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THREEFOLD FLOPS VIA MATRIX FACTORIZATION

CARINA CURTO AND DAVID R. MORRISON

The structure of birational maps between algebraic varieties becomes in-
creasingly complicated as the dimension of the varieties increases. There is
no birational geometry to speak of in dimension one: if two complete alge-
braic curves are birationally isomorphic then they are biregularly isomorphic.
In dimension two we encounter the phenomenon of the blowup of a point,
and every birational isomorphism can be factored into a sequence of blowups
and blowdowns. In dimension three, however, we first encounter birational
maps which are biregular outside of a subvariety of codimension two (called
the center of the birational map). When the center has a neighborhood with
trivial canonical bundle, the birational map is called a flop. The focus of this
paper will be the case of a three-dimensional simple flop, in which the center
is an irreducible curve (necessarily a smooth rational curve). One of the mo-
tivations for studying this case is a theorem of Kawamata [17], which says
that all birational maps between Calabi–Yau threefolds can be expressed as
the composition of simple flops (in fact, of simple flops between nonsingular
varieties).

Important examples of simple flops were provided by Laufer [22], and
three-dimensional simple flops were studied in general by Reid [25] and by
Pinkham [24]. One fundamental property is that the center of the flop can
be contracted, leaving a (singular) variety X which is dominated by both of
the varieties involved in the original flop. X has a hypersurface singularity,
and thus can be locally described as {f = 0} for some polynomial f in which
vanishes at the origin. In fact, as observed by Kollár and Mori [20], the
defining polynomial can always be put into the form

(1) f = x2
1 + g(x2, . . . , xm)

in appropriate coordinates, and the flop is then induced by the automorphism
x1 → −x1 of the singular variety X.

However, even in dimension three, most hypersurfaces of the form (1) do
not admit simple small resolutions, that is, blowups in which the singular
point is replaced by a nonsingular rational curve, so the cited result of Kollár
and Mori leaves the classification problem open. In 1992, Katz and the
second author proved a detailed classification theorem for three-dimensional
simple flops [16] in terms of a simple invariant of the singularity: the length,
which is an integer between 1 and 6. Although this classification theorem in
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principle gives a complete description of three-dimensional simple flops, the
present work began with a realization that the existing classification theorem
did not specify sufficient detail about a small neighborhood of the center of a
simple flop to answer some fundamental questions arising from string theory.

In the language of string theorists, those questions come from the study of
a physical model in which a collection of D-branes is made to wrap a rational
curve which is the center of a simple flop. The geometry of a neighborhood
of the center dictates the physics of the model, but not enough information
about such neighborhoods was available to answer some important physical
questions about this model. We were led to the present work by an analogy
between this situation and another situation considered by string theorists:
the so-called Landau–Ginzburg models in string theory. These models also
involve a single polynomial (analogous to f) and also have a D-brane theory
which is tricky to describe. In the case of Landau–Ginzburg models, Kont-
sevich [21] proposed (and a number of physicists investigated, beginning
with [15] and summarized in [13]) that the D-branes in the theory should
be described by the category of matrix factorizations [11] associated to the
polynomial. By analogy, we hoped that matrix factorizations might be useful
in studying simple flops, which has proven to be the case.

The idea behind matrix factorizations is quite simple. Although an irre-
ducible polynomial f(x1, . . . , xm) can never be factored (by definition) in the
ringK[x1, . . . , xm], there may well be matrix factorizations, that is, equations
of the form

(2) ΦΨ = fIk,

where Φ and Ψ are k × k matrices with entries in K[x1, . . . , xm]. A familiar
example of matrix factorization is provided by the construction of Clifford
algebras, the elements of which can be regarded as determining matrix fac-
torizations for a quadratic polynomial f(x1, . . . , xm) = x2

1 + · · ·+x2
m. In this

paper, we consider matrix factorizations for rational double points and their
deformations.

The classification theorem for three-dimensional simple flops [16] is based
on Reid’s observation [25] that the general hyperplane section of the con-
tracted variety X has a rational double point singularity, and that each
small resolution induces a partial resolution of that rational double point
(dominated by the minimal resolution). Pinkham [24] analyzed the defor-
mation theory of such partial resolutions, which provided the starting point
for the classification theorem of [16]. In the present work, we begin with
the observation that each partial resolution of a rational double point (dom-
inated by the minimal resolution) has, by the McKay correspondence, an
associated maximal Cohen–Macaulay module which can be described as a
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matrix factorization for the equation of the rational double point. We conjec-
ture that Pinkham’s deformation theory for partial resolutions is actually a
deformation theory of the corresponding matrix factorization, and we prove
this conjecture for rational double points of type An−1 and Dn.

