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Molecular dynamics simulations of nucleation of a supersaturated Lennard-Jones vapor in slit
nanopores are carried out. In this study we extend a previous work@K. Yasuoka, G. T. Gao, and X.
C. Zeng, J. Chem. Phys.112, 4279~2000!# in that the walls of the slit are treated as actual atomic
walls serving as both the confining solid surfaces and a thermostat. The walls are fixed in place in
a fcc lattice structure and wall atoms are subjected to a stiff biharmonic potential thereby bounded
to lattice sites. The two walls of the slit have an identical surface@fcc ~100!#, but different strength
of attractive interaction with the vapor particles—one is strongly adsorbing and another is weakly
adsorbing. Heterogeneous nucleation of the supersaturated vapor in the slit is investigated and
events of nucleus formation are monitored in real time. A comparison with the previous simulation
~using rigid structureless walls! leads to useful insight into the influence of the wall model to the
nucleus formation. In particular, it is found that although the adsorbed particles on the structureless
wall diffuse faster than those on the atomic wall, the rate of nucleus formation on the structureless
wall is actually about one order of magnitude lower. A detailed analysis of particle and
cluster-formation flux indicates that the rate of nucleus formation on the wall is more sensitive to the
kinetics of adsorption of gas particles onto the wall than the diffusion rate of adsorbed particles. The
higher flux of cluster formation on the atomic wall is apparently due to the higher rate of deposition
of monomers onto the wall. ©2001 American Institute of Physics.@DOI: 10.1063/1.1370057#

I. INTRODUCTION

Confined geometries affect the phase behavior of fluids.
In a slit nanopore, for example, an undersaturated vapor can
condense into a liquid if the liquid partially wets two walls of
the slit ~i.e., with a contact angle of less than 90°!. This is
known as capillary condensation.1–5 Even if the walls are
nonwetting, the nanoscale confinement can still lead to a
shift of the bulk binodal curve,6,7 thereby affecting the con-
dition of condensation. Our principal aim in this work is to
investigate heterogeneous nucleation of a supersaturated va-
por in between two planar solid walls: one strongly adsorb-
ing and one weakly adsorbing. A better understanding of the
nucleation at the molecular level is of great importance to
many engineering applications,8 e.g., separation processes
and gas field technology, among others. It is known that the
transition from a metastable supersaturated vapor to a ther-
modynamically stable liquid must proceed through a droplet-
formation process, namely, nucleation. Nucleation is a ther-
mally activated process and the rate of nucleus formation
depends exponentially on barrier height to nucleation. The
barrier is characterized by the free energy of formation of the

critical nucleus.9 Thus, nucleation dynamics can be sensitive
to a small change in the environmental conditions.

In our previous molecular dynamics simulation of vapor
nucleation in slit pores7 ~hereafter referred to as paper I!, the
location of the nucleus formation as well as the kinetic path
to the nucleus formation have been investigated as we varied
the strength of attraction between a rigid structureless wall
and vapor particles. It was found that this change in attrac-
tive interaction can strongly affect the process of nucleus
formation: if the attraction is weak~i.e., a weakly adsorbing
wall!, nuclei tend to form in the interior of the pore, whereas
if the attraction is strong~i.e., a strongly adsorbing wall! the
nucleus formation originates from two sources: surface dif-
fusion of adsorbed particles on the wall and the deposition of
clusters formed in the interior of the pore. An appreciable
enhancement of the rate of nucleus formation was found in
all nanopores studied. The observation of surface diffusion
of adsorbed particles as one of the important mechanisms in
the nucleus formation is consistent with the experimental
finding by Maa and co-workers.10–12.

In our previous simulation~paper I! the condensation
heat near the walls are removed simply by scaling velocity of
the target particles because the rigid structureless walls can-
not directly conduct the heat. In this work we extend the
previous study by using a more realistic wall model. We
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replace the rigid structureless walls by thermostatted atomic
walls. The walls are fixed in place in a fcc lattice structure by
a combination of the restoring tethering forces and constraint
mechanism. The restoring potential confines wall atoms to
their lattice sites at the equilibrium state. Since the walls are
thermostatted, the latent heat generated during nucleus for-
mation can be dissipated through the walls, like in real-world
experiments.10–14Moreover, the atomic-wall model allows a
more realistic simulation of the surface diffusion process of
adsorbed particles toward nucleus formation. The two sur-
faces of the pore are identical in structure, but have different
strengths of the attractive interaction with the vapor par-
ticles: one is a strongly adsorbing wall and the other is a
weakly adsorbing wall. The rate of nucleus formation is
evaluated by monitoring the molecular dynamics configura-
tions of the system in real time and by identifying the short-
lived nucleus-formation events. To gain more insight on the
wall-model effects to the nucleus formation the results of the
present study~using the atomic-wall model! are compared
with those in paper I~using the smooth-wall model!. For this
purpose, all calculations for the smooth-wall system were
reexamined using the exactly same simulation conditions as
for the atomic-wall system.

