University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Xiao Cheng Zeng Publications

Published Research - Department of Chemistry

2-1-2006

Structures and relative stability of medium-sized silicon clusters. IV. Motif based low-lying clusters Si₂₁–Si₃₀

Soohaeng Yoo University of Nebraska-Lincoln

Xiao Cheng Zeng University of Nebraska-Lincoln, xzeng1@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/chemzeng

Part of the Chemistry Commons

Yoo, Soohaeng and Zeng, Xiao Cheng, "Structures and relative stability of medium-sized silicon clusters. IV. Motif based low-lying clusters Si₂₁–Si₃₀" (2006). *Xiao Cheng Zeng Publications*. 11. https://digitalcommons.unl.edu/chemzeng/11

This Article is brought to you for free and open access by the Published Research - Department of Chemistry at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Xiao Cheng Zeng Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

THE JOURNAL OF CHEMICAL PHYSICS 124, 054304 (2006)

Structures and relative stability of medium-sized silicon clusters. IV. Motif-based low-lying clusters Si₂₁–Si₃₀

Soohaeng Yoo and X. C. Zeng^{a)}

Department of Chemistry and Center for Materials Research and Analysis, University of Nebraska-Lincoln, Lincoln, Nebraska 68588

(Received 24 October 2005; accepted 14 December 2005; published online 1 February 2006)

Structures and relative stability of four families of low-lying silicon clusters in the size range of $Si_n(n=21-30)$ are studied, wherein two families of the clusters show prolate structures while the third one shows near-spherical structures. The prolate clusters in the first family can be assembled by connecting two small-sized magic clusters Si_n (n=6, 7, 9, or 10) via a fused-puckered-hexagonal-ring Si₉ unit (a fragment of bulk diamond silicon), while those in the second family can be constructed on the basis of a structural motif consisting of a puckered-hexagonal-ring Si₆ unit (also a fragment of bulk diamond silicon) and a small-sized magic cluster Si_n (n=6, 7, 9, or 10). For Si₂₁–Si₂₉, the predicted lowest-energy clusters (except Si₂₇) exhibit prolate structures. For clusters larger than Si₂₅, the third family of near-spherical clusters becomes energetically competitive. These near-spherical clusters all exhibit endohedral cagedlike structures, and the cages are mostly homologue to the carbon-fullerene cages which consist of pentagons and hexagons exclusively. In addition, for Si26-Si30, we construct a new (fourth) family of low-lying clusters which have "Y-shaped" three-arm structures, where each arm is a small-sized magic cluster (Si_6 , Si_7 , or Si_{10}). Density-functional calculation with the B3LYP functional shows that this new family of clusters is also energetically competitive, compared to the two prolate and one near-spherical low-lying families. © 2006 American Institute of Physics. [DOI: 10.1063/1.2165181]

I. INTRODUCTION

Over the past two decades, theoretical investigation of the structures and relative stability of medium-sized silicon clusters Si_n ($n \ge 11$) has been an active area of research.¹⁻⁴² Major efforts have been undertaken towards finding the global-minimum structures for $n \ge 11$. For example, Jackson and co-workers reported systematic searches for the global minima of silicon cation and neutral clusters in the medium size range of $19 \le n \le 28$, using either the single-parent evolution algorithm or the big-bang algorithm coupled with density-functional tight-binding (DFTB) method.^{20,41,42} Recently, the size range of $25 \le n \le 29$ has received increasing attention $^{32-36,39-42}$ largely because earlier experiments $^{43-48}$ have revealed a structural transition from prolate to nearspherical geometry at $n \sim 27 \pm 2$, for both cation and anion silicon clusters. A more recent experimental/theoretical photoelectron-spectroscopy study⁴⁹ also confirmed the structural transition occurring at n=27 for anion clusters. To date, the true global minima for many clusters in the size range of $13 \le n \le 29$ are still debatable,^{36–42} due in part to the subtle sensitivity of predicted global minima on the density functional selected (e.g., PBE or B3LYP functional), or the level of molecular-orbital theory selected [e.g., MP2 or CCSD(T)] in the *ab initio* calculations.²⁶ Moreover, as the size of the cluster increases, finding the true global minima becomes increasingly a challenge because of the much increased number of low-lying isomers. Nevertheless, previous tightbinding (TB) and DFTB-based global-minimum searches have shed much light on some generic structural features of low-lying clusters in the size range of $13 \le n \le 30$. For example, most low-lying clusters in the size range of $13 \le n \le 22$ likely belong to two families, one containing the tricapped-trigonal-prism (TTP) Si₉ motif^{16,39} while another containing the six/six Si₆/Si₆ motif (a *puckered-hexagonalring* Si₆ plus *tetragonal bipyramid* Si₆).^{20,36,37} For $27 \le n \le 40$, it was found that carbon fullerenes can serve as generic cage motifs^{8,11,24} to form "stuffed fullerenelike" low-lying clusters.³⁵ As discussed in Ref. 37 (Paper III of this series), identification of these *generic* structural features not only can dramatically reduce computation cost for *ab initio* calculation of the potential-energy surface but also can provide additional physical insight into growth patterns of medium-tolarge-sized low-lying clusters.