In the course of the proof, we encounter some “universal flops” of lengths
1 and 2; the analogous universal flops of lengths 3, 4, 5, and 6 are still con-
jectural (and would involve the E6, E7 and E8 singularities). The universal
flop of length 1 is very well known: it is the hypersurface singularity

(3) xy − z2 + t2 = 0,

which admits two small resolutions by blowing up the ideals (x, z + t) or
(y, z + t), respectively. A theorem of Reid [25] guarantees that every flop of
length 1 is locally the pullback of the universal one by a map from X to the
hypersurface in equation (3); our theorem about flops of length 2 is similar.

Recently, Bridgeland [5] has given a construction of flops as describing the
passage from an initial space Y to a moduli space Y + for certain objects
in the derived category of coherent sheaves on Y , and this construction and
some related ideas have been applied in the physical situation described
above [1, 2]. Our universal flops, and more generally the description of flops
in terms of matrix factorizations, should enable one to make Bridgeland’s
construction and its applications much more explicit. (In particular, our
approach seems closely related to van den Bergh’s alternate proof [27] of
Bridgeland’s theorem.) We leave this for future investigation.

The outline of the paper is as follows. In section 1, we review the theory of
matrix factorizations, and how the McKay correspondence for rational double
points may be interpreted in terms of the existence of matrix factorizations.
In section 2, we construct a geometric operation, the Grassmann blowup,
associated to a matrix factorization, and show that it can be used to recover
the partial resolutions of rational double points directly from the matrix
factorization. In section 3, we review the basic technique for studying flops
by considering the general hyperplane section of the contracted variety. In
section 4, we consider the deformation theory for a matrix factorization,
treating the case of An−1 in detail and then conjecturing results for the
other rational double points. Section 5 is devoted to the construction of the
universal flop of length 2 and some of its properties. Finally, in section 6 we
prove our conjectures for the case of rational double points of type Dn. In
an appendix, we list the matrix factorizations for rational double points of
types E6, E7, and E8, essentially drawn from [12].

We would like to thank P. Aspinwall, T. Bridgeland, D. Eisenbud, Y. Ito,
A. Kapustin, S. Katz, H. Kurke, M. Reid, and B. Ullrich for helpful discus-
sions during the course of this work. The first author was supported by a
National Science Foundation Graduate Research Fellowship and by National
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Science Foundation grant DMS-9983320; the second author was supported
by National Science Foundation grants PHY-9907949 and DMS-0301476, the
Clay Mathematics Foundation, the John Simon Guggenheim Memorial Foun-
dation, the Kavli Institute for Theoretical Physics (Santa Barbara), and the
Mathematical Sciences Research Institute (Berkeley) during the preparation
of this paper. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

1. Matrix factorizations and the McKay correspondence

A maximal Cohen–Macaulay module over a Noetherian local ring R is
an R-module whose depth is equal to the Krull dimension of R. We will
primarily be interested in the case in which R is the localization at the
origin of S/(f), where S = K[x1, . . . , xm] is a polynomial ring over a field
K, and f ∈ S vanishes at the origin. For such a ring R, a maximal Cohen–
Macaulay R-module can be lifted to an S-module M which is supported on
the hypersurface X = {f = 0}; moreover, M will be locally free on the
smooth locus of X.

Any such M can be presented as the cokernel of a map between two S-
modules of the same rank:

(4) S⊕k Ψ
→ S⊕k → M → 0.

Since fM = 0, fS⊕k ⊂ Ψ(S⊕k) which implies that there is a map

(5) S⊕k Φ
→ S⊕k

such that Φ ◦ Ψ = f id. The pair (Φ,Ψ) is called a matrix factorization,
and it turns out that Ψ ◦ Φ = f id as well, so that (Ψ,Φ) is also a matrix
factorization.

Theorem (Eisenbud [11]). There is a one-to-one correspondence between
isomorphism classes of maximal Cohen–Macaulay modules over R with no
free summands and matrix factorizations (Φ,Ψ) with no summand of the
form (1, f) (induced by an equivalence between appropriate categories).

Matrix factorizations have been used to give an explicit realization of
the McKay correspondence. Let G be a finite subgroup of SU(2). The
quotient singularity C2/G has a number of interesting properties. First, if
π : Y → C

2/G is the minimal resolution of singularities, then Riπ∗OY = 0
for i > 0, i.e., the singularity is rational. Moreover, each C2/G is a hyper-
surface singularity of multiplicity 2—hence the name rational double point,
since these two properties of the singularity characterize this class of singular
points [10].
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The original observation of McKay [23] gave a correspondence between
the nontrivial irreducible representations of G and the components of π−1(0).
The correspondence was made very explicit by Gonzalez-Sprinberg and Verdier
[12] as follows. The action of the group G on the coordinate ring C[s, t] of
C2 makes C[s, t] into a C[s, t]G-module. As such, it can be decomposed as