II. SYSTEM AND SIMULATION METHOD

A. Vapor

The binary vapor mixture consists of 4320 target and
4320 carrier-gas particles. As in paper I, the carrier gas is
used to avoid unnatural energy exchanges in the process of
nucleus formation and to release the latent heat generated
during the nucleus formation. To this end, the carrier gas is
connected to a hypothetical heat bath by using a Nose´–
Hoover ~or Berendsen! thermostat to regulate the tempera-
ture of the system.7

The target–target interaction potentialU tt(r ) is a
Lennard-Jones~LJ! type, i.e.,

U tt~r !54eF S s

r D 12

2S s

r D 6G , ~1!

wherer is the interparticle distance. For argon, the LJ poten-
tial parameters aree50.0103 eV ands53.405 Å. The par-
ticle mass m56.63310226kg. The potential between
target–carrier and carrier–carrier particles is a soft-core type
~no interparticle attraction!,

U tc~r !5Uc~r !54eS s

r D 12

. ~2!

The soft-core potential parameterse ands, and the carrier-
gas particle massm are set to be the same as those of target
particles. Hereafter we uses, e, andm as the units of length,
energy, and mass, respectively. The unit of time is thent
5Ams2/e52.15 ps. In the molecular dynamics~MD! simu-
lation, the time step ists50.002 325 5t55 fs and the cutoff
distance for particle interaction is 4.5s. The interior volume
of the pore is 72s372s336s, and thus the number density
of target particles at the initial state isrv52.315
31022s23, the same as used in the study of homogeneous
nucleation of a bulk vapor.15

B. The solid walls

A wall of the slit consists of eight layers of a face-
centered cubic~fcc! ~100! lattice of 25 600 atoms~3200 at-
oms per layer!. The number density of wall atoms, given the
surface area 72s372s, is thenrw50.69s23. In order to
efficiently simulate the heterogeneous nucleation, we let one
wall of the slit be strongly adsorbing~wall 1! while the op-
posing wall is weakly adsorbing~wall 2!. For this purpose,
atoms of wall 1 have an energy parameterew1

5e while at-
oms of wall 2 haveew2

50.1e. A schematic plot of the simu-
lated atomic- and smooth-wall systems are shown in Figs.
1~a! and 1~b!, respectively.

The energy and size parameters of wall–vapor potential

FIG. 1. A schematic plot of the simulated~a! atomic-wall and~b! smooth-
wall system. The two types of circles in the middle region denote the target
and carrier-gas particles. The open~left! and dark~right! circles for the
atomic-wall model and the white~left! and dark~right! areas for the smooth-
wall model represent the weakly and strongly adsorbing walls. They axis is
normal to the page.~c! A schematic plot of the real simulation cell em-
ployed in theDL–POLY code. During the simulation, the wall itself can play
a dual role, i.e., both wall 1 and wall 2. If a vapor particle~circled 1! is
within a cutoff distance 4.5 from the left surface of the central wall, the
particle will experience a potential field of wall 1. If a vapor particle~circled
2! is within a distance 4.5 from the right surface of the wall, the particle will
experience a potential field of wall 2. Because of the potential cutoff dis-
tance 4.5, effectively, vapor particles can only interact with four layers of
wall at most. Thus, the simulation cell is computationally almost equivalent
to that displayed in~a! but free of the contact-heat-resistance problem be-
cause the wall is homogeneous.
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are given by the Lorentz–Berthelot combining rules, i.e.,
ew,gas5Aewegas, and sw,gas5(sw1sgas)/2. Thus, ew1 ,gas

5e ~wall 1!, ew2 ,gas5(0.1)1/2e ~wall 2!, andsw5sgas5s,
where the subscript gas stands for both target and carrier-gas
particles. The energy and size parameters of wall–carrier gas
potential which is a soft-core type can be given in a similar
fashion.