In this article, geometric structures and relative stability of four families of low-lying clusters in the size range of $21 \le n \le 30$ are further examined. Among them, two families that exhibit prolate structures can be constructed based on various generic structural motifs. The third family, which has near-spherical structures, can be obtained via constrained (biased) search based on the fullerene cage motifs. A new (fourth) family is reported to have "Y-shaped three-arm" structures. Specifically, those prolate clusters in the first family can be assembled by connecting two small-sized magic clusters Si_n (n=6, 7, 9, or 10) via a fused-puckeredhexagonal-ring Si₉ unit (a fragment of bulk diamond silicon), and those in the second family can be constructed on basis of

0021-9606/2006/124(5)/054304/6/\$23.00

124, 054304-1

^{a)}Electronic mail: xczeng@phase2.unl.edu

a structural motif consisting of a puckered-hexagonal-ring Si₆ (also a fragment of bulk diamond silicon) and a smallsized magic clusters Si_n (n=6, 7, 9, and 10). Note that evidences of these "small-cluster-assembled" medium-sized clusters have also been observed in the previous clusterdissociation experiments. For example, Smalley and co-workers^{50,51} reported photodissociation studies of silicon clusters containing up to 60 atoms and they found that medium-sized clusters with less than 30 atoms dissociate mainly by loss of the small-sized magic-number clusters Si₆, Si₇, and Si₁₀. Jarrold and Bower⁵² conducted collisioninduced dissociation experiment to monitor dissociation of silicon cluster cations containing up to 26 atoms and they found that clusters with 19-26 atoms dissociate mainly by loss of Si₁₀ unit. Indeed, these early experiments support the notion that medium-sized low-lying clusters can be built based on small-sized magic clusters Si₆, Si₇, Si₉, and Si₁₀.

II. COMPUTATIONAL DETAILS

Geometric optimization and total-energy calculations for all clusters were performed by using methods of densityfunctional theory (DFT) implemented in two software packages: (1) the plane-wave-pseudopotential density-functional theory (PWP-DFT) with generalized-gradient approximation (GGA) [Two functionals were selected, the Becke exchange and Lee-Yang-Parr correlation (BLYP) functional⁵³ and the Perdew-Burke-Ernzerhof (PBE) functional,⁵⁴ both implemented in the CPMD program.⁵⁵] and (2) the all-electron DFT method at the B3LYP/6-31G (d) level, compiled in the GAUSSIAN 03 software package.⁵⁶ The reason to use three different functionals is to examine possible functional dependence of the predicted lowest-energy isomers, which was shown to occur for smaller-sized clusters in Paper III.³⁷ In our previous studies of smaller-sized clusters $Si_n(n=7-20)$ (Refs. 25 and 26) (Papers I and II in this series) we used *ab initio* molecular-orbital methods at the MP2/6-31G(d) level of theory for geometry optimization and the coupledcluster level of theory for total-energy calculation. However, for the size range considered here, geometry optimization at the MP2/6-31G(d) level and particularly total-energy calculation at the coupled-cluster level of theory will be computationally very demanding. We therefore only report results based on PWP-DFT and B3LYP/6-31G(d) calculations. Note that in the PWP-DFT calculations, we used a cutoff energy 30 Ry for plane-wave expansion and a supercell size with the dimension of 25 Å.