(6) C[s, t] =
⊕

ρ

C[s, t]ρ,

where ρ : G→ GL(Vρ) runs over the irreducible (complex) representations of
G. Each summand C[s, t]ρ takes the form Mρ ⊗C Vρ, where Mρ is a maximal
Cohen–Macaulay module for the ring R = C[s, t]G. Gonzales-Sprinberg and
Verdier computed an explicit presentation of each such module, giving a
matrix factorization1 associated to Mρ. They went on to show that, while
Mρ is not itself locally free, the pullback π∗(Mρ)/(tors) is locally free, and
for each component Ei of π−1(0),

(7) Ei · c1(π
∗(Mρ)/(tors)) = δijρ

,

where Ejρ
is the component of π−1(0) associated to ρ by the McKay corre-

spondence.
To take a simple example, if G = Z/nZ ⊂ SU(2), the ring C[s, t]G is

generated by x = sn, y = tn and z = st subject to the relation xy − zn = 0.
(This shows that the quotient is a hypersurface singularity.) We label the
representations of G so that ρk acts on Vk

∼= C as u 7→ e2πik/nu. It is not
hard to see that Mρk

:= C[s, t]ρk
is generated over C[s, t]G by sk and tn−k,

with relations

ysk = zktn−k

zn−ksk = xtn−k.
(8)

This leads to a presentation of Mρk
as the cokernel of the matrix

(9)

[
y −zk

−zn−k x

]
.

We can easily complete this to a matrix factorization:

(10)

[
x zk

zn−k y

] [
y −zk

−zn−k x

]
= (xy − zn)I2.

In general, the Gonzalez-Sprinberg–Verdier matrix factorizations have the
following property: if the locally free module π∗(Mρ)/(tors) has rank ℓρ, then

1The fact that the computation gives a matrix factorization was not explicitly pointed
out in the original paper, but became an important ingredient in subsequent work of
Knörrer [19] and Buchweitz–Greuel–Schreyer [7].
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the matrix factorization is given by a pair of 2ℓρ × 2ℓρ matrices. Moreover,
the integers ℓρ are determined by the McKay correspondence and the relation

(11) π−1(m) =
∑

ℓρEjρ
,

where m is the maximal ideal of 0 ∈ C2/G.
The Gonzalez-Sprinberg–Verdier matrix factorizations of type An−1 were

given above, and those of type Dn can be obtained from the matrix fac-
torizations of section 6 by specialization of parameters (see equations (71)
and (72) below). For completeness, we have listed the Gonzalez-Sprinberg–
Verdier matrix factorizations for E6, E7, and E8 in an appendix to this paper.

2. Grassmann blowups

We now describe a blowup associated to a matrix factorization (or a more
general resolution of sheaves). Given a matrix factorization (Φ,Ψ), the cok-
ernel of Ψ is supported on the hypersurface f = 0; since we are assuming
our hypersurface f = 0 is reduced and irreducible, the k × k matrix Ψ will
have some generic rank k − r along the hypersurface, and the cokernel of Ψ
will have rank r.

More generally, we can consider maps Ψ whose cokernel has proper support
X ⊂ Cn, such that the cokernel has rank r at each generic point of the
support.

We do a Grassmann blowup2 of Ψ on which there is a locally free sheaf
that agrees with coker Ψ at generic points, as follows. In the product Cn ×
Gr(k − r, k) we take the closure of the set3

(12) {(x, v) | x ∈ Xsmooth, v = ker Ψx}.

There are natural coordinate charts for this blowup, given by Plücker co-
ordinates for the Grassmannian, and a locally free sheaf defined by pulling
back the universal quotient bundle from Gr(k − r, k).

The following lemma is immediate.

Lemma 1. If ν : X̃ → X is any birational map such that ν∗(coker Ψ)/(tors)
is locally free, then ν factors through the normalization of the Grassmann
blowup of Ψ.

From this, and the computations in [12], we deduce:

2Note that when the module in question is the pushforward of the tangent bundle from
the smooth locus of X , this construction coincides with the more familiar Nash blowup.

3We could have equally well formulated this definition in terms of Gr(r, k) and cokerΨx,
but the equivalent formulation we give is more convenient for computation.
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Theorem 2. Let G ⊂ SU(2) be a finite group, let ρ be a nontrivial ir-
reducible representation of G, let Mρ be the associated maximal Cohen–
Macaulay C[s, t]G-module, and let πρ : Xρ → C2/G be the (normalization4

of the) Grassmann blowup associated to a matrix factorization of Mρ. Then
Xρ has only rational double point singularities, π−1

ρ (0) is an irreducible curve
Cρ, and the pullback of Cρ to the minimal resolution coincides with Ejρ

.

In other words, the Grassmann blowup of the Gonzalez-Sprinberg–Verdier
matrix factorization directly produces the associated curve for the McKay
correspondence.

