. None of the beach ridges
are covered by loess, implying a young age. According to
Kozloff’s (1909) map, a 7-m-high beach ridge now
separating Lake Erhai from Lake Qinghai must have
developed sometime after 1909. In Daotang valley, the
highest beach ridge, dated to 1230760 14C yr BP (Wang
and Shi, 1992), can be correlated to the first terrace at
Jiangxigou.
The level of Lake Qinghai is very dynamic. The first lake-

level measurements were carried out by O.N. Potanen
during 1884–1886, and then by B.A. Obruchev and W.
Filchner (cf. Chen et al., 1990). According to their results,
the lake level was ca 3205m asl in the late 1880s compared
to 3193 now—it has been lowered by about 12m during the
last century or so. Regular meteorological and hydrological
observations started in 1950. Instrumental data show that
the lake level has continued to fall since 1958 (Fig. 5A).
This is mainly caused by the 20th century warming in the
area (Fig. 5B), which led to a negative precipitation–
evaporation balance (Fig. 5C) and reduced river runoff
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(Fig. 5D). Agricultural and industrial water consumptions
only account for 8% of this change (Qu, 1994). Four GCM
experiments unanimously suggest that the local warming
trend would continue under a scenario of doubling CO2

(Qin and Huang, 1998a). A hydrological model forced by
the GCMs’ outputs predicts dramatic increases in both
summer precipitation and river runoff (Qin and Huang,
1998b), but they are not enough to offset increased
evaporation. Consequently, the historical trend of lake-
level fall is likely to continue.

Lowering of lake level also led to progressive retreat of
the shoreline and thus changes in the coastal landscape.
According to Kozloff’s (1909) map, Haiyan Bay and Lake
Erhai used to be part of Lake Qinghai. Now the former has
been isolated and the latter resembles a lagoon (Fig. 1B). In
1956, Bird Island was about 3800m from the shore, and in
1972, only 2600m (Guo, 1997). In a 1975 satellite image,
this island was still separated from the mainland, but it was
connected to the mainland by 1979 (Guo, 1997). Human
activities, along with climate change, have also played an
important role in modifying the coastal landscape. The
Buha Delta prograded at a rate of 2 km/a during the period
from 1956 to 1968 (the so-called ‘‘Great Leap Campaign’’),
primarily caused by catchment erosion associated with
extensive land reclamation (Zhang, 2003). Lobes of this
delta have also changed greatly during the last half century:
the active lobe was located 6.2 km north of Bird Island
before the 1950s (Guo, 1997), but now is 4 km southwest of
the island. The morphology of the northern shore also
experienced substantial changes over the last 25 years. The

shoreline there advanced at a rate of 130m/a due to
increased catchment erosion (Zhang, 2003).

3.5.2. Water chemistry

No regular measurements of water chemistry have been
made for Lake Qinghai. The earliest measurements were
carried out by K. Schmidt in 1872 (cf. Chen et al., 1990). In
1962 and 1986, the Lanzhou Institute of Geology, CAS,
and the Institute for Saltwater Lake Studies, CAS,
performed routine measurements (CAS-LZ and
RCREWC-CAS, 1994). The results indicate that the lake
water is dominated by sodium and chloride. Sulfate and
magnesium are also high. The chemical composition of the
lake water did not change much during the last century
(Table 3). The major biogeochemical processes in the lake
is CaCO3 precipitation and biological reduction of sulfate
to sulfide (Yan et al., 2002), which governs the concentra-
tion of magnesium and heavy metals in the lake water,
respectively.

4. Discussion and comparison with surrounding areas

4.1. Late Cenozoic changes

Loess-soil sequences and the underlying Hipparion red
clay formation contain abundant information on past
climate changes in the western interior of China. For
example, the Xifeng section in the western Loess Plateau
(Liu et al., 2001), containing a red clay sequence overlain
by a loess-soil complex, reveals a detailed history of the
Asian monsoon system during the Late Cenozoic. Multiple
stratigraphic analyses reveal that the eolian red clay started
to accumulate at �8Ma, evidently indicating the inception
of the modern East Asian winter monsoon. This inception
is most likely associated with the thermodynamic forcing of
the rising Tibetan Plateau. Subsequent strengthening of the
East Asian winter monsoon and the corresponding
weakening of the summer monsoon appears to be a
manifestation of global cooling after 3.6Ma, especially
when ice sheets expanded in the Northern Hemisphere at
about 2.7Ma (Maslin et al., 1998; An et al., 2001 Haug et
al., 2005). Magnetic susceptibility records of the Xifeng
section reveal low amplitude fluctuations of the Asian
monsoon system with a 41-ka frequency prior to �0.8Ma
(Fig. 6A), which were then replaced by large-amplitude
fluctuations with a 100-ka frequency, correlative with the
deep-sea oxygen isotope record (Shackleton et al., 1995).
The in-phase changes in the climate of inland China with
global ice volume (Fig. 6B) imply a common force thought
to be the variations in the orbital parameters of the earth.
Like the Loess Plateau, climate conditions on the

Tibetan Plateau are influenced by the Asian monsoon
system, which brings vapor to the interior of the north-
western China and feeds the lakes there. Like marine
records (Prell and Kutzbach, 1992; Rea et al., 1998),
continuous lacustrine records, can provide information,
potentially complementary, about long-term changes in the
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Fig. 5. Changes in lake level (A), annual mean temperature (B),

precipitation–evaporation balance (C), and the Buha River runoff (D)

since 1958. Dashed lines indicate the trend defined using a linear regression

method.
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Core ZK3208, Qaidam Basin (Han et al., 1991); (F) Qarhan Playa Core CK-6, Qaidam Basin (Huang and Chen, 1990).