III. RESULTS

A. Family I: Prolate clusters for $21 \le n \le 29$

Prolate clusters in family I can be constructed by connecting two small-sized magic clusters Si_n (n=6, 7, 9 or 10) through a *fused-puckered-hexagonal-ring* Si₉ unit. The latter can be viewed as a fragment of bulk diamond silicon [see Fig. 1(a)] and it serves as a "glue unit" to hold two smallsized magic clusters together. In Fig. 1(b) we display four small-sized magic clusters as the "parts" for assembling the low-lying prolate clusters, namely, Si₆ (distorted octahedron), Si₇ (pentagonal bipyramid), Si₉ (TTP), and Si₁₀ (tet-

FIG. 1. (Color online) (a) A nine-atom unit—the *fused-puckered-hexagonalring* Si₉—highlighted in pink color. This unit can be viewed as bulk fragment of the cubic diamond silicon—"adamantane" Si₁₀. (b) Small-sized magic clusters as "parts" for assembling low-lying prolate clusters in families I, II, and IV. These parts include Si₆ (distorted octahedron), Si₇ (pentagonal bipyramid), Si₉ [tricapped trigonal prism (TTP)], and Si₁₀ (tetracapped trigonal prism). (c) Geometries of clusters with lowest energy in family I. The "glue part," namely, the fused-puckered-hexagonal-ring Si₉ is highlighted in pink color.

racapped trigonal prism). As shown in Paper I (Fig. 5 in Ref. 25), the incremental binding energy of Si₈ is notably smaller than Si₆, Si₇, Si₉, and Si₁₀. Therefore, the global-minimum structure of Si₈ (distorted-bicapped octahedron) is not a favored part for the assembly. Likewise, the global minimum of Si₁₁(pentacapped trigonal prism) is not a favored part neither.

In Fig. 1(c), we display prolate clusters $(Si_{21}-Si_{29})$ in family I where the notation **1a** refers to the isomer that has the lowest energy in family I. For $Si_{21}-Si_{24}$, Si_{26} , Si_{28} , and Si_{29} the structural assembly is unique. However, for Si_{25} and Si_{27} , there are two possible structural assemblies. Si_{25} can be viewed either as an assembly of Si_6+Si_9 (glue unit) $+Si_{10}$ or an assembly of Si_7+Si_9 (glue unit) $+Si_9$. Since the incremental binding energy of Si_6 and Si_{10} is higher than Si_7 and Si_9 , the assembly of Si_6+Si_9 (glue unit) $+Si_{10}$ (si25-1a) has a lower energy than the assembly of Si_7+Si_9 (glue unit) $+Si_9$. For Si_{27} , also, there are two competing assemblies, Si_8+Si_9 (glue unit) $+Si_{10}$ and Si_9+Si_9 (glue unit) $+Si_9$. Note that since the structure of the Si_8 portion is unknown *a priori*, we performed a constrained (or biased) basin-hopping search

FIG. 2. (Color online) Geometries of clusters with lowest energy in family II. The glue part, namely, the *six-fold-puckered-ring* Si₆ appeared in the six/six, six/nine, and six/ten structural motifs is highlighted in green color.

combined with DFT optimization^{36,37} to obtain the final Si₈ structure when attached to the Si₉ (glue unit) +Si₁₀ portion of the cluster. Total-energy calculations show that the assembly of Si₈+Si₉ (glue unit) +Si₁₀ (si27-1a) is slightly lower in energy ($\sim 0.14 \text{ eV}$) than the assembly of Si₉+Si₉ (glue unit) +Si₉. Finally, we note that si30-1a may be viewed as an assembly of Si₁₁+Si₉ (glue unit) +Si₁₀. Since the Si₁₁ cluster is not favored energetically, si30-1a is not displayed in Fig. 1(c).

B. Family II: Prolate clusters for $21 \le n \le 26$

Prolate clusters in family II can be constructed on the basis of the structural motif consisting of a puckeredhexagonal-ring Si₆ (also a fragment of bulk diamond silicon) and a small-sized magic clusters Si_n (n=6, 7, 9, or 10). The resulting structural motifs can be named as the six/six, six/ seven, six/nine, or six/ten motif, repectively.^{36,37} The structure of the remaining portion of the cluster has to be determined via constrained (or biased) basin-hopping search coupled with DFT geometry optimization.^{36,37} Previously, we reported that clusters based on the six/six motif can be energetically competitive starting from n=16 and up to n=22.³⁶ For $n \ge 24$, our constrained search indicates that the six/ten motif gives rise to the lowest-energy isomers in family II, consistent with the previous global search of Jackson et al.⁴¹ In Fig. 2 we display the lowest-energy isomers for cluster in the size range of $21 \le n \le 26$. Here the notation **2a** denotes the lowest-energy isomer in family II (calculated using the PBE functional) while 2a' denotes the lowest-energy isomer (calculated using BLYP or B3LYP functional). As shown in Fig. 2, there are two isomers of Si_{22} and Si_{26} which compete for the lowest-energy isomer. This is mainly due to the functional dependence, which has been discussed more extensively in Paper III.³⁷ We found that if the PBE functional is selected, the constrained search indicates that si22-2a and si26-2a are lower in energy than si22–2a' and si26-2a', respectively whereas if the BLYP (or B3LYP) functional is selected, the search indicates otherwise. For other clusters, calculations with both PBE and BLYP functionals give consistent prediction to the lowest-energy isomer in family II.