Proof. Let π : Y → C2/G be the minimal resolution of singularities. As re-
marked above, Gonzalez-Sprinberg and Verdier showed that π∗(Mρ)/(tors)
is locally free. Moreover, by rather intensive computation they showed that
there is a curve Γρ meeting Ejρ

in a single point (and disjoint from other
components of π−1(0)) with c1(π

∗(Mρ)) supported on Γρ. Thus, for a suf-

ficiently small open neighborhood U of π−1(0) −Ejρ
, the locally free sheaf

π∗(Mρ)/(tors) restricts to a trivial bundle of rank ℓρ on U .

It follows that if νρ : X̃ρ → C2/G is the partial resolution which blows up
precisely the curve Eiρ , then π∗(Mρ)/(tors) pushes forward to a locally free

sheaf on X̃ρ, which must coincide with ν∗ρ(Mρ)/(tors). Thus, by the lemma,

the partial resolution νρ : X̃ρ → C
2/G factors through a map X̃ρ → Xρ

to the normalization of the Grassmann blowup. Note that Xρ → C2/G is

nontrivial since Mρ is not itself locally free; since in addition νρ : X̃ρ → C2/G

has irreducible exceptional set, it follows that the map X̃ρ → Xρ must be an
isomorphism, with Ejρ

mapping to the exceptional set Cρ. �

The proof we have given is unfortunately rather computationally intensive,
insofar as it relies on the detailed explicit computations of [12]. We strongly
suspect that a more direct proof should be possible, using the ideas of Ito–
Nakamura [14], but we have not carried this out.

In the remainder of this paper, we will study deformations of the Gonzalez-
Sprinberg–Verdier matrix factorizations, and their Grassmann blowups.

3. Simultaneous resolution and flops

A simple flop is a birational map Y 99K Y + between Gorenstein threefolds
which induces an isomorphism (Y − C) ∼= (Y + − C+), where C and C+ are
smooth rational curves on Y and Y +, respectively, and

(13) KY · C = KY + · C+ = 0.

4In fact, the Grassmann blowup is normal in this case.
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The curves C and C+ can be contracted to points (in Y and Y +, respec-
tively), yielding the same normal variety X.

Recall that a two-dimensional ordinary double point is a singular hyper-
surface with defining polynomial

(14) xy − z2.

Such a singularity has a versal deformation with defining polynomial

(15) xy − z2 + s = 0,

where s is the coordinate in the versal deformation space. In 1958, Atiyah [3]
noticed that if he made the basechange s = t2 in this versal deformation, then
the resulting family of surfaces had a simultaneous resolution of singularities.
That is, factoring the equation

(16) xy − z2 + t2 = 0

as

(17) xy = (z + t)(z − t)

and blowing up the (non-Cartier) divisor described by x = z + t = 0, one
obtains a family of non-singular surfaces which, for each value of t, resolves
the corresponding singular surface. In fact, there are two ways of doing this,
for one might have chosen to blow up the divisor y = z+ t = 0 instead. This
produces two threefolds Y and Y + related by a simple flop.

Reid [25] studied a generalization of Atiyah’s flop with equation of the
form

(18) xy = z2 − t2n = (z + tn)(z − tn),

where again the blowups are given by x = z + tn = 0 or y = z + tn = 0.
Other, more complicated, examples of simple flops were given by Laufer [22],
and generalized by Pinkham and the second author [24] and by Reid [25].

A generalization of Atiyah’s observation about simultaneous resolutions
was made by Brieskorn [6] and Tyurina [26], who showed that for any rational
double point, the universal family over the versal deformation space admits
a simultaneous resolution after basechange. More precisely, each rational
double point has an associated Dynkin diagram Γ whose Weyl group W =
W(Γ) acts on the complexification hC of the Cartan subalgebra h of the
associated Lie algebra g = g(Γ). A model for the versal deformation space
is given by

(19) Def = hC/W,

and there is a universal family X → Def of deformations of the rational
double point over that space.
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The deformations of the resolution are given by a representable functor,
which can be modeled by

(20) Res = hC,

and the basechange which relates Res to Def coincides with the quotient

map hC → hC/W. In fact, there is a universal simultaneous resolution X̂
of the family X ×Def Res. The construction of this resolution requires some
trickiness with the algebra which will in fact be generalized and somewhat
explained later in this paper.