To simulate thermostatted atomic walls we adopted a
method developed previously by several groups.16–19 Spe-
cifically, the walls are fixed in place of a fcc lattice structure
by a combination of a tethering force and a constraint
mechanism. To restrict wall atoms to be near their nominated
lattice sites, the wall atoms, besides of LJ potential, are also
subjected to a tethering, biharmonic potential of the form

U teth~r !5
1

2
kr21

1

4
k8r 4. ~3!

Under this restoring potential the wall atoms vibrate only
around their lattice sites. In the present MD simulations, no
near-wall target-particle velocity scaling is needed to model
heat conduction through the walls. The atomistic vibration
allows the heat conduction through the walls in a more natu-
ral way.

In Eq. ~3!, we chose the valuesk5150 andk85200 after
examining a number ofk andk8 values~including the values
k850, andk51.5; 15; 150, etc!. With the selected values of
k andk8 we found the wall state is well behaved during the
simulation. Before the vapor and wall are brought into con-
tact, the wall is equilibrated first at a reduced temperature
T50.67 ~the reduced temperature is in units ofe/kB , where
kB is the Bolzmann constant! with using a slab boundary
condition in ~x,y! directions.

C. Molecular dynamics simulation

The MD simulations of vapor nucleation were carried
out on a Fujitsu VPP700 vector computer by using a
DL–POLY–2.11 package.20 Since this software package was
not developed specifically for vector computers like
VPP700, some optimizations ofDL–POLY code for the vector
computer have been undertaken. Significant performance en-
hancements have been achieved and the results have been
reported elsewhere.21

In practice, one can straightforwardly employ a simula-
tion cell, as shown in Fig. 1~a! into theDL–POLY code. How-
ever, this is not the most efficient way to maximize the usage
of the given wall size~25 600 atoms! because the wall size
has to be split into two: one for wall 1 and one for wall 2. As
such, only one-half of the wall size~i.e., wall 1 with 12 800
atoms! would be efficiently used in the simulation of hetero-
geneous nucleation. Moreover, a problem of contact-heat re-
sistance~between wall 1 and periodic images of wall 2, or
vice versa! can be a concern.18,19 In reality, we implemented
a simulation technique such that the simulation cell is com-
putationally nearly the same as that displayed in Fig. 1~a!.
The simulation cell includes only one eight-layer wall at the
center with the normal direction of the wall along thez axis
@see Fig. 1~c!#. Since the periodic boundary conditions are
applied in all three spatial directions, the nearest

periodic images of the wall will play the role of opposing
walls. In the course of the simulation, the wall itself can play
a dual role, that is, both wall 1 and wall 2. If a vapor particle
is within a cutoff distance 4.5 from the left surface of the
central wall the particle will experience a potential field of
wall 1. Similarly, a vapor particle will experience a potential
field of wall 2 if the particle is within a distance 4.5 from the
right surface of the wall. Because of the potential cutoff dis-
tance 4.5, effectively, vapor particles can only interact with
four layers of wall at most, regardless whether the wall acts
as wall 1 or wall 2. In this way, the simulation cell imple-
mented in theDL–POLY code is computationally nearly iden-
tical to that displayed in Fig. 1~a!, but free of the contact-
heat-resistance problem because the wall is a homogeneous
single-component wall.

The simulation cell dimensions (Lx ,Ly ,Lz) are assigned
the following values:Lx5Ly572s, Lz544.3s, where Lz

includes the thickness of the wall. After separate equilibra-
tion, the vapor and the solid walls are brought together as a
whole system. The vapor, first equilibrated atT51.50, un-
dergoes a temperature quench to a supersaturated state atT
50.67 and then is brought into contact with the solid wall
~equilibrated atT50.67!. The entire system then evolves at
the given temperature for about 100t.

III. SIMULATION RESULTS

For the purposes of analysis we describe below the re-
sults for the ‘‘atomic-wall model’’ along with the reanalyzed
results for the ‘‘smooth-wall model.’’ For both wall-model
systems the corresponding calculations were performed at
the same simulation conditions.