In Fig. 2, we also display a prolate isomer of Si_{28} . Strictly speaking, this isomer does not belong to family II since the puckered-hexagonal-ring Si_6 unit is not directly attached to the Si_{10} magic cluster. This Si_{28} isomer was obtained by Jackson *et al.*⁴² through an unbiased search and is the leading candidate for the global minimum of Si_{28} . We therefore refer it as si28-2'a because it shows certain structural similarity to clusters in family II.

C. Family III: Near-spherical cagedlike clusters for 25 $\leq n \leq 30$

Low-lying clusters with near-spherical structures have been recently reported by Jackson *et al.* (up to n=28) (Ref. 41 and 42 and by us (up to n=45).^{35,49} In Fig. 3, we display those predicted lowest-energy isomers, all have already appeared in the literature. Again, the notation **3a** denotes the lowest-energy isomer in family III (calculated with the PBE functional) while **3a'** denotes the lowest-energy isomer (calculated with the BLYP or B3LYP functional). The functional dependence on the predicted lowest-energy structure is seen for Si₂₅, Si₂₈, and Si₃₀ (see Fig. 3).

As shown previously,³⁵ the cages of near-spherical clusters are generally homologue to the carbon-fullerene cages which consist of pentagons and hexagons exclusively with even numbers of atoms. In Fig. 3, we highlight the core-filling ("stuffing") atoms by blue color. If these core-filling atoms were removed and the cage atoms were replaced by carbon atoms, we can obtain the corresponding carbon-fullerene cages after structural optimization. Indeed, as shown in Fig. 3, cages of all clusters except two (si25-3a and si27-3a) (Ref. 41) are homologue to the carbon-fullerene cages.

D. Family IV: Y-shaped three-arm clusters for $26 \le n \le 30$

In light of that magic-cluster-assembled medium-sized clusters can be energetically very favorable in the size range of Si_{16} – Si_{29} , we attempted to construct a new family of clusters that are composed of a glue unit plus three magic clusters (from Si_6 – Si_{10}). We call this hypothetical (fourth) family of clusters the Y-shaped three-arm clusters (see Fig. 4). The "glue" unit (the red-colored unit in Fig. 4) is very similar to the fused-puckered-hexagonal-ring Si_9 unit but with one atom removed. As such, two magic clusters Si_6 can be attached to the glue unit symmetrically on two sides, forming two "arms" of the "Y-shaped" clusters. The structure of the third arm can be obtained based on a constrained (or biased) basin-hopping search coupled with DFT optimization.³⁶ Not

FIG. 3. (Color online) Geometries of clusters with lowest energy in family III. The "stuffing," namely, the endohedral silicon atoms inside the cages are highlighted in blue color. The corresponding homolog carbon cages are displayed in grey color.

surprisingly, the obtained structures of the "third" arm for si26-4a, si27-4a, si29-4a, and si30-4a are those of magic clusters Si_6 , Si_7 , Si_9 (TTP), and Si_{10} , respectively [Fig. 1(b)].

FIG. 4. (Color online) Geometries of clusters with lowest energy in family IV. The "glue" part Si₈ is highlighted in red color. The two arms at the top of the Y-shaped three-arm clusters are the magic cluster Si₆ [see Fig. 1(b)].

TABLE I. The total-energy differences between the predicted lowest-energy isomer and several other low-lying isomers. The lowest-energy clusters are highlighted using the bold-faced number **0.000**. Those isomers with energy difference less than 0.1 eV from the lowest-energy ones are also highlighted using bold-faced number.