Pinkham [24] adapted the work of Brieskorn and Tyurina to cases in which
one does not wish to fully resolve the rational double point, but only to
partially resolve it. If we let Γ0 ⊂ Γ be the subdiagram for the part of
the singularity that is not being resolved, then we can define a functor of
deformations of the partial resolution, which has a model

(21) PRes(Γ0) = hC/W(Γ0),

and there is a simultaneous partial resolution X̂ (Γ0) of the family X ×Def

PRes(Γ0).
By a lemma of Reid [25], given a simple flop from Y to Y + and the

associated small contraction Y → X, the general hyperplane section of X
through the singular point P has a rational double point at P , and the proper
transform of that surface on Y gives a partial resolution of the rational double
point (dominated by the minimal resolution). Pinkham [24] used this to give
a construction for all Gorenstein threefold singularities with small resolutions
(with irreducible exceptional set): they can be described as pullbacks of the
universal family via a map from the disk to PRes(Γ0) (for some Γ0 ⊂ Γ which
is the complement of a single vertex).

Note that in the examples of Atiyah and Reid, one starts with the versal
deformation of A1 given by equation (15) whose deformation space Def has
coordinate s; pulling this back via the map s = t2n yields equation (18). The
fact that the power of t is even means that the map s = t2n factors through
the degree two cover Res → Def, as expected from the general theory.

Kollár [8] introduced an invariant of simple flops called the length: it is
defined to be the generic rank of the sheaf on C defined as the cokernel of
f ∗(mP ) → OY where mP is the maximal ideal of the singular point P . It is
easy to see that the length can be computed from the hyperplane section, and
it coincides with the coefficient of the corresponding vertex in the Dynkin
diagram in the linear combination of vertices which yields the longest positive
root in the root system. In the Atiyah and Reid cases, the length is 1.

As mentioned in the introduction, Katz and the second author [16] classi-
fied simple flops by showing that the generic hyperplane section for a simple
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flop of length ℓ is the smallest rational double point which uses ℓ as a coef-
ficient in the maximal root. The proof was computationally intensive, and
Kawamata [18] later gave a short and direct proof of this result.

4. Deformations

The versal deformation of the An−1 singularity has defining polynomial

(22) xy − fn(z) = 0,

where f is a general monic polynomial of degree n whose coefficient of zn−1

vanishes. The coefficients of f are the coordinates on Def; the roots of f
give coordinates on Res (subject to the constraint that the sum of the roots
is zero). Note that the action of the Weyl group WAn−1

coincides with the
standard action of symmetric group Sn on the n roots of f ; the invariants of
this action—the elementary symmetric functions—are the coefficients of f .

The partial resolution corresponding to the kth vertex in the Dynkin dia-
gram corresponds in the invariant theory to the subgroup W(Γ0) ⊂ W(Γ),
which in this case is

(23) Sk × Sn−k ⊂ Sn.

The relationship between the invariants of these two groups is neatly sum-
marized by writing

(24) fn(z) = gk(z)hn−k(z),

where g and h are monic polynomials of degrees k and n−k whose coefficients
of zk−1 and zn−k−1, respectively, sum to zero. More precisely, the coefficients
of f give generators for the invariant theory of W(Γ) while the coefficients of g
and h give generators for the invariant theory of W(Γ0), with the relationship
between them specified by equation (24). Thus, the coefficients of g and h
give coordinates on the partial resolution space PRes = Res /W(Γ0).

It is then easy to see that the matrix factorization (10) associated to the
kth vertex of An−1 deforms to a matrix factorization defined over PRes: just
use

(25)

[
x gk(z)

hn−k(z) y

] [
y −gk(z)

−hn−k(z) x

]
=
(
xy − fn(z)

)
I2.

This matrix factorization encodes the special form of the equation which
was needed in order to find non-Cartier divisors to blow up. In fact, we
can reinterpret the traditional description of these blowups as being the
Grassmann blowups associated to coker(Ψ) and coker(Φ), which are normal.
(This reinterpretation of the traditional description of flops of length 1 is
what we will generalize in this paper.)
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To see this, we explicitly carry out the Grassmann blowup associated to
the matrix

(26) Ψ =

[
y −gk(z)

−hn−k(z) x

]
.

There are two coordinate charts, in which we use as a basis for the kernel of
Ψ the vectors [α 1]T and [1 β]T , respectively. In the first coordinate chart,
the equation (in matrix form) defining the variety is

(27) Ψ

[
α
1

]
=

[
0
0

]
,

or in other words,

yα− gk(z) = 0

−hn−k(z)α + x = 0.
(28)

Using the second equation, x can be eliminated, leaving the single equation

(29) yα− gk(z) = 0,

which defines the versal deformation of an Ak−1 singularity.
In the second chart, we have the matrix equation

(30) Ψ

[
1
β

]
=

[
0
0

]
,

or in other words,

y − gk(z)β = 0

−hn−k(z) + xβ = 0.
(31)

This time, the first equation allows us to eliminate y, leaving the single
equation

(32) xβ − hn−k(z) = 0,

which defines the versal deformation of an An−k−1 singularity.
Thus, the Grassmann blowup has produced an exceptional P1 at two points

of which the pulled back family has two residual singularities along the cen-
tral fiber (Ak−1 and An−k), and due to the versal deformations of those
singularities appearing on the universal family, every such deformation can
be obtained in this way.