S
.M

.
C

o
lm

a
n

et
a

l.
/

Q
u

a
tern

a
ry

S
cien

ce
R

eview
s

2
6

(
2

0
0

7
)

2
2

8
1

–
2

3
0

0
2
2
9
2



Asian monsoon. Magnetic-susceptibility record of Core
QH86 (Yuan et al., 1990) suggests orbital-scale fluctuations
of Quaternary climate in China’s inland (Fig. 6C). Large-
amplitude oscillations of lake level occurred after �0.8Ma,
as indicated by repeated occurrences of silty clay above the
B/M polarity boundary. High-resolution pollen analyses
from the Lake Co Ngoin core (Lü et al., 2001) reveal
dampened fluctuations of the inland vegetation (and
presumably climate) prior to �0.8Ma (Fig. 6D), which
was then replaced by longer-period, large-amplitude
changes. Reciprocal changes of alpine steppe and conifer-
ous forests at a landscape scale after �0.8Ma are regulated
by regional climate, rather than by inter-specific competi-
tion. A similar pattern of climate fluctuations is also
registered in long drill cores from two playas in Qaidam
Basin (Huang and Chen, 1990; Han et al., 1991). The
halite-clay sequences (Fig. 6E and F), comparable to loess-
soil sequences, reveal periodical changes in dry/wet
conditions associated with substantial variations of the
Asian monsoon after �0.8Ma. Further evidence comes
from a long drill core in Zoige Basin, where the organic
carbon record suggests a similar pattern of inland climate
fluctuations at orbital scales (Wang and Xue, 1997; Chen et
al., 1999). Although mechanisms behind the shift from
obliquity-dominated to eccentricity-dominated fluctua-
tions, referred to as the ‘‘mid-Pleistocene transition,’’
remain enigmatic, the existing long records do reveal an
astronomical forcing of China’s inland climate during the
Quaternary.

In contrast to marine cores, lake sediments typically
have higher sedimentation rates and thus can achieve finer
time resolution. Lithological variations in lacustrine cores
indicate different depositional environments, commonly
having different sedimentation rates. Therefore, paleomag-
netic stratigraphy alone is unable to provide detailed time
constraints on long lacustrine records. In many of lakes on
the Tibetan Plateau, carbonates dominate the authigenic
minerals. Uranium-series disequilibrium dating on authi-
genic carbonates in the Balikun (Ma et al., 2004), Qarhan
(Huang and Chen, 1990), and Qinghai (i.e. QH86; Shan et
al., 1993) cores has proven promising accurate chronology
for Pleistocene lacustrine records. Long and high-resolu-
tion record from Lake Qinghai with independent age
controls will provide an opportunity not only to examine
the dynamics of continental paleoclimate in both time and
frequency domains, but also to evaluate the influence of
reorganization of ocean circulation on the Asian monsoon
system at millennial time scales.

4.2. The Last Interglacial–Glacial cycle

4.2.1. Delayed response of the summer monsoon during the

MIS6–MIS5e transition

Periodical variations in Earth’s orbital parameters have
long been regarded as a pacemaker of past glacial–inter-
glacial cycles. In some cases, however, discrepancies exist
with orbital parameter, particularly for Termination II

(Winograd et al., 1988). The tuning of most marine records
to fit orbital time scale, precludes the opportunity to
address this problem. Therefore, high-resolution, well-
dated terrestrial records are important for understanding
the mechanism and timing of deglaciation.
A speleothem record of d18O from Dongge Cave (not

shown; Yuan et al., 2004) indicates that the Asian summer
monsoon slightly lagged behind insolation (Fig. 7A) during
Termination II, but was almost concurrent with the rise of
global sea level as revealed by benthic foraminifera d18O
record (Fig. 7B). A stacked marine record (Fig. 7C)
indicates that full monsoon conditions did not occur until
global sea level reached an interglacial position, which
would enable the establishment of the Pacific warm pool,
until about 125 ka (Clemens and Prell, 2003). No cores
from the last interglaciation yet exist for Lake Qinghai, but
records from Zoige Basin (Fig. 7D), the Qarhan Playa (Fig.
7E), and the Loess Plateau (Fig. 7F) reveal a much more
delayed response of the Asian summer monsoon to
insolation. This difference will be scrutinized in the Lake
Qinghai drill core.
Comparing these records with those from the western

Tibetan Plateau and Tarim Basin may also reveal spatial
variability of monsoon activity in this area during the Last
Interglacial–Glacial cycle. The Guliya ice-core record (Fig.
7G) indicates less negative d18O values during interstadials,
suggesting that the enrichment of oxygen isotopes in
regional meteoric water was dominated by the ‘‘tempera-
ture effect’’ rather than the ‘‘amount effect’’ related to
monsoon intensity that otherwise would deplete the heavy
18O. Further evidence comes from Lakes Tianshuihai (Fig.
7(H) and Balikun (Fig. 7I), which are located at the west
side and north of the plateau, respectively. These two d18O
records resemble each other but are different than other
records such as Zoige in the eastern part of the Plateau,
indicating that the summer monsoon did not reach the
western Tibetan Plateau and the Tarim Basin even during
the Last Interglacial.
Loess records (Porter and An, 1995) reveal millennial-

scale variability of the Asian summer monsoon correlative
with the North Atlantic Heinrich events during the Last
Glaciation. And speleothem records (Wang et al., 2001)
include even shorter events known as Dansgaard–Oeschger
oscillations. However, existing lacustrine records from the
Tibetan Plateau do not have the temporal resolution to
identify these climate events. High-resolution lacustrine
records from this area are needed not only to evaluate the
rapidity of millennial-scale changes in summer monsoon,
but also to examine the geographical extent of Heinrich
and Dansgaard–Oeschger events outside the North Atlan-
tic realm.

