University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

US Department of Energy Publications

U.S. Department of Energy

1-2003

Murdock, Nebraska, Groundwater Flow and Transport Modeling in Support of Long-Term Monitoring

Applied Geosciences and Environmental Management Section Environmental Research Division, Argonne National Laboratory

Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub

Part of the Bioresource and Agricultural Engineering Commons

Laboratory, Applied Geosciences and Environmental Management Section Environmental Research Division, Argonne National, "Murdock, Nebraska, Groundwater Flow and Transport Modeling in Support of Long-Term Monitoring" (2003). *US Department of Energy Publications*. 19. https://digitalcommons.unl.edu/usdoepub/19

This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Murdock, Nebraska, Groundwater Flow and Transport Modeling in Support of Long-Term Monitoring

prepared by Environmental Research Division Argonne National Laboratory

Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy

United States Department of Agriculture Work sponsored by Commodity Credit Corporation, United States Department of Agriculture

About Argonne National Laboratory

Argonne is managed by The University of Chicago for the U.S. Department of Energy under contract W-31-109-Eng-38. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov.

Availability of This Report

This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728 reports@adonis.osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or The University of Chicago.

Murdock, Nebraska, Groundwater Flow and Transport Modeling in Support of Long-Term Monitoring

by

Applied Geosciences and Environmental Management Section Environmental Research Division, Argonne National Laboratory

January 2003

Murdock, Nebraska Groundwater Flow and Transport Modeling in Support of Long-Term Monitoring

January 2003

MURDOCK, NEBRASKA GROUNDWATER FLOW AND TRANSPORT MODELING AND LONG-TERM GROUNDWATER QUALITY MONITORING RECOMMENDATIONS

Fall 2002 Assignments

- Update all models to MODFLOW-2000
- Re-calibrate original Murdock steady-state groundwater flow model to November 25, 1998 observed water levels (Phase 1 Hydrology)
- Determine time when climatologic/hydrologic regime changed in eastern Nebraska. Groundwater levels observed in 2002 are significantly lower than all values observed previously (1997-1999). <u>Palmer Hydrologic Drought Index</u>
- Determine appropriate groundwater level data for calibration of new (Phase 2) groundwater flow model representing current hydrologic regime (avg. of 2002 observations)
- Re-evaluate/recalculate initial CCl₄ concentrations for MT3D-99 solute transport model calibration - 1996/97 concentration data. Too much CCl₄ mass in eastern portions of original transport model
- Re-calibrate Murdock MT3D-99 solute transport model to November 1999 observed concentrations using revised initial 1996/97 concentrations
- Include historical average concentrations at S2 as a constant concentration in transport model
- With re-calibrated solute transport model simulate CCl₄ dissolved phase transport from December 12, 1996 to December 31, 1999 with Phase 1 groundwater flow model.
- Simulate CCl₄ solute transport from January 1, 2000 to December 12, 2012 with Phase 2 groundwater flow model and CCl₄ initial conditions set at December 31, 1999 simulated values (i.e., Phase 1 model ending concentrations)
- Plot simulated CCl₄ concentration time series for all trigger action wells, and non-trigger action wells monitored during 2002 for all layers inclusive in each well screened interval
- Set the trigger action level to the maximum simulated screen interval concentration for each trigger action well
- Present results (graphs/tables but no written report) end of January 2003

Calculated vs. Observed Head : Steady state

Calibration to November 25, 1998 groundwater water levels (original modeling)

Num.Points : 21 Max. Residual: -1.462842 (ft) at S1/S1 Min. Residual: 0.06526367 (ft) at D2/D2 Residual Mean : 0.004922805 (ft) Absolute Residual Mean : 0.5984584 (ft)

Standard Error of the Estimate : 0.1549392 (ft) Root mean squared : 0.6929269 (ft) Normalized RMS : 4.181816 (%)

Murdock, NE Groudwater Levels

-

Agricultural Divisions in Nebraska – Murdock is in Division 6

- 7.0 - 7.0 - 6.0 - 8.0

922

515

910

1905

005

12 95

Calculated vs. Observed Head : Steady state

Num.Points : 21 Max. Residual: -1.27854 (ft) at S3/S3 Min. Residual: -0.04317871 (ft) at WP44/WP44 Residual Mean : 0.01155576 (ft) Absolute Residual Mean : 0.5081736 (ft)