	$\frac{\text{CPMD/PBE}}{\Delta E \text{ (eV)}}$	$\frac{\text{CPMD/BLYP}}{\Delta E \text{ (eV)}}$	B3LYP/6-31G(d) ΔE (eV)
si21-1a	0.000	0.000	0.000
si21-2a	0.253	0.452	0.445
si22-1a	0.288	0.000	0.000
si22-2a	0.000	0.256	0.477
si22-2a'	0.082	0.164	0.379
si23-1a	0.538	0.000	0.000
si23-2a	0.000	0.005	0.175
si24-1a	0.306	0.028	0.090
si24-2a	0.000	0.000	0.000
si25-1a	0.000	0.000	0.000
si25-2a	0.294	0.715	0.907
si25-3a	0.694	1.395	1.160
si25-3a'	0.907	0.930	0.683
si26-1a	0.204	0.000	0.000
si26-2a	0.000	0.307	0.501
si26-2a'	0.040	0.202	0.436
si26-3a	0.012	0.465	0.367
si26-4a	0.537	0.077	0.188
si27-1a	0.314	0.017	0.042
si27-3a	0.000	0.357	0.136
si27-4a	0.672	0.000	0.000
si28-1a	0.021	0.000	0.000
si28-2'a	0.000	0.419	0.231
si28-3a	0.072	0.747	0.374
si28-3a'	0.310	0.475	0.081
si28-4a	0.891	0.570	0.551
si29-1a	0.000	0.000	0.000
si29-3a	0.261	1.029	0.629
si29-4a	0.939	0.783	0.862
si30-3a	0.000	1.122	0.763
si30-3a'	1.168	0.868	0.484
si30-4a	0.385	0.000	0.000

IV. DISCUSSION AND CONCLUSION

Relative stability of low-lying silicon clusters belonging to the four families has been analyzed via their total-energy differences given in Table I. Here, we list the energy differences calculated with three different density functionals, namely, PBE, BLYP, and B3LYP (all-electron calculation). For each size of clusters, the calculated lowest-energy isomers are highlighted with the bold-faced number **0.000** in Table I. We also performed vibrational frequency calculations for a number of clusters at B3LYP/6-31G(d) of theory and found that the zero-point energy differences among isomers are all less than 0.08 eV. Therefore, we also highlighted in Table I (using bold-faced number) those isomers having energy difference within 0.1 eV from the lowest-energy one. Some general features can be seen in Table I. First, for

Downloaded 13 Apr 2007 to 129.93.16.206. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

TABLE II. Calculated binding energy per atom for the lowest-energy isomer highlighted in Table I. Si_{29} (si29-1a) has the highest binding energy among the clusters considered.

	CPMD/PBE (eV)	CPMD/BLYP (eV)	B3LYP/6-31G(d) (eV)
Si ₂₁	3.871	3.347	3.302
Si ₂₂	3.875	3.336	3.296
Si ₂₃	3.874	3.324	3.289
Si ₂₄	3.887	3.340	3.300
Si ₂₅	3.898	3.362	3.320
Si ₂₆	3.897	3.352	3.315
Si ₂₇	3.893	3.340	3.302
Si ₂₈	3.898	3.353	3.312
Si ₂₉	3.916	3.372	3.332
Si ₃₀	3.908	3.359	3.320

 Si_{21} - Si_{29} (except Si_{27}), the predicted lowest-energy clusters are all prolate in shape. Second, for Si₂₆-Si₂₈, the PBE calculation suggests that near-spherical clusters are very competitive to be the global minima, especially for Si₂₇. However, BLYP and B3LYP calculations suggest that the magiccluster-assembled clusters, either prolate or Y-shaped, are very competitive for the global minima. Third, Si₂₉ appears to be a special cluster because the prolate isomer si29-1a is notably lower in energy than others, regardless of PBE or BLYP calculations. This is because si29-1a contains two highly stable magic clusters Si₁₀. As such, it is tempting to speculate that if there is a prolate-to-spherical transition at Si₂₇, there may be also a *reentry transition*, namely, spherical-to-prolate structural transition at Si₂₉ for neutral clusters. Note that for anionic cluster Si₂₀, our previous DFT calculation [at PBEPBE/6-31G(d) level] showed that the near-spherical cluster si29-3a is notably lower in energy than si29-1a.⁴⁹ Lastly, for Si₃₀, the PBE calculation indicates that the near-spherical cluster (si30-3a) is one of leading candidates for the global minimum whereas BLYP and B3LYP calculations suggest that the hypothetical Y-shaped three-arm cluster (si30-4a) is also a leading candidate.