FIG. 2. Four sequential snapshots of the MD simulation. The carrier-gas
particles are not shown. The slit is slightly rotated around thex axis so that
target-particle adsorption on the strongly adsorbing wall~dark! can be seen.
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A. Snapshots

In Figs. 2~a!–2~d!, four sequential MD configurations of
the system are displayed. The first snapshot corresponds to
the intial state, right after the vapor and the solid walls are
brought into contact. The next three snapshots in Figs. 2~b!–
2~d! show the evolution of the system at the moment oft
5Nsts, 3Nsts , and 4Nsts , respectively, whereNs55000.
The carrier-gas particles are not shown in the figures. It can
be seen from Fig. 2 that nucleation events take place mainly
near the strongly adsorbing wall~wall 1!. As a result, the
local target-particle density near wall 1 is much higher than
the overall mean density.

B. The density and temperature profiles

For the sake of numerical analysis we divided the inner
space between the walls of the slit into several sections in the
z direction, each section having a width of about ones.
Numerical data, e.g., the particle positions and velocities in
each section, are then collected. Moreover, in each section,
the local density and temperature at each time step for both
the vapor and wall are evaluated. In Figs. 3~a!–3~c! the den-
sity profiles~in thez direction! of the target, carrier-gas, and
wall particles at a steady state are presented, respectively~for
the atomic-wall model!. In Figs. 4~a!–4~c! the corresponding
temperature profiles of the target, carrier-gas, and wall par-
ticles at the same steady state are shown. One can see that
the density of the target particles near the strongly adsorbing
wall is much higher~about five times larger! than the aver-

age gas density@Fig. 3~a!#. The local temperature of the tar-
get particles@Fig. 4~a!# is also higher near the wall, indicat-
ing that the target particles are moving faster near the
strongly adsorbing wall.

For the carrier gas, the number density distribution in the
z direction is fairly uniform@Fig. 3~b!#. The local tempera-
ture of carrier-gas particles@Fig. 4~b!#, however, is higher in
the middle region of the pore. As in real nucleation experi-
ments, the primary role of the carrier gas is to remove the
latent heat, especially in the middle region of the pore.22,23

This heat, being pumped away from the system by both the
carrier gas and the walls, is mainly the latent heat generated
due to the formation of nucleus of target particle. The heat
transfer via the carrier-gas particles takes place outside the
nucleus of the target particle since the carrier-gas particles do
not like to mix with the target particles in the nucleus.

In Figs. 3~c! and 4~c! the local density and temperature
of the thermostatted atomic walls are shown. Near the wall
surfaces, the local temperature of both weakly and strongly
adsorbing walls is higher than the averaged temperature of
the wall, because of the dynamical collisions between the
wall and target particles at the wall surface. In the course of
simulation, the solid walls are thermostatted to allow the heat
dissipated through the walls, as that in real experiments.
Thus, as shown in Fig. 4~c! the local temperature in the
middle region of the walls is lower than the average.

In Figs. 5~a! and 5~b! the density and temperature pro-
files of the target particles at a steady state are presented for

FIG. 3. The density profiles in thez direction at a steady state for the~a!
target,~b! carrier-gas, and~c! wall particles~the atomic-wall model!.

FIG. 4. The temperature profiles in thez direction at a steady state for the
~a! target,~b! carrier-gas, and~c! wall particles~the atomic-wall model!.
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the smooth-wall model. In comparison with the same situa-
tion for the atomic-wall model@Figs. 3~a! and 4~a!#, one can
see that the overall density and temperature are lower.

C. The nucleation rates

The steady-state nucleation rate provides a measure of
the dynamics of nucleus~or cluster! formation. In general,
the nucleation rate is defined as the number of nuclei appear-
ing per unit time and per volume. To evaluate the rate, we
used the same method as in the case of homogeneous
nucleation.15 It is worth noting that the cluster definition fol-
lows that of Stillinger’s cluster,24 that is, a group of LJ par-
ticles can be considered as a cluster if every particle has at
least one nearest neighbor within a distance of less than 1.5
~a value close to the first minimum of the pair correlation
function of LJ liquid near the triple point!.

In Figs. 6~a! and 6~b!, the time development of the num-
ber of clusters larger than a critical size are shown for the
atomic-wall and smooth-wall systems, respectively. It is
found that the nucleation rate for the atomic-wall system is
much faster than in the smooth-wall system. Moreover, the
number of critical clusters in the atomic-wall system is larger
than that in the smooth-wall system. The calculated rates of
nucleation for both atomic-wall and smooth-wall systems are
presented in Table I, where the nucleation rate at the steady-
stateJ is defined as the number of nuclei~larger than the
critical nucleus! generated per unit volume per unit time. In
the simulation the time evolution of the cluster-size distribu-
tion is recorded. Within a certain time window~typically,
10–100t, depending on the wall model!, the system is in a
quasisteady state. The rate is then determined by counting
the number of clusters larger than the threshold. In Table I

the estimated upper-(JS) and lower-bound (JV) values of the
rate are presented for both the atomic-wall and smooth-wall
systems.