Standard Error of the Estimate : 0.1360946 (ft) Root mean squared : 0.6087433 (ft) Normalized RMS : 4.921126 (%)

Legend S **CPT** Aquifer Sample Soil Boring * Monitoring Well 30-36" 40-46 Sample Depths 50-56 Carbon Tetrachloride 680 300 $(\mu g/L)$ ND Not Detected ND 30-36' ND 30-36" ND 30-36 # 40-46 CCl₄ value > 1000 ND 40-46" 3200 40-46' 50-56 ND 50-56" 82 50-56 5 CCl₄ value > 500 County Road 5 ND 30-36 ND 30-36" 93 40-46 1996-97 sampling results 110 40-46 41-42' ND 130 48-52 Kansas Street 370 50-56 51-52' 260 First Street Womin clorado Street 55-56" 7800 64-65" 520 S Allantic Street Vebraska Stre lowa Street 70-71 38 43-49' ND 43-49' ND Second Street ND 50-56' -50-56 9 50-56' 130 ND 60-66' 57-63' 27 57-63' 15 ND 67-73 11 60-66" 64-70' ND 64-70 71-77 22 S 64-70' ND ND73.5-79.5' ND 67-73 S S S ND 43-49 ND 74-80" ND 81-87 ND 43-49 580 50-56' 53-54' 6 ND 50-56' 300 57-63 58-59'7 Third Street ND 57-63 ND 64-70' ND 64-70' 53-54' 32 ND 60-66' 1500 63-64 ND 67-73 76-77 170. 50-56 ND 74-80' 57-83 ND 81-87 84-70 Fourth Street ę ND 50-56" 4 ND 71-77 ND 50-57.5' ND 57-63 ND 58.5-66' ND 64-70' 53-54" ND ND 67-73 ND 71-77 58-59 3600 ND 74-80' 77-78 12 ND 78-82' Fifth Stree 55-56 37 69-70 ND Former **USDA/CCC Site** 250 500 0 Scale in Feet