4.2.2. The MIS3 period of anomalously high lake levels

Lake sediments and landforms in the Qaidam basin
(Chen et al., 1990) and other lakes on the Tibetan Plateau
record a period of high lake levels attributed to MIS3
(Herzschuh, 2006b). In addition, the Guliya ice-core record
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(Fig. 7G) reveals an anomalous warming on the Tibetan
Plateau at the end of MIS3 (Thompson et al., 1997). High
percentages of tree pollen in the Lake Nam Co core also
suggest a warm and wet phase between 40 and 30 ka (Fig.
7J). This pattern is considerably different from global ice
volume indicated by the SPECMAP benthic oxygen
isotope record (Fig. 7B).

Further evidence of high lake levels on the Tibetan
Plateau comes from a large number of elevated terraces in
several basins located at altitudes ranging from 10 to 280m
above present-day lake levels (Lehmkuhl and Haselein,
2000; Shi et al., 2002; Yang et al., 2004). For example, four
terraces can be identified on the southern shore of Lake
Qinghai. The highest one, situated at �120m above present
lake level, was interpreted as having formed about
38 000 cal yr BP, and a second one at �45m was dated to
about 7500 cal yr BP (Chen et al., 1990; Yuan et al., 1990).
Lake terraces are the product of stable lake levels, when

precipitation is balanced by evaporation. Therefore, an
energy-balance model, originally developed by Kutzbach
(1980) for a hydrologically closed watershed, can be used to
estimate past precipitation using estimated watershed
evaporation (Qin, 1994, 1997; Jia et al., 2000). Evaporation
is catchment-dependent and can be parameterized using
vegetation cover and the insolation values during specific
time intervals. The reconstructed annual precipitation and
lake-surface evaporation suggest that MIS3 interval of
high lake levels is �1.5 times higher than that of present
(Table 4). Higher lake-surface evaporation was presumably
offset by increased river runoff to maintain stable lake
levels.
The volume of ice during the LGM on the mountains in

the Lake Qinghai basin has been estimated at 200750 km3

(Wang and Shi, 1992). Conservatively assuming no change
in lake surface area (4400 km2), melting of these mountain
glaciers would have only raised lake level by 41710m.
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Table 4

Reconstructed precipitation on the Lake Qinghai watershed using an energy-balance model

Age (cal yrBP) Lake level

anomaly (m)

Lake surface area

(km2)

Evaporation

(mm)

Precipitation

(mm)

River runoff

(� 108m3)

Data sources

40 000–30 000 +104 8100 1015.0 64575 – Jia et al. (2000)

7500–5000 +45 6406 – 595715 – Jia et al. (2000)

7000–6000 +45 6225 1096.7 528.9 35.35 Qin (1994)

7200–6000 +45 6225 1079.4 526.6 34.41 Qin (1997)

Modern 0 4448 954.5 407.2 20.56 Qin (1997)

Fig. 7. Comparison of lacustrine records from the Tibetan Plateau with insolation and SPECMAP d18O record during the last 150 000 years. (A) Summer

insolation (Berger and Loutre, 1991); (B) SPECMAP d18O record (Imbrie et al., 1993); (C) Arabian Sea summer monsoon stacked (SMS) record (Clemens

and Prell, 2003); (D) Zoige Basin (Wu et al., 1997); (E) Qarhan Playa (Huang and Chen, 1990); (F) Luochuan section, the Loess Plateau (Xiao et al., 1999);

(G) Guliya Ice Core (Thompson et al., 1997); (H) Lake Tianshuihai (Zhou and Zhu, 2001); (I) Lake Balikun (Ma et al., 2004); (J) Nam Co (Wu et al.,

2004). Core chronologies are those estimated in the original studies. Arabic numerals denote Marine Isotope Stages. Shaded bands highlight the phase

relationship of summer monsoon with insolation and global ice volume. The late MIS3 interval of extremely high lake levels is indicated by the hatched

band.
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Therefore, meltwater from mountain glaciers alone cannot
account for the �104-m-high relative lake level, and
tectonic deformation must be considered. On the Erlang-
jian terrace, a cross-bedded gravel unit that presumably
was deposited near the shore suggests that the relative lake
level has only dropped �6m since the LGM (Yuan et al.,
1990).

Some pollen records, mostly from relatively large lakes,
have high amounts (ca 30% of the total) of tree pollen at
30–40 ka, which has been interpreted as indicating rela-
tively warm, moist climate, perhaps comparable to condi-
tions in the early Holocene (e.g. Herzschuh et al., 2006a).
The tree pollen in such sequences is dominated by Abies

and Picea, which are derived locally (Herzschuh et al.,
2006a), as confirmed by the presence of their macrofossils
(Wang and Shi, 1992). Tree pollen that might be
interpreted as indicating mixed forests, Pinus and Betula

pollen, only account for about 5%, and thus probably
represent long-distant transport rather than local mixed
forests. Mixed forests of Pinus and Betula do not occur on
the Tibetan Plateau today (Yu et al., 2001), although trap
studies reveal the presence of their pollen (Cour et al.,
1999). Thus, available pollen evidence from the Lake
Qinghai area do not support conditions significantly wetter
than the early Holocene during MIS3.