Note that the nucleation rate for the atomic-wall system
is about one order of magnitude higher than that for the
smooth-wall system at the same condition, that is, the same
temperature and vapor density. In other words, the use of a
smooth-wall model underestimates the rate of heterogeneous
nucleation. This indicates that the nucleation dynamics is
quite sensitive to the wall model. A motion picture of the
molecular dynamics can offer an insightful comparison of
the nucleation process near the strongly adsorbing~atomic or
smooth! wall. It is evident that the adsorption and desorption
processes take place in a shorter period of time in the atomic-
wall system.

D. Target-particle flux and diffusion

One important mechanism of cluster formation in the
heterogeneous nucleation10–14 is the surface diffusion of ad-
sorbed particles on the strongly adsorbing surface. This was
demonstrated in paper I using the smooth-wall system. Here,
a similar analysis of target-particle flux and diffusion is un-
dertaken. The results are then compared with those of
smooth-wall system. We used the same notations of flux as
in paper I.

FIG. 5. ~a! The density and~b! temperature profile at a steady state for the
target particles~the smooth-wall model!. FIG. 6. The time development of the number of clusters larger than a critical

size for the~a! atomic-wall and~b! smooth-wall system.

TABLE I. The nucleation rates in the atomic-wall and smooth-wall system.

Wall model JS JV

Atomic 1.031024 2.831026

Smooth 1.531025 4.231027
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In Figs. 7~a! and 7~b! the time evolution of the local
density and the monomer density~excluding all clusters!
within two selected subdivisions of space between the walls
are displayed for the atomic-wall and smooth-wall systems.
One subdivision is the near-surface region (34,z,36) and
another is in the middle region of the pore (16,z,18).
Near the strongly adsorbing wall, regardless of the atomic-
wall or smooth-wall model, the local density of target par-
ticles always increases with time. However, in the atomic-
wall system the nucleation process is much faster. It is
evident that the density–time development in the two se-
lected subdivisions can be more easily distinguished for the
atomic-wall system.

Next, we calculated the target-particle flux. As in paper I
the target particles in the system are divided into four
groups: group 1 includes all the monomers in the interior of
the pore; group 2 includes all the monomers near the
strongly adsorbing wall; group 3 includes all the clusters
~excluding monomers! near the strongly adsorbing wall;
group 4 include all the clusters~excluding monomers! in the
interior of the pore. The net fluxJi j can be defined as the rate
of particle transformation from groupi to group j ~i, j 51
24 andiÞ j !. In Figs. 8~a! and 8~b! the six flux curves are
presented for the atomic-wall and smooth-wall system, re-
spectively. TheJ12 and J13 describe adsorption kinetics of
monomers toward the strongly adsorbing wall in the form of
monomers and clusters, respectively. In the atomic-wall sys-
tem, the dominant flux isJ12 andJ23 among the six. In par-
ticular, J23 describes kinetics of the cluster formation on the
wall via surface diffusion of adsorbed monomers. TheJ43

describes the kinetics of cluster formation~near the strongly
adsorbing wall! directly from the deposition of clusters al-
ready formed in the interior of the pore. This flux is the
smallest one compared to the three fluxes mentioned above.

A possible explanation is that the clusters formed in the in-
terior of the pore are mostly short lived. In contrast, in the
smooth-wall system, the three fluxes,J12, J13 and J23, are
comparable in magnitude with each other, and with another
flux as well.

Finally, we evaluated the diffusion coefficient of target
particles in the two selected subdivisions inside the pore. The
diffusion coefficient is obtained by calculating the mean-
square displacement^@r (t)2r (0)#2& of the target particles
in the subdivision as a function of time. In Figs. 9~a! and

FIG. 7. The time development of the target-particle number density for the
~a! atomic-wall and~b! smooth-wall system.

FIG. 8. The time development of various target-particle fluxes for the~a!
atomic-wall and~b! smooth-wall system.