Initial CCl4 concentration distribution for transport model calibration

Murdock, NE

d ChCl3
an
CCI4
1
Program
Monitoring
lurdock

								_										-	_		_	-					_			-		
Col	27	35	40	42	42	47	38	34	35	34	42	42	38	40	46	34	35	57	51	49	54	46	42	49	40	34	57	54	51	53	46	34
Row	61	52	49	46	47	52	40	55	52	38	47	46	40	49	36	38	52	34	28	25	31	36	46	25	49	55	34	31	28	29	36	55
Layer	2	e	4	4	4	4	2	2	2	9	9	9	7	2	2	4	4	80	8	8	6	10	10	11	1	11	12	12	12	12	12	12
	37	170	32	6	9	11	680	3600	2200	130	73	27	300	1200	800	15	120	6	3200	110	93	520	22	370	12	12	2	930	82	260	36	80
CCI4 ug/L CLP														-																		
Type	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	CPT	MW
0	966	266	9661	266	9661	266	697	1996	266	266	1996	266	266	1996	1996	697	697	197	266	1997	1997	1996	266	997	1996	1996	661	100	997	1996	1996	1996
Date	12/11/	3/11/1	12/10/	3/11/1	12/12/	3/10/1	2/19/1	12/12/	3/11/1	2/17/1	12/12/	3/11/1	2/19/1	12/10/	12/12/	211711	3/11/1	3/6/1	3/5/1	3/5/1	3/5/1	12/12/	3/12/1	3/5/1	12/10/	12/12/	3/6/1	3/5/1	3/5/1	12/11/	12/12/	12/10/
point ev. MSL)	6.26	8.96	2.45	1.25	0.51	4.87	9.82	3.62	1.96	8.60	5.51	4.25	2.82	2.45	1.73	1.60	4.96	3.20	0.96	0.81	9.23	2.73	0.25	0.81	9.45	4.62	3.20	2.23	0.96	0.62	6.73	11.62
Mid EI (ft A	122	122	123	123	123	122	122	122	122	122	122	122	122	122	122	122	121	122	122	122	121	121	121	121	120	120	121	121	121	121	120	120
Midpoint Depth (ft)	55.5	53.0	53.5	53.0	53.5	63.0	53.0	58.5	60.0	53.0	58.5	60.0	60.0	63.5	55.5	60.0	67.0	43.0	43.0	43.0	43.0	64.5	74.0	53.0	76.5	77.5	53.0	50.0	53.0	51.5	70.5	80.5
Depth To (ft)	56	56	54	56	54	99	56	59	63	56	59	63	63	64	56	63	70	46	46	46	46	65	77	56	17	78	56	52	56	52	71	83
5.5																																
Depth From (ft)	55	50	53	50	53	60	50	58	57	50	58	57	57	63	55	57	64	40	40	40	40	64	71	50	76	77	50	48	50	51	70	78
ti - o	1.76	96	5.95	4.25	4.01	7.87	2.82	2.12	1.96	1.60	4.01	4.25	2.82	5.95	7.23	1.60	1.96	6.20	3.96	3.81	2.23	7.23	4.25	3.81	5.95	2.12	6.20	2.23	3.96	2.12	7.23	2.12
asuring levatior t AMSL	128	128	128	128	128	128	128	128	128	128	128	128	128	128	127	128	128	126	126	126	126	127	128	126	128	128	126	126	126	126	127	128
W																																
hid ۲ (f)	87 62	144.55	550.47	700.31	363.85	128.82	018.84	59.45	144.55	40.47	363.85	700.31	118.84	550.47	216.47	140.47	144.55	324.11	340.94	773.60	483.03	216.47	700.31	773.60	550.47	259.45	324.11	483.03	340.94	562.33	216.47	266.47
0	0	14	15	17	16	14	3 20	1	1	3 21	16	1	3 20	15	22	3 21	11	23	3 26	2	2	2 22	1 17	3 27	1	1 12	3 20	1 2	3 26	1 2!	2	1
X piu	188 73	89.84	334.21	330.67	104 41	186.31	711.18	508.54	589.84	544.83	304.4	330.67	711.18	334.2	100.52	544.83	589.84	379.03	372.48	259.06	510.5	100.52	930.67	259.06	834.2	508.54	579.00	510.51	372.48	477.3	100.52	514.09
	3	3.0	36	36	30	4	3	n co	e e	33	36	36	3	3	4	3	3	46	4	4	4	4	3	4	3	3	4	4	4	4	4	3
G	2 4		0	1	0	1 0	23	90		24	2	1	53	0	60	54	12	44	16	1	15	62	51	47	19	90	14	15	46	25	29	106
	SPC	SBS	SB	SBB	and and a	SB4	SB	SBC	and s	S.B.	SBS	SB	SB	SB	SBS	SBS	SBS	SBA	SB	SB	SB	SBS	SB	SB	SB	SBC	SBA	SB	SB	SB	SB:	MW

Murdock groundwater model layer structure

÷

Initial CCL concentrations for MT3D-99 transport modeling by model layer

1996/97 CCl₄ concentrations mapped to model grid structure for initial conditions

-

November 1999 transport model calibration target concentrations

Num. Points : 24 Max. Residual: 230.3179 (ug/L) at SB71M/SB71M Min. Residual: 0.07512894 (ug/L) at SB63S/SB63S Residual Mean : -0.5727512 (ug/L) Absolute Residual Mean : 69.42724 (ug/L)

Standard Error of the Estimate : 20.49186 (ug/L) Root mean squared : 98.27717 (ug/L) Normalized RMS : 5.280879 (%)

Revised transport model calibration results

1950 SB68M Observed = 1861.00 Calculated = 1867.95 Calculated vs. Observed Concentration : Time = 1056 days SB71S Observed = 960.00 Calculated = 988.55 950 Observed Concentration (ug/L) SB69D Observed = 244,00 Calculated = 233.64 Num.Points : 24 Max. Residual: -154.5781 (ug/L) at SB72S/SB72S Min. Residual: -0.009305454 (ug/L) at SB65S/SB65S Residual Mean : -11.70134 (ug/L) Absolute Residual Mean : 27.50025 (ug/L) ŝ 0961 Calculated Concentration (ug/L) 950 09-