The altitude of the highest terraces around Lake Qinghai
exhibit spatial variability, implying complex tectonic
activities (Chen and Lin, 1993). For example, at Jiangxi-
gou, the highest terrace is situated at �104m. A radio-
carbon date of 12 1007265 yr BP on charcoal (Wang and
Shi, 1992) suggests that this terrace was formed during the
Bølling-Allerød interstadials, rather than during MIS3.
This compares with the 120m terrace, with an estimated
age of 38 000 cal yr BP, discussed earlier.

The mechanism responsible for the supposed MIS3
moist interval is open to debate. Because this period shows
a perfect correlation with higher summer isolation at 301N
(Berger and Loutre, 1991), when the perihelion (i.e.
precession-controlled insolation) minima occurred during
summer, Shi et al. (2001) ascribed this event to the
strengthening of the Asian monsoon driven by the
precession cycle. However, most monsoon records do not
show any strengthening between 40 and 30 ka (Figs. 7C–F).
Furthermore, the Indian monsoon tends to be more
sensitive to the obliquity component of orbital forcing
(Clemens and Prell, 2003), which governs latent heat
transport from the southern subtropical Indian Ocean and
thus controls the thermal contrast between the Asian
landmass and the ocean. Yang et al. (2004) argued against
the monsoon hypothesis, suggesting that a moist climate
during MIS3 could be better explained by the strengthened
westerlies. The Tianshuihai and Balikun records (Figs. 7H
and I) may provide an opportunity to test this idea,
because climate conditions there are dominantly controlled
by the westerlies. Carbonate d18O values in both cores
progressively increase during the MIS 3, implying an
aridification trend into the LGM.

4.3. Lateglacial–Holocene changes

A large number of lacustrine records cover the last
14 500 years on the Tibetan Plateau. Carbonate d18O
records and their paleoclimatic implications have been
thoroughly reviewed by Wei and Gasse (1999), and
palynological work was recently summarized by Shen
(2003). All of these records reveal an initial warming of
regional climate after �14 500 cal yr BP, accompanied by
penetration of the summer monsoon into the eastern part
of the plateau (He et al., 2004). Warm and wet conditions
probably facilitated human colonization in this area
(Madsen et al., 2006). These trends were punctuated by a
cold spell between 12 500 and 11 000 cal yr BP, probably
corresponding to the Younger Dryas interval (Gasse and
Vancampo, 1994), although existing chronologies leave
uncertainties about Younger Dryas correlatives. A gradual
cooling of regional climate occurred after 10 000 cal yr BP
(Herzschuh et al., 2006c), along with a progressive retreat
of the summer monsoon front (Hong et al., 2003). Regional
climate turned distinctly cooler and drier about
5000 cal yr BP, as indicated by a sudden transition from
temperate steppe to alpine steppe (Herzschuh et al., 2006c).
The deteriorations of climate conditions are thought to be
the major driving force in the termination of Neolithic
cultures in this area (Rhode et al., 2007). Superimposed
upon this trend were centennial-scale fluctuations with
small amplitude, presumably induced by variation in solar
activity (Ji et al., 2005).
Because Lake Qinghai is situated near the limit of

monsoonal precipitation, variations of the Asian summer
monsoon may have left its fingerprint on the lake’s
sediments. Therefore, the Lake Qinghai record is important
for examining the spatial variability of the Asian Summer
Monsoon, along with other records from neighboring
areas. The d18O records of lakes in the western part of the
Tibetan Plateau, e.g. Sumxi-Longmu Co (Fontes et al.,
1993), and Bangong Co (Fontes et al., 1996), exhibit a
different pattern than the Lake Qinghai record (Lister et
al., 1991), implying that the Indian Summer Monsoon did
not reach the western Tibetan Plateau during the Holo-
cene. However, several lakes, including Lakes Manas
(Rhodes et al., 1996) and Issyk-Kul (Ricketts et al., 2001)
show patterns of increased moisture during the mid-
Holocene Thermal Maximum, similar to the record at
Qinghai (Lister et al., 1991). It is not clear whether the
moist intervals at these lakes were due to monsoonal
precipitation or other causes.

5. Summary and conclusions

1. Comparisons of long Pleistocene lacustrine and loess-
soil records with the marine oxygen isotope record show
in-phase changes of China’s inland climate with global
ice volume, presumably driven by periodical variations
in the Earth’s orbital geometry. Once the plateau
reached its threshold altitude for modifying the prevail-
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ing wind regime, subsequent uplift had little influence on
regional climate. No independent evidence supports a
tectonic forcing of these glacial–interglacial cycles.

2. Lacustrine carbonate d18O and pollen records from the
Tibetan Plateau suggest a delayed response of the Asian
monsoon system to orbital forcing during Termination I
and II. Strengthening of the summer monsoon lagged
behind sea level by several thousand years, implying the
importance of sea surface conditions in the development
of monsoon circulation. Marine records from neighbor-
ing areas exhibit nothing anomalous in the Indian
Summer Monsoon during MIS3, compared to the
SPECMAP record. In addition, a lacustrine d18O record
from the northern margin of Tarim Basin reveals a
steady drying trend through late MIS3 into the LGM.
Therefore, the extremely high lake levels and inferred
warming postulated for the Tibetan Plateau remains an
enigma.