Inspired by this case, and the Dn case to be discussed in section 6, we
formulate the following conjectures:

Conjecture 1. For every flop of length ℓ, there are two maximal Cohen–
Macaulay modules M and M+ on X of rank ℓ, such that Y (resp. Y +) is the
Grassmann blowup of M (resp. M+).
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Conjecture 2. For a flop of length ℓ, the matrix factorizations corresponding
to M and M+ are of size 2ℓ × 2ℓ, and are obtained from each other by
switching the factors (Φ,Ψ) → (Ψ,Φ). Moreover, if coordinates are chosen so
that the equation of the hypersurface X takes the form x2

1 +f(x2, x3, x4) = 0,
then the matrices Φ and Ψ can be chosen to take the form

(33) Φ = x1I2ℓ − Ξ, Ψ = x1I2ℓ + Ξ,

where Ξ is a 2ℓ× 2ℓ matrix whose entries are functions of x2, x3, x4. (This
is expected thanks to the result of Kollár and Mori [20], which implies that
the flop will be induced by the automorphism x1 → −x1.)

Conjecture 3. For a partial resolution of a rational double point correspond-
ing to a single vertex in the Dynkin diagram with coefficient ℓ in the maximal
root, the versal deformation X over PRes has two matrix factorizations of
size 2ℓ×2ℓ, such that the two simultaneous partial resolutions can be obtained
as the Grassmann blowups of the corresponding Cohen–Macaulay modules.
(These should be regarded as deformations of the Gonzalez-Sprinberg–Verdier
factorizations.) Moreover, the matrices take the special form Φ = xI2ℓ − Ξ,
Φ = xI2ℓ + Ξ in appropriate coordinates.

Main Theorem. Conjectures 1 and 2 hold for lengths 1 and 2; conjecture
3 holds for Dynkin diagrams of type An−1 and Dn.

Remarks.

(1) By the classification theorem of [16], in order to prove conjectures 1
and 2 for lengths 1 and 2, it suffices to prove conjecture 3 for Dynkin
diagrams of type A1 and D4.

(2) It would follow from conjecture 3 combined with the classification
theorem of [16] that there exists a universal flop of length ℓ for each
1 ≤ ℓ ≤ 6. Each such universal flop would be obtained from the
universal matrix factorization for Dynkin diagram of length ℓ and
types A1, D4, E6, E7, E8 (length 5) and E8 (length 6), respectively.

(3) Note that we have already given most of the proof for the An−1 case
of conjecture 3 in our discussion above. We need one additional detail
to complete the proof: making the change of coordinates x = u− v,
y = u+v allows us to write the An−1 matrix factorization in the form
Φ = uI2 − Ξ, Ψ = uI2 + Ξ, where

(34) Ξ =

[
v hn−k(z)

gk(z) −v

]
,

verifying conjecture 3 in this case.
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5. The universal flop of length 2

In this section, we investigate a certain flop of length 2 which will turn
out to be universal in an appropriate sense. Our description of this flop
follows an idea of Reid [25, Lemma (5.16)] although this was not the way we
originally found the flop.

We start with a quadratic equation in four variables x, y, z, t over the
field C(u, v, w), chosen so that its discriminant is a perfect square. The one
we use can be written in matrix form as

(35)

W (x, y, z, t, u, v, w) := x2 + uy2 + 2vyz + wz2 + (uw − v2)t2

=
[
x y z t

]




1 0 0 0
0 u v 0
0 v w 0
0 0 0 uw−v2







x
y
z
t


 ,

and its discriminant (the determinant of the matrix of coefficients) is

(36) (uw − v2)2.

(Reid’s construction was similar, but had v = 0; as Reid observed, this
construction includes both the original Laufer examples [22] and their gen-
eralizations by Pinkham and the second author [24].) The general quadratic
hypersurface in C4 has two rulings by C2; since the discriminant is a perfect
square, the individual rulings are already defined over C(u, v, w). In fact,
the corresponding rank two sheaf is a maximal Cohen–Macaulay module
over the hypersurface defined by equation (35) (which we now regard as a
hypersurface in C7).

By Eisenbud’s theorem, this maximal Cohen–Macaulay module can be
expressed in terms of a matrix factorization (Φ,Ψ). We have computed one
such, which takes the form Φ = xI4 − Ξ, Ψ = xI4 + Ξ, where

(37) Ξ =




−vt y z t
−uy − 2vz vt −ut z

−wz wt −vt −y
−uwt −wz uy + 2vz vt


 .

An explicit computation shows that

(38) − Ξ2 =
(
uy2 + 2vyz + wz2 + (uw − v2)t2

)
I4,

and hence

(39) ΦΨ =
(
x2 + uy2 + 2vyz + wz2 + (uw − v2)t2

)
I4.