Standard Error of the Estimate : 9.522373 (ug/L) Root mean squared : 47.14297 (ug/L) Normalized RMS : 2.533207 (%)

Model	Stratigraphic Unit	Effective Porosity ¹	Total Porosity ²	Longitudinal Dispersivity ft	Transverse Dispersivity R	Vertical Dispersivity ft	Bulk Density Ib/ft ³	K _d R ³ /Ib	K _d L/µg	Retardation Factor
Layer 1	Silt/Clay	0.32	0.39	34.8	1.0	0.0	101,0	7.337E-03	4.580E-10	2.90
Layer 2	Sand	0.25	0.40	34.8	1.0	0.0	5.99.3	7.654E-03	4.778E-10	2.90
Layer 3	Sand	0.24	0.43	34.8	1.0	0.0	94.6	8.636E-03	5.391E-10	2.90
Layer 4	Sand	0.25	0.43	34.8	1.0	0.0	94.6	8.636E-03	5.391E-10	2.90
Layer 5	Sand	0.27	0.40	34.8	1.0	0.0	98.9	7.685E-03	4.797E-10	2.90
Layer 6	Sand	0.28	0.42	34.8	1.0	0.0	95.3	8.374E-03	5.227E-10	2.90
Layer 7	Sand	0.28	0.39	34.8	1.0	0.0	6.99	7.417E-03	4,630E-10	2.90
Layer 8	Sand	0.27	0.40	34.8	1.0	0.0	98.5	7.716E-03	4.817E-10	2.90
Layer 8	Clay	0.33	0.41	34.8	1.0	0.0	96.9	8.048E-03	5.024E-10	2.90
Layer 9	Sand	0.28	0.41	34.8	1.0	0.0	96.9	8.048E-03	5.024E-10	2.90
Layer 9	Clay	0.33	0.41	34.8	1.0	0.0	96.8	8.048E-03	5.024E-10	2.90
Layer 10	Sand	0.27	0.42	34.8	1.0	0.0	96.4	8.278E-03	5.168E-10	2.90
Layer 11	Sand	0.28	0.37	34.8	1.0	0.0	103.3	6.805E-03	4.248E-10	2.90
Layer 12	Sand	0.25	0.43	34.8	1.0	0.0	94.7	8.627E-03	5,386E-10	2.90

¹Estimated from de Marsily, G., 1986, *Quantitative Hydrogeology*, Academic Press, Inc., Orlando, FL, p. 36. $^{2}n = (1 - \rho_{y}/\rho_{d})$; assume $\rho_{d} = 165.0857$ lb/ft³

CCI4 Half-life years	250	250	250	250	250	250	250	250	250	250	250	250	250	250	
1 st Order Natural Decay Coefficient 1/day	7.591E-06														
Retardation Factor	3.06	2.98	2.75	2.75	2.97	2.81	3.04	2.96	2.88	2.88	2.88	2.83	3,23	2.76	2.91
г/на Кч	4.976E-10														
K _d mL/g (K _{oe} X f _{oe})	4.976E-01														
foc fraction	0.00114	0.00114	0.00114	0.00114	0.00114	0.00114	0.00114	0.00114	0.00114	0.00114	0.00114	0.00114	0.00114	0.00114	
Bulk Density Ib/ft ³	101.0	99.3	94.6	94.6	98.9	95.3	39.99	98,5	96.8	96.8	96.8	96.4	103.3	94.7	
Total Porosity ²	0.39	0.40	0.43	0.43	0.40	0.42	0.39	0.40	0.41	0.41	0.41	0.42	0.37	0.43	Catality of
Effective Porosity ¹	0.32	0.25	0.24	0.25	0.27	0.28	0.28	0.27	0.33	0.28	0.33	0.27	0.28	0.25	
Stratigraphic Unit	Silt/Clay	Sand	Clay	Sand	Clay	Sand	Sand	Sand							
Model	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	Layer 7	Layer 8	Layer 8	Layer 9	Layer 9	Layer 10	Layer 11	Layer 12	