3. A wealth of evidence from Lake Qinghai reveals a
teleconnection of China’s inland climate with that of
high northern latitudes during the Lateglacial and
Holocene. Initial warming began at about
14 500 cal yr BP, marking strengthening of the Asian
summer monsoon after the last glaciation. The Lategla-
cial climate was remarkably unstable, as indicated by
several cold reversals presumably related to glacial
boundary conditions before the disappearance of North-
ern Hemisphere ice sheets. Steady warming started at
11 000 cal yr BP and terminated about 4000 cal yr BP.
High summer insolation resulted in a strong Asian
summer monsoon between 11 000 and 7000 cal yr BP. A
striking feature of the Lake Qinghai record is the
variability of the mid-Holocene Thermal Maximum at
centennial time scales, probably caused by localized
feedbacks, because similar changes have not been
reported elsewhere.

4. Geological evidence suggests that the continued low-
ering of water level in Lake Qinghai within the context
of global warming during the last half century is part of
a long-term trajectory of aridification. Human impacts
are minor in the Lake Qinghai basin. Modern studies of
the limnological processes in the lake are badly needed.
Such studies are important not only for interpreting
paleolimnological data, but also for calibrating model
parameters.
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Note added in proof

After completion of this paper, we became aware of an
unpublished Ph.D. dissertation (Yu, J.-Q., 2005, Lake
Qinghai, China: A multi-proxy investigation on sediment
cores for the reconstructions of paleoclimate and paleoen-
vironment since the Marine Isotope Stage 3, University of
Technology, Darmstadt, Germany, 119pp.) that deals with
many aspects of the paleoclimate record of Lake Qinghai,
only some of which has been published (see references). In
particular, the dissertation describes a 1987 drilling effort
that recovered a 26m core (Q87) from the eastern basin of
the lake. Limited data from this core suggest that it extends
through sediments of MIS 3 age and that the lake was than
present throughout that time.
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Lü, H., Yang, X., Shen, C., Li, S., Zhu, L., Wang, L., Wang, S., Wu, N.,

Tong, G., 2001. A new pollen record of the last 2.8Ma from the Co

Ngoin, Central Tibetan Plateau. Science in China Series D 44, 292–300.

Ma, Y.Z., Li, J.J., Fang, X.M., 1998. Pollen assemblage in 30.6–5.0Ma

redbeds of Linxia region and climate evolution. Chinese Science

Bulletin 43, 301–304 (in Chinese, with English Abstract).

Ma, Z.B., Wang, Z.H., Liu, J.Q., Yuan, B.Y., Xiao, J.L., Zhang, G.P.,

2004. U-series chronology of sediments associated with Late Qua-

ternary fluctuations, Balikun Lake, northwestern China. Quaternary

International 121, 89–98.

Madsen, D.B., Ma, H., Brantingham, P.J., Gao, X., Rhode, D., Zhang,

H., Olsen, J.W., 2006. The late Upper Paleolithic occupation of the

northern Tibetan Plateau margin. Journal of Archaeological Science

33, 1433–1444.

Maslin, M.A., Berger, A., Li, X.S., Loutre, M.F., 1998. The contribution

of orbital forcing to the progressive intensification of Northern

Hemisphere glaciation. Quaternary Science Reviews 17, 411–426.

Metivier, F., Gaudemer, Y., Tapponnier, P., Meyer, B., 1998. North-

eastward growth of the Tibet plateau deduced from balanced

reconstruction of two depositional areas: the Qaidam and Hexi

Corridor basins, China. Tectonics 17, 823–842.

Molnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of

the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics

31, 357–396.

Porter, S.C., An, Z.S., 1995. Correlation between climate events in the

North Atlantic and China during last glaciation. Nature 375, 305–308.

Porter, S.C., Singhvi, A., An, Z.S., Lai, Z.P., 2001. Luminescence age and

palaeoenvironmental implications of a late Pleistocene ground wedge

on the northeastern Tibetan Plateau. Permafrost and Periglacial

Processes 12, 203–210.

Prell, W.L., Kutzbach, J.E., 1992. Sensitivity of the Indian monsoon to

forcing parameters and implications for its evolution. Nature 360,

647–652.

Qin, B.Q., 1994. Estimates water balance of paleolake Qinghai in stable

wet and warm period of Holocene. Advances in Water Science 5, 26–30

(in Chinese, with English Abstract).

Qin, B.Q., 1997. Estimates of paleo-hydrological parameters and water

balance of Qinghai Lake with energy-water balance model. Oceano-

logia et Limnologia Sinica 28, 611–616 (in Chinese, with English

Abstract).

Qin, B.Q., Huang, Q., 1998a. Evaluation of the climatic change impacts

on the inland lake—a case study of Lake Qinghai, China. Climatic

Change 39, 695–714.

Qin, B.Q., Huang, Q., 1998b. The simulation of thermal properties of

Qinghai Lake and the potential change in the future. Journal of Lake

Sciences 10, 25–31 (in Chinese, with English Abstract).

Qu, Y.G., 1994. Water balance and forecasting of water level change in

Qinghai Lake. Journal of Lake Sciences 6, 298–307 (in Chinese, with

English Abstract).

Quade, J., Cerling, T.E., Bowman, J.R., 1989. Development of Asian

monsoon revealed by marked ecological shift during the latest Miocene

in northern Pakistan. Nature 342, 163–166.