The size range of $26 \le n \le 28$ deserves more discussion. As shown in Table I, isomers from all three (or four) families can be energetically highly favorable. The richness of lowlying clusters in this size range may offer additional evidence that a structural transition is likely to occur in this size range for neutral clusters. Note that for anionic clusters, two experimental groups^{49,57} have observed that the photoelectron spectra become featureless at n=27, suggesting coexistence of a number of low-lying isomers at this size.

In Table II, we list the calculated binding energy per atom (or cohesive energy) of the lowest-energy isomer of Si_n (n=21-30) as a function of the cluster size n. It shows that the binding energy per atom increases slowly as a function of n. Moreover, these binding energies are all greater than those [3.860 eV (PBE), 3.322 eV (BLYP), and 3.280 eV (B3LYP)] of the global-minimum Si₂₀ cluster reported by Rata *et al.*²⁰ and Zhu *et al.*²⁶ This trend of binding energy per atom as a function of n is consistent with the trend of measured dissociation energy (for cluster larger than Si₂₅) by Jarrold and Honea.⁵⁸ Note that si29-1a has the highest bind

TABLE III. The total-energy differences of a number of low-lying isomers with respect to the predicted lowest-energy isomer. All the lowest-energy clusters are highlighted using the bold-faced number **0.000**. The DFT calculations were performed based on the local-density approximation (LDA) implemented in the CPMD code(Ref. 55).

	CPMD/LDA	
	ΔE (eV)	
si21-1a	0.000	
si21-2a	0.150	
si22-1a	0.510	
si22-2a	0.000	
si22-2 a'	0.191	
si23-1a	0.710	
si23-2a	0.000	
si24-1a	0.346	
si24-2a	0.000	
si25-1a	0.000	
si25-2a	0.287	
si25-3a	0.170	
si25-3a'	0.535	
si26-1a	0.684	
si26-2a	0.370	
si26-2a'	0.412	
si26-3a	0.000	
si26-4a	1.116	
si27-1a	0.879	
si27-3a	0.000	
si27-4a	1.447	
si28-1a	0.593	
si28-2a	0.392	
si28-3a	0.000	
si28-3a'	0.300	
si28-4a	1.636	
si29-1a	0.461	
si29-3a	0.000	
si29-4a	1.580	
si30-3a	0.000	
si30-3a'	1.364	
si30-4a	1.342	

energy per atom among all clusters considered, reflecting its high stability discussed above. Finally, in Table III, we also list the total-energy differences calculated based on the localdensity approximation (LDA). In some early studies DFT calculations based on LDA were used to examine the relative stability of smaller-sized silicon clusters (e.g., in Ref. 17). Thus, Table III will be useful if the LDA is selected for stability analysis. We note that for $21 \le n \le 25$, LDA and GGA (PBE) give consistent prediction on the global minima whereas for $26 \le n \le 30$, LDA favors near-spherical isomers (family III).

In conclusion, we have studied structures and relative stability of four families of low-lying clusters in the size range of Si_{21} - Si_{30} . All low-lying clusters can be constructed by using certain types of generic structural motifs. The

physical basis for these "biased" constructions was derived from previous unbiased or constrained search of the global minima for medium-sized clusters by other researchers 20,32,40,41 and by us. $^{35-37}$ For some clusters, the candidate for the global minimum appears to be unique, e.g., si21-1a, si25-1a, and si29-1a, while for others, there are multiple candidates for the global minimum. For those clusters, as pointed out in Paper III (Ref. 37), determination of the true global minima requires high-level *ab initio* calculations, for example, quantum Monte Carlo calculation or coupledcluster calculation with a large basis set. The principal objective of this work, however, is not to determine the true global-minimum structure but to seek more generic structural features as well as patterns of structural evolution for the low-lying silicon clusters in the size range of $21 \le n \le 30$. As mentioned in the Introduction, the low-lying clusters in the size range of $13 \le n \le 22$ are most likely from two families, one containing the tricapped-trigonal-prism (TTP) Si₉ motif while another containing the six/six Si₆/Si₆ motif. In contrast, in the size range of $21 \le n \le 30$, particularly, in the size range of $26 \le n \le 28$, the low-lying clusters may be from four or even more families.

ACKNOWLEDGMENTS

We are very grateful to valuable discussions with Professor Th. Frauenheim, Professor K. A. Jackson, Professor B. C. Pan, and Professor L.-S. Wang. This work is supported by grants from the DOE (DE-FG02-04ER46164), NSF, the Nebraska Research Initiative, and by John Simon Guggenheim Foundation and the Research Computing Facility at University of Nebraska-Lincoln.