Murdock, NE Transport Model Calibration with Retardation Factor = 1.8 and No Decay

Murdock, NE Transport Model Calibration of Decay Half-Life

-

שוווחשובה הו החשבו אבת ההולי לואד

1.2		1.8	- E		E.	4			- 0 K		
1.4						1	1.1	1		÷.	
	- W.						1.1				
1.1	- ii	1.1		1.0		- T.	1.1			- E.	
1.1	1.				1	1					- E
1.1	E.		i.		1						1
			1	6 6	1.0			1			
		1			1 1			1	1.1		
	÷ 9	i.	1	1.4	1.1					- K	
1.1	1.1		1	1.1	- it	1	1.1	1		1	
			1	1	1.1		- 2	1	- 4	- 1	
									1		
1.0	1.1							× .		- E	
	- X		1			1					
	1.1				- E	- x-	- 1				
	1		1	1.14	- E		1.1				
÷	1		i.	1.	- E	- T					- T
	- A		- X						1.1		
		1.4				- R.	1.1		- 1 K		
				1.1	- K	1	1				- 14
	1.1					1					
100	1.1	0.00			1.1.1	- k.		4	10.00	1	
LO	CV.	00	N	LO	N	10	-	un.	N	00	N
~	2	16	-	-	m		C	- CD	0	Pr-	0
344	×	-	×	100	1	0	1	8	S.		1
5.00	1		1	1	1	10	10	100	1		10
0	0		5	5	ų.		60	1	544		55
00	0		10	(1)	ব		rn.	w.	CO2		1.1
1	-			-	mi		200				-
0	0		92	00	53		120	2	1		-
-	4		411	- 40	0			100-	-		00

			1	1		1				
46.80005.	53	56.20007	52.40002	65.5.	68.6001	71.80005	74.90002	78	81.20007.	

- T				1	- t.	2.4			. 4	9 R		
			1.1	1.1	- R		- R.					
× 1	1.1	- X.	1.4	- E			- b'			W	1.1	
		- E			1		- K			- X		
1.1	1.1	1.		1.1	1.1	1.1		- CK		- A		
		1		1.1			- F.			1.1	1	
		¥.		1		1.1						
	1.4		4			1.4		10.1			1	
1.		T.	1			1.8	1	18 F		-14 ×	1	
		1	1		. t	1.1		12.1		2.1	-	
	1.1						1	-E.+		6.1		
-E.	1.1	1	- 4			1.1	4	1.1		- 8 - 4	1	
	1.2	1				1.1						
- E		1				1.1				- A		
- 1					- T	1.1	- X			- R		
	1.1						× .			2.1.0		
1	1.1	× 1	-1		- X.			1.1		- X		
1	1.1	- R.		1	. t.	- 1				- X	1.1	
		1.			- X	- 8	- 3.	- 8		- A		
							- K.	- 1. K		- 04	- 64	
	- 1					- C.A.	- ×.					
1.1	·	122.0		1	12 1			1.1	2.1	100.1	1.1	
40	N	0	~	-40	N	40	200	40	N	0	~	
0	0	40	0	0	0	1.00	<u> </u>	0	0	1-	0	
\overline{n}	Ē.		0	0	0	111	0	0	0		0	
-	-		5	-	-	0	0	$\overline{\Box}$	0		0	
m	3		00	66	**		-	m	3		01	
5	0,		100	1.1	1 C. M.		00	and a	~ ~ ~		1.1	
101	m		10	m	CV.		101	-	120		-	
1			16	16	201			1	K		00	
-					50				1.00		-	

JIMUISTED OF UDSERVED CULL LUDIE

DIMNISTED OF UDSERVED UCIA, ILGIL

אישתואנפם סג המצפגאפם הרולי המוד

.....

+

-

-

-

-

-

-

-

Simulated or Observed CCI4, µg/L

-

1/17/2003

סוווותופופת הו התפפוגפת הכולי ווחור

SB68M

-Maximum Conc. Plus 50% Observed Concentrations

TIBIT THOS NOALAREN IN NONPINILIE

ŝ

4

1

-

-

2

÷

1

è

.

ż

TIRT THAT NOT TO DATE TO DATE