Ramstein, G., Fluteau, F., Besse, J., Joussaume, S., 1997. Effect of

orogeny, plate motion and land-sea distribution on Eurasian climate

change over the past 30 million years. Nature 386, 788–795.

Raymo, M.E., Ruddiman, W.F., 1992. Tectonic forcing of Late Cenozoic

climate. Nature 359, 117–122.

Rea, D.K., Snoeckx, H., Joseph, L.H., 1998. Late Cenozoic eolian

deposition in the North Pacific: Asian drying, Tibetan uplift, and

cooling of the northern hemisphere. Paleoceanography 13, 215–224.

Rhode, D., Zhang, H., Madsen, D.B., Gao, X., Brantingham, P.J., Ma,

H., Olsen, J.W., 2007. Epipaleolithic/early Neolithic settlements at

Qinghai Lake, western China. Journal of Archaeological Science 34,

600–612.

ARTICLE IN PRESS
S.M. Colman et al. / Quaternary Science Reviews 26 (2007) 2281–23002298



Rhodes, T.E., Gasse, F., Lin, R.F., Fontes, J.C., Wei, K.Q., Bertrand, P.,

Gibert, E., Melieres, F., Tucholka, P., Wang, Z.X., Cheng, Z.Y., 1996.

A late Pleistocene–Holocene lacustrine record from Lake Manas,

Zunggar (northern Xinjiang, western China). Palaeogeography Pa-

laeoclimatology Palaeoecology 120, 105–121.

Ricketts, R.D., Johnson, T.C., Brown, E.T., Rasmussen, K.A., Roma-

novsky, V.V., 2001. The Holocene paleolimnology of Lake Issyk-Kul,

Kyrgyzstan: trace element and stable isotope composition of

ostracodes. Palaeogeography Palaeoclimatology Palaeoecology 176,

207–227.

Ruddiman, W.F., Kutzbach, J.E., 1989. Forcing of Late Cenozoic

Northern Hemisphere climate by plateau uplift in southern Asia and

the American west. Journal of Geophysical Research 94, 18409–18427.

Ruddiman, W.F., Prell, W.L., Raymo, M.E., 1989. Late Cenozoic uplift in

southern Asia and the American west: rationale for general circulation

modeling experiments. Journal of Geophysical Research 94,

18379–18391.

Shackleton, N.J., Hall, M.A., Pate, D., 1995. Pliocene stable isotope

stratigraphy of Site 846. In: Pisias, N.G., Janacek, L.A., Palmer-

Julson, A., Van Andel, T.H. (Eds.), Proceedings of the Ocean Drilling

Program Scientific Results, pp. 337–355.

Shan, F.S., Du, N.Q., Kong, Z.C., 1993. Vegetational and environmental

changes in the last 350 ka in Erlangjian, Qinghai Lake. Journal of Lake

Sciences 5, 9–17 (in Chinese, with English Abstract).

Shen, C.M., 2003. Millennial-scale variations and centennial-scale events

in the Southwest Asian monsoon: Pollen evidence from Tibet. Ph.D.

Thesis, Louisiana State University, USA.

Shen, J., Liu, X.Q., Wang, S.M., Matsumotob, R., 2005. Palaeoclimatic

changes in the Qinghai Lake area during the last 18,000 years.

Quaternary International 136, 131–140.

Shen, J., Zhang, E.L., Xia, W.L., 2001. Records from lake sediments of

the Qinghai Lake to mirror climatic and environmental changes of the

past about 1000 years. Quaternary Sciences 21, 508–513 (in Chinese,

with English Abstract).

Shi, J.A., Guo, X.L., Wang, Q., Yan, N.Z., Wang, J.X., 2003.

Geochemistry of REE in QH1 sediments of Qinghai Lake since late

Holocene and its paleoclimatic significance. Journal of Lake Sciences

15, 28–34 (in Chinese, with English Abstract).

Shi, Y.F., Jia, Y.L., Yu, G., Yang, D.Y., Fan, Y.Q., Li, S.J., Wang, Y.F.,

2002. Features, impacts and causes of the high temperature and large

precipitation event in the Tibetan Plateau and its adjacent area during

40–30 kaBP. Journal of Lake Sciences 14, 1–11 (in Chinese, with

English Abstract).

Shi, Y.F., Lu, M.X., Li, W.Z., 1958. Physical geography with emphasis on

geomorphology around Lake Qinghai. Acta Geographica Sinica 24,

33–48 (in Chinese, with English Abstract).

Shi, Y.F., Yu, G., Liu, X.D., Li, B.Y., Yao, T.D., 2001. Reconstruction of

the 30–40 kaBP enhanced Indian monsoon climate based on geological

records from the Tibetan Plateau. Palaeogeography Palaeoclimatology

Palaeoecology 169, 69–83.

Sun, D.P., Tang, Y., Xu, Z.Q., Han, Z.M., 1991. A preliminary

investigation on chemical evolution of the Qinghai Lake water.

Chinese Science Bulletin 36, 1172–1174 (in Chinese, with English

Abstract).

Tang, L.Y., 2002. Temporal–spatial distribution of vegetation in the

Qinghai–Xizang Plateau during the past 12 kaBP. Acta Botanica

Sinica 44, 872–877 (in Chinese, with English Abstract).

Tang, L.Y., Shen, C.M., Liu, K.B., Overpeck, J.T., 2000. Changes in

South Asian monsoon: new high-resolution paleoclimatic records from

Tibet, China. Chinese Science Bulletin 45, 87–91.

Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Bolzan, J.F., Dai,

J., Yao, T., Gundestrup, N., Wu, X., Klein, L., Xie, Z., 1989.

Holocene–Late Pleistocene climatic ice core records from Qinghai–Ti-

betan Plateau. Science 246, 474–477.

Thompson, L.G., Yao, T., Davis, M.E., Henderson, K.A., Mosly-

Thompson, E., Lin, P.N., Beer, J., Synal, H.A., Cole-Dai, J., Bolzan,

J.F., 1997. Tropical climate instability: the Last Glacial cycle from a

Qinghai–Tibetan ice core. Science 276, 1821–1825.

Van Campo, E., Cour, P., Hang, S.X., 1996. Holocene environmental

changes in Bangong Co basin (western Tibet) 2. The pollen record.

Palaeogeography Palaeoclimatology Palaeoecology 120, 49–63.

Wang, J., Wang, Y.J., Liu, Z.C., Li, J.Q., Xi, P., 1999. Cenozoic

environmental evolution of the Qaidam Basin and its implications for

the uplift of the Tibetan Plateau and the drying of central Asia.

Palaeogeography Palaeoclimatology Palaeoecology 152, 37–47.

Wang, L.J., 2003. Analysis and strategies of the water table drop of reason

of the Qinghai Lake. Journal of Qinghai University 21, 28–31 (in

Chinese, with English Abstract).

Wang, S.M., Shi, Y.F., 1992. Perspective and discussion on late

Quaternary evolution of Lake Qinghai. Journal of Lake Sciences 4,

1–8 (in Chinese, with English Abstract).

Wang, S.M., Xue, B., 1997. Environmental evolution of Zoige Basin since

900 kaBP and comparison study with Loess Plateau. Science in China

Series D 40, 329–336.

Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.C.,

Dorale, J.A., 2001. A high-resolution absolute-dated Late Pleistocene

monsoon record from Hulu Cave, China. Science 294, 2345–2348.

Wei, K., Gasse, F., 1999. Oxygen isotopes in lacustrine carbonates of West

China revisited: implications for post glacial changes in summer

monsoon circulation. Quaternary Science Reviews 18, 1315–1334.

Williams, D.F., Peck, J., Karabanov, E.B., Prokopenko, A.A., Krav-

chinsky, V., King, J., Kuzmin, M.I., 1997. Lake Baikal record of

continental climate response to orbital insolation during the past 5

million years. Science 278, 1114–1117.

Williams, W.D., 1966. The relationship between salinity and Sr/Ca in the

lake water. Australian Journal of Marine and Freshwater Research 17,

169–176.

Williams, W.D., 1991. Chinese and Mongolian saline lakes: a limnological

overview. Hydrobiologia 210, 39–66.

Winograd, I.J., Szabo, B.J., Coplen, T.B., Riggs, A.C., 1988. A 250,000-

year climatic record from Great Basin vein calcite: implications for

Milankovitch theory. Science 242, 1275–1280.

Wu, J., Wang, S., Pan, H., Xia, W., 1997. Climatic variations in the past

140 ka recorded in core RM, east Qinghai–Xizang Plateau. Science in

China Series D 40, 443–448.

Wu, Z., Yan, F., Mai, X., Zhu, D., Zhao, X., Wu, Z., Zhou, C., 2004.

Palaeovegetation, palaeoclimate and lake-level Chang since 120 kaBP

in Nam Co, central Xizang. Acta Geologica Sinica 78, 242–252.

Wunnemann, B., Chen, F.H., Riedel, F., Zhang, C.J., Mischke, S., Chen,

G.J., Demske, D., Ming, J., 2003. Holocene lake deposits of Bosten

Lake, southern Xinjiang, China. Chinese Science Bulletin 48,

1429–1432.

Xiao, J.L., An, Z.S., Liu, T.S., Inouchi, Y., Kumai, H., Yoshikawa, S.,

Kondo, Y., 1999. East Asian monsoon variation during the last

130,000 Years: evidence from the Loess Plateau of central China and

Lake Biwa of Japan. Quaternary Science Reviews 18, 147–157.

Xu, H., Ai, L., Tan, L.C., An, Z.S., 2006a. Geochronology of a surface

core in the northern basin of Lake Qinghai: evidence from 210Pb and
137Cs radionuclides. Chinese Journal of Geochemistry 25, 301–306.

Xu, H., Ai, L., Tan, L.C., An, Z.S., 2006b. Stable isotopes in bulk

carbonates and organic matter in recent sediments of Lake Qinghai

and their climatic implications. Chemical Geology 235, 262–275.

Yan, J.P., Hinderer, M., Einsele, G., 2002. Geochemical evolution of

closed-basin lakes: general model and application to Lakes Qinghai

and Turkana. Sedimentary Geology 148, 105–122.

Yang, B., Wang, J., Shi, Y., Braeuning, A., 2004. Evidence for a warm-

humid climate in arid northwestern China during 40–30 kaBP.

Quaternary Science Reviews 23, 2537–2548.

Yang, H.Q., Jiang, D.X., 1965. Quaternary pollen assemblages of Lake

Qinghai basin and implications. Acta Geographica Sinica 31, 321–344

(in Chinese, with English Abstract).

Yu, G., Tang, L.Y., Yang, X.D., Ke, X.K., Harrison, S.P., 2001. Modern

pollen samples from alpine vegetation on the Tibetan Plateau. Global

Ecology and Biogeography 10, 503–520.