- ¹D. Tomanek and M. A. Schluter, Phys. Rev. Lett. **56**, 1055 (1986); Phys. Rev. B **36**, 1208 (1987).
- ²B. C. Bolding and H. C. Andersen, Phys. Rev. B **41**, 10568 (1990).
- ³K. Raghavachari, Phase Transitions **24–26**, 61 (1990).
- ⁴E. Kaxiras, Phys. Rev. Lett. **64**, 551 (1990).
- ⁵U. Rothlisberger, W. Andreoni, and P. Giannozzi, J. Chem. Phys. 96, 1248 (1992).
- ⁶B.-L. Gu, Z.-Q. Li, and J.-L. Zhu, J. Phys.: Condens. Matter **5**, 5255 (1993).
- ⁷I. H. Lee, K. J. Chang, and Y. H. Lee, J. Phys.: Condens. Matter **6**, 741 (1994).
- ⁸U. Rothlisberger, W. Andreoni, and M. Parrinello, Phys. Rev. Lett. **72**, 665 (1994).
- ⁹ A. Bahel and M. V. Ramakrishna, Phys. Rev. B **51**, 13849 (1995); M. V. Ramakrishna and A. Bahel, Chem. Phys. **104**, 9833 (1996).
- ¹⁰ J. C. Grossman and L. Mitas, Phys. Rev. Lett. **95**, 1323 (1995).
- ¹¹M. Menon and K. R. Subbaswamy, Phys. Rev. B 51, 17952 (1995).
- ¹²J. Song, S. E. Ulloa, and D. A. Drabold, Phys. Rev. B 53, 8042 (1996).
- ¹³ M. R. Pederson, K. Jackson, D. V. Porezag, Z. Hajnal, and Th. Frauenheim, Phys. Rev. B 54, 2863 (1996).
- ¹⁴ A. Sieck, D. Porezag, Th. Frauenheim, M. R. Pederson, and K. Jackson, Phys. Rev. A 56, 4890 (1997).
- ¹⁵ I. Vasiliev, S. Ogiit, and J. R. Chelikowsky, Phys. Rev. Lett. **78**, 4805 (1997).
- ¹⁶ K.-M. Ho, A. A. Shvartsburg, B. Pan, Z.-Y. Lu, C.-Z. Wang, J. G. Wacker, J. L. Fye, and M. F. Jarrold, Nature (London) **392**, 582 (1998).
- ¹⁷ B. Liu, Z.-Y. Lu, B. Pan, C.-Z. Wang, K.-M. Ho, A. A. Shvartsburg, and M. F. Jarrold, J. Chem. Phys. **109**, 9401 (1998).
- ¹⁸B. C. Pan, C. Z. Wang, D. E. Turner, and K.-M. Ho, Chem. Phys. Lett.

292, 75 (1998).