A few comments about the geometry are in order. The quadratic form in x,
y, z, t has rank 4 for generic values of the parameters, but when uw−v2 = 0
the rank drops to 2. We get rank 1 at u = v = w = 0. This implies that
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over each point of uw − v2 = 0 the fiber of the Grassmann blowup will be
contained in a P2 (corresponding to the choice of C2 within C3) and this
remains true at u = v = w = 0 as well. Moreover, over x = y = z = t = 0
we get a fiber contained in Gr(2, 4). As we will see in detail below, the
latter fibers are actually conics embedded into Gr(2, 4) and all fibers of the
Grassmann blowup have dimension 0 or 1.

Theorem 3. For every threefold flop of length 2, there is a map from the
singular space X to the universal flop of length 2 such that the two blowups Y
and Y + are the pullbacks of the Grassmann blowups of the universal matrices
Φ and Ψ.

The first step in proving theorem 3 is to explicitly carry out the Grassmann
blowup of Ψ. There are six coordinate charts for this blowup, corresponding
to Plücker coordinates on the Grassmannian, but we will only display the
results in detail for two of these charts. For the first, we introduce four new
variables αi,j and eight equations λi,j for the blowup by means of

(40) [λi,j] = Ψ




1 0
0 1
α1,1 α1,2

α2,1 α2,2


 = 0.

Note that by multiplying by Φ from the left, we see that the original equation
is contained in the ideal generated by the λi,j.

It is not difficult to find some elements of the ideal that are divisible by
z2 + ut2 = ∂W/∂w:

(41)

zλ1,1 − utλ1,2 − tλ2,1 − zλ2,2 = (z2 + ut2)(α1,1 − α2,2),

−utλ1,1 − uzλ1,2 − zλ2,1 + utλ2,2 = (z2 + ut2)(2v − α1,2u− α2,1),

(α1,2uz + α2,2ut)λ1,2 + (−α1,2ut+α2,2z)λ2,2 + utλ3,2 − zλ4,2

= (z2+ut2)(α2
2,2 + α2

1,2u− 2α1,2v + w).

Thus, if we localize at z2 +ut2 6= 0, we can add the following elements to the
ideal:

(42)

λ1 = α1,1 − α2,2

λ2 = 2v − α1,2u− α2,1

λ3 = α2
2,2 + α2

1,2u− 2α1,2v + w.

Since the Grassmann blowup is irreducible, the elements of this extended
ideal must vanish on it, even when we do not impose z2 + ut2 6= 0.
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In fact, the extended ideal is generated by λ1,2, λ2,2, λ1, λ2, and λ3, as we
now verify: we have

(43)

λ1,1 = λ2,2 + zλ1 − tλ2

λ2,1 = −uλ1,2 − utλ1 − zλ2

λ3,1 = (α1,2u− 2v)λ1,2 + α2,2λ2,2 + (x− vt)λ1 + yλ2 − zλ3

λ3,2 = −α2,2λ1,2 + α1,2λ2,2 + tλ3

λ4,1 = α1,1uλ1,2 + α2,1λ2,2 + (−α1,2uz − α2,2ut+ 2vz)λ1

+ (α2,2z − α1,2ut)λ2 − utλ3

λ4,2 = α1,2uλ1,2 + α2,2λ2,2 − zλ3.

Moreover, since λ1,2 = y+α1,2z+α2,2t and λ2,2 = x+ vt−α1,2ut+α2,2z, we
can use the generators of the extended ideal to eliminate y, x, α1,1, α2,1, and
w, respectively, leaving z, t, u, v, α1,2 and α2,2 as coordinates in this chart,
with no further relations among them.

We can describe the map from the Grassmann blowup back to the original
hypersurface by setting each generator λ1,2, λ2,2, λ1, λ2, λ3 of the ideal to
zero in turn, and solving the resulting equation for an appropriate variable:

y = −α1,2z − α2,2t(44)

x+ vt = α1,2ut− α2,2z(45)

α1,1 = α2,2(46)

α2,1 = 2v − α1,2u(47)

w = −α2
2,2 − α2

1,2u+ 2α1,2v.(48)

Equations (44) and (45) can be recast in matrix form:

(49)

[
y

x+ vt

]
=

[
−z −t
ut −z

] [
α1,2

α2,2

]
,

and whenever z2 + ut2 6= 0, these can be solved for α1,2 and α2,2 in terms of
x, y, z, t, u, v. Equations (46) and (47) can then be used to solve for α1,1

and α2,1, and when this has been done, equation (48) becomes equivalent
to the original hypersurface equation (35). Thus, the fiber over a given
(x, y, z, t, u, v, w) value is a single point unless z2 + ut2 = 0.