Yu, J.Q., Kelts, K.R., 2002. Abrupt changes in climatic conditions across

the Late-Glacial/Holocene transition on the N.E. Tibet–Qinghai

ARTICLE IN PRESS
S.M. Colman et al. / Quaternary Science Reviews 26 (2007) 2281–2300 2299



Plateau: evidence from Lake Qinghai, China. Journal of Paleolimnol-

ogy 28, 195–206.

Yuan, B.Y., Chen, K.Z., Bowler, J.M., Ye, S.J., 1990. The formation and

evolution of Qinghai Lake. Quaternary Sciences, 233–243 (in Chinese,

with English Abstract).

Yuan, D., Cheng, H., Edwards, R.L., Dykoski, C.A., Kelly, M.J., Zhang,

M., Qing, J., Lin, Y., Wang, Y., Wu, J., Dorale, J.A., An, Z.S., Cai,

Y., 2004. Timing, duration, and transitions of the Last Interglacial

Asian Monsoon. Science 304, 575–578.

Zachos, J., Billups, K., Pagani, H., Sloan, L., Thomas, E., 2001. Trends,

rhythms, and aberrations in global climate 65Ma to present. Science

292, 686–693.

Zhang, E.L., 2003. Climate and environment change during the past 1000

years in Qinghai Lake. Master Thesis, Graduate School of Chinese

Academy of Sciences, PR China.

Zhang, E.L., Shen, J., Wang, S.M., Xia, W.L., Jin, Z.D., 2002a. Climate

and environment change during the past 900 years in Qinghai Lake.

Journal of Lake Sciences 14, 32–38 (in Chinese, with English Abstract).

Zhang, E.L., Shen, J., Xia, W.L., Zhu, Y.X., Wang, S.M., 2002b.

Environmental records from organic carbon and its isotope of Qinghai

Lake sediment. Marine Geology and Quaternary Geology 22, 105–108

(in Chinese, with English Abstract).

Zhang, E.L., Shen, J., Wang, S.M., Yin, Y., Zhu, Y.X., Xia, W.L., 2004.

Quantitative reconstruction of the paleosalinity at Qinghai Lake in the

past 900 years. Chinese Science Bulletin 49, 730–734.

Zhang, J.W., Jin, M., Chen, F.H., Battarbee, R.W., Henderson, A.C.G.,

2003. High-resolution precipitation variations in the Northeast

Tibetan Plateau over the last 800 years documented by sediment cores

of Qinghai Lake. Chinese Science Bulletin 48, 1451–1456.

Zhang, P.X., Zhang, B.Z., Yang, W.B., 1989a. Environmental evolution

of the water body of Qinghai Lake since the postglacial age. Chinese

Journal of Geochemistry 8, 112–125.

Zhang, P.X., Zhang, B.Z., Yang, W.B., 1989b. On the model of post-

glacial palaeoclimatic fluctuation in Qinghai Lake region. Quaternary

Sciences, 66–77 (in Chinese, with English Abstract).

Zhang, P.X., Zhang, P.Z., Qian, G.M., Li, H.J., Xu, L.M., 1994.

The study of paleoclimatic parameter of Qinghai Lake since

Holocene. Quaternary Sciences, 225–228 (in Chinese, with English

Abstract).

Zhang, P.Z., Molnar, P., Downs, W.R., 2001. Increased sedimentation

rates and grain sizes 2–4Myr ago due to the influence of climate

change on erosion rates. Nature 410, 891–897.

Zhang, Q., Zhang, B.Z., 1994. The C and O isotopic compositions of

ostracod shell in shallow-seated sediments and sinters in bottom of

Qinghai Lake and their palaeoclimatic implications. Geochemica 23,

386–391.

Zhou, H., Zhu, Z., 2001. Oxygen isotopic composition of lacustrine

carbonates since 130 kaBP from a Tianshuihai Lake core, Tibet: an

overall increasing delta 18O trend and its implications. Journal of

Asian Earth Sciences 20, 225–229.

ARTICLE IN PRESS
S.M. Colman et al. / Quaternary Science Reviews 26 (2007) 2281–23002300


	Late Cenozoic Climate Changes in China’s Western Interior: A Review of Research on Lake Qinghai and Comparison with Other Records
	

	Late Cenozoic climate changes in China’s western interior: a review of research on Lake Qinghai and comparison with other records
	Introduction
	Environmental setting
	Neogene climate history
	Geomorphologic and tectonic backgrounds
	Climate and vegetation
	Lake hydrology and water chemistry

	Paleolimnological records of Lake Qinghai at different time scales
	Potential record from long drill cores
	The QH86 record
	Stratigraphy and chronology
	Pollen assemblages

	The QH85 and QH2000 records
	Stratigraphy, chronology, and sedimentation rates
	Climate and environment changes
	Pollen record and vegetation history
	Ostracode carbonate trace elements and lake-water chemistry
	Carbonate stable isotopes and lake hydrological and thermal conditions

	The QING-6, QING-10, QHN3/1, QH0407-C, and GAHAI-1 records
	Recent changes
	Lake levels and shorelines
	Water chemistry


	Discussion and comparison with surrounding areas
	Late Cenozoic changes
	The Last Interglacial-Glacial cycle
	Delayed response of the summer monsoon during the MIS6-MIS5e transition
	The MIS3 period of anomalously high lake levels

	Lateglacial-Holocene changes

	Summary and conclusions
	Acknowledgments
	References


	Text6:     This article is a U.S. government work, and is not subject to copyright in the United States.