- ¹⁹ K. Jackson, M. Pederson, C.-Z. Wang, and K.-M. Ho, Phys. Rev. A 59, 3685 (1999).
- ²⁰I. Rata, A. A. Shvartsburg, M. Horoi, Th. Frauenheim, K. W. M. Siu, and K. A. Jackson, Phys. Rev. Lett. 85, 546 (2000).
- ²¹B. X. Li and P. L. Cao, Phys. Rev. A **62**, 023201 (2000).
- ²²Z.-Y. Lu, C.-Z. Wang, and K.-M. Ho, Phys. Rev. B 61, 2329 (2001).
- ²³S. N. Behera, B. K. Panda, S. Mukherjee, and P. Entel, Phase Transitions **75**, 41 (2002).
- ²⁴Q. Sun, Q. Wang, P. Jena, S. Waterman, and Y. Kawazoe, Phys. Rev. A 67, 063201 (2003).
- ²⁵X. Zhu and X. C. Zeng, J. Chem. Phys. **118**, 3558 (2003).
- ²⁶ X. Zhu, X. C. Zeng, Y. Lei, and B. Pan, J. Chem. Phys. **120**, 8985 (2004).
- ²⁷A. A. Shvartsburg, M. Horoi, and K. A. Jackson, *Spectroscopy of Emerg*ing Materials (Kluwer, Dordrecht, 2004).
- ²⁸J. R. Chelikowsky, Phys. Rev. Lett. **60**, 2669 (1988).
- ²⁹J. R. Chelikowsky and J. C. Philips, Phys. Rev. Lett. **63**, 1653 (1989).
- ³⁰E. Kaxiras and K. Jackson, Phys. Rev. Lett. **71**, 727 (1993).
- ³¹A. A. Shvartsburg, M. F. Jarrold, B. Liu, Z.-Y. Lu, C.-Z. Wang, and K.-M. Ho, Phys. Rev. Lett. **81**, 4616 (1998).
- ³²L. Mitas, J. C. Grossman, I. Stich, and J. Tobik, Phys. Rev. Lett. 84, 1479 (2000).
- ³³B.-X. Li, P.-L. Cao, and S.-C. Zhan, Phys. Lett. A **316**, 252 (2003).
- ³⁴S. Yoo, X. C. Zeng, X. Zhu, and J. Bai, J. Am. Chem. Soc. **125**, 13316 (2003).
- ³⁵S. Yoo, J. J. Zhao, J. L. Wang, and X. C. Zeng, J. Am. Chem. Soc. **126**, 13845 (2004).
- ³⁶S. Yoo and X. C. Zeng, Angew. Chem., Int. Ed. 44, 1491 (2005).
- ³⁷S. Yoo and X. C. Zeng, J. Chem. Phys. **123**, 164303 (2005).
- ³⁸A. Tekin and B. Hartke, Phys. Chem. Chem. Phys. 6, 503 (2004).
- ³⁹S. Goedecker, W. Hellmann, and T. Lenosky, Phys. Rev. Lett. **95**, 055501 (2005).
- ⁴⁰ A. Sieck, T. Frauenheim, and K. A. Jackson, Phys. Status Solidi B 240, 537 (2003).
- ⁴¹K. A. Jackson, M. Horoi, I. Chaudhuri, T. Frauenheim, and A. A. Shvartsburg, Phys. Rev. Lett. **93**, 013401 (2004).
- ⁴² K. A. Jackson, M. Yang, I. Chaudhuri, and T. Frauenheim, Phys. Rev. A 71, 033205 (2005).
- ⁴³M. F. Jarrold and V. A. Constant, Phys. Rev. Lett. **67**, 2994 (1991).
- ⁴⁴M. F. Jarrold, Science 252, 1085 (1991).
- ⁴⁵M. F. Jarrold and J. E. Bower, J. Chem. Phys. **96**, 9180 (1992).
- ⁴⁶ K. Fuke, K. Tsukamoto, F. Misaizu, and M. Sanekata, J. Chem. Phys. **99**, 7807 (1993).
- ⁴⁷ R. R. Hudgins, M. Imai, M. F. Jarrold, and P. Dugourd, J. Chem. Phys. 111, 7865 (1999).
- ⁴⁸ A. A. Shvartsburg, R. R. Hudgins, P. Dugourd, and M. F. Jarrold, Chem. Soc. Rev. **30**, 36 (2001).
- ⁴⁹ J. Bai, L.-F. Cui, J. Wang, S. Yoo, X. Li, J. Jellinek, C. Koehler, T. Frauenheim, L.-S. Wang, and X. C. Zeng, J. Phys. Chem. A **110**, 908 (2006).
- ⁵⁰ J. L. Elkind, J. M. Alford, F. D. Weiss, R. T. Laaksonene, and R. E. Smalley, J. Chem. Phys. **87**, 2397 (1987).
- ⁵¹Q. L. Zhang, Y. Liu, R. F. Curl, F. K. Tittel, and R. E. Smalley, J. Chem. Phys. 88, 1670 (1988).
- ⁵² M. F. Jarrold and J. E. Bower, J. Phys. Chem. **92**, 5702 (1988).
- ⁵³ A. D. Becke, Phys. Rev. A **38**, 3098 (1988); J. P. Perdew, Phys. Rev. B **33**, 8822 (1986).
- ⁵⁴ J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. **77**, 3865 (1996).
- ⁵⁵ J. Hutter, A. Alavi, T. Deutsch, M. Bernasconi, S. Goedecker, D. Marx, M. Tuckerman, and M. Parrinello, CPMD, Version 3.7.1, MPI für Festkörperforschung, Stuttgart, 2001.
- ⁵⁶ M. J. Frisch, G. W. Trucks, H. B. Schlegel *et al.*, GAUSSIAN 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.
- ⁵⁷ M. A. Hoffmann, G. Wrigge, B. V. Issendorff, J. Müller, G. Ganteför, and H. Haberland, Eur. Phys. J. D 16, 9 (2001).
- ⁵⁸M. F. Jarrold and E. C. Honea, J. Phys. Chem. **95**, 9181 (1991).