FIG. 9. The diffusion coefficient of the target particles for the~a! atomic-
wall and ~b! smooth-wall system. The squares and circles represent the
diffusion near the strongly adsorbing wall and in the interior of the pore,
respectively.
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9~b! the diffusion coefficient is plotted as a function of time
for the atomic-wall and smooth-wall system, respectively.
The circles in Fig. 9 represent the particle diffusion in the
interior of the pore while the squares represent the particle
diffusion near the strongly adsorbing wall. In the atomic-wall
system, it is found that target particles diffuse faster in the
interior of the pore. This is consistent with the result that the
local temperature of the target particles is higher in the
atomic-wall system than that in the smooth-wall system@see
Fig. 4~a! and Fig. 5~b!#. On the other hand, near the strongly
adsorbing smooth wall, target particles diffuse faster. This is
consistent with the result that the local density of the target
particles is much lower in the smooth-wall system than that
in the atomic-wall system@see Fig. 3~a! and Fig. 5~a!#. How-
ever, even with faster diffusion of target particles near the
wall the nucleus formation is appreciably slower in the
smooth-wall system, yielding a smaller local density near the
strongly adsorbing wall~see Fig. 7!.

IV. CONCLUSIONS

We have carried out molecular dynamics simulation to
investigate a heterogeneous nucleation process of supersatu-
rated Lennard-Jones vapor in slit nanopores. In this study we
extend paper I by treating the walls of slit as actual atomic
walls serving as both the confining solid surfaces and a ther-
mostat. As a result, the latent heat generated during nucleus
formation can be dissipated through the walls, like in real-
world experiments. Moreover, the atomic-wall model allows
a more realistic simulation of the surface diffusion process of
adsorbed particles toward nucleus formation.

A comparison with the previous study in paper I offers
useful insight on the effects of the wall model to the nucleus-
formation dynamics. It is found that the adsorbed particles
on the smooth wall diffuse faster than those on the atomic
wall. However, the rate of nucleation is much faster in the
atomic-wall system than in the smooth-wall system when
both systems are at the same condition, that is, the same
temperature and vapor density. In fact, the nucleation rate in
the atomic-wall system can be one order of magnitude higher
at the condition studied. In other words, the use of a smooth-
wall model can appreciably underestimate the rate of hetero-
geneous nucleation. Furthermore, motion pictures of molecu-
lar dynamics simulation provide a direct comparison of the
nucleation process near the strongly adsorbing atomic and
smooth walls. It is evident that the adsorption and desorption
processes take place within a very short period of time in the
atomic-wall system. Although in both wall-model systems
the local density of target particles near the strongly adsorb-
ing wall increases with time, the density–time development
can be more easily distinguished in the atomic-wall system.
All these results indicate that heterogeneous nucleation dy-
namics can be quite sensitive to the wall model.

We have also analyzed the target-particle flux and target-
particle diffusion in the slit. The results are compared with
those of the smooth-wall system. It is found that the fluxJ12

~flux of monomers from interior of the slit toward the
strongly adsorbing wall! andJ23 ~flux of cluster formed from
surface diffusion of adsorbed monomers! in the atomic-wall
system are much higher than those in the smooth-wall sys-

tem. Moreover, among the six flux considered,J12 and J23

are much higher than others in the atomic-wall system
whereas in the smooth-wall systemJ12 and J23 are compa-
rable to others. Based on the flux analysis, we therefore con-
clude that the higher nucleation rate in the atomic-wall sys-
tem appears due mainly to the greater magnitude of fluxJ12

andJ23. It is also worth noting that in the atomic-wall sys-
tem clusters formed in the interior of the slit are shorter
lived. Consequently, the corresponding flux that describes
the flux of clusters from the deposition of clusters already
formed in the interior of the pore is the smallest one among
all flux considered. The diffusion coefficient is calculated to
examine effects of the wall model on the particle diffusion.
In the atomic-wall system, the target particles diffuse faster
in the interior of the pore. This is because the local tempera-
ture of the target particles is higher in that system. In the
smooth-wall system, in contrast, target particles diffuse
faster near the strongly adsorbing wall; yet the rate of
nucleus formation is lower. Thus, we can conclude that the
rate of nucleus formation on the wall is more sensitive to the
kinetics of adsorption of gas particles than the diffusion rate
of adsorbed particles on the wall, as far as for the wall sys-
tems considered here.
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