When z2 + ut2 = 0, if the coefficient matrix

(50)

[
−z −t
ut −z

]

from equation (49) has rank one, then the fiber over a given point takes the
form

(51) (α1,2, α2,2) 7→ (α1,2 + ct, α2,2 − cz).
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Substituting this into equation (48) yields the additional relation

(52) α2,2z − α1,2ut+ tv = 0

which must hold if the fiber is nontrivial. When this relation and z2+ut2 = 0
both hold, the fiber is indeed one-dimensional.

On the other hand, if the matrix (50) has rank 0, then z = t = 0 which
implies x = y = 0. Any such point satifies equations (44)–(47), leaving only
equation (48), which describes—for each fixed (u, v, w)—a conic embedded in
the Grassmannian mapping to (0, 0, 0, 0, u, v, w), as asserted at the beginning
of this section.

For later use, we summarize a portion of the structure of one of the other
coordinate charts, in less detail than above. For this second chart, we intro-
duce four new variables βi,j and eight new equations µi,j for the blowup by
means of

(53) [µi,j] = Ψ




1 0
β1,1 β1,2

0 1
β2,1 β2,2


 .

Note that by multiplying by Φ from the left, we see that the original equation
is contained in the ideal generated by the µi,j.

We find some elements divisible by y2 + wt2 = ∂W/∂u:

(54)

yµ1,1 + wtµ1,2 + tµ3,1 − yµ3,2 = (y2 + wt2)(β1,1 + β2,2),

−wtµ1,1 + wyµ1,2 + yµ3,1 + wtµ3,2 = (y2 + wt2)(−β2,1 + β1,2w),

(−2vy + β1,2wy + β2,2wt)µ1,2 + (β1,2wt− β2,2y)µ3,2 − wtµ2,2 + yµ4,2

= (y2+wt2)(β2
2,2 + u− 2β1,2v + β2

1,2w).

Localizing at y2 + wt2 6= 0, we can add the following elements to the ideal:

(55)

µ1 = β1,1 + β2,2

µ2 = −β2,1 + β1,2w

µ3 = β2
2,2 + u− 2β1,2v + β2

1,2w.

As before, the irreduciblity of the Grassmann blowup ensures that the el-
ements of the extended ideal vanish on it, even when we do not impose
y2 + wt2 6= 0.
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In this chart, the extended ideal is generated by µ1,2, µ3,2, µ1, µ2, and µ3,
as we now demonstrate.

(56)

µ1,1 = µ3,2 + yµ1 − tµ2

µ2,1 = (−2v + β1,2w)µ1,2 − β2,2µ3,2 + (x+ vt)µ1 − zµ2 − yµ3

µ2,2 = β2,2µ1,2 + β1,2µ3,2 − tµ3

µ3,1 = −wµ1,2 + wtµ1 + yµ2

µ4,1 = β2,2wµ1,2 + β1,2wµ3,2 − wzµ1 − (x+ vt)µ2 − wtµ3

µ4,2 = (2v − β1,2w)µ1,2 + β2,2µ3,2 + yµ3.

Note that since

(57)
µ1,2 = β1,2y + z + β2,2t

µ3,2 = β1,2wt+ x− vt− β2,2y,

the Grassmann blowup is also nonsingular in this coordinate chart: we can
eliminate z with µ1,2, x with µ3,2, β1,1 with µ1, β2,1 with µ2, and u with µ3.
This leaves y, t, v, w, β1,2, and β2,2 as coordinates in this chart.

6. The Dn case

The main results of this paper concern deformations of matrix factoriza-
tions for rational double points of type Dn. In this section, we will prove
conjecture 3 for the Dn case, from which conjectures 1 and 2 in the length
2 case immediately follow. We will also prove the universality of the flop
discussed in section 5 (i.e., Theorem 3).

We follow notation for the versal deformation of Dn and the invariant
theory for the corresponding Weyl group which was established in [16] (with
one minor exception, noted below). The matrix factorizations we use were
first found in [9].

The versal deformation of Dn can be written in the form

(58) X2 + Y 2Z −Zn−1 + 2γY −

n−1∑

i=1

δ2iZ
n−1−i = X2 + Y 2Z + 2γY −F (Z),

where F (Z) is a general monic polynomial of degree n − 1; the coefficients
of F (Z), together with γ, give coordinates on the deformation space Def.

The invariant theory for WDn
can be described in terms of the monic

polynomial

(59) ZF (Z) + γ2 = Zn +

n−1∑

i=1

δ2iZ
n−i + γ2 =

n∏

j=1

(Z + t2j ),

which factors over the resolution space Res (the coordinates on which are t1,
. . . , tn). The Weyl group WDn

is an extension of the symmetric group Sn
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(acting by permutations of the tj ’s) by a group (µ2)
n−1. The latter is the

subgroup of (µ2)
n (acting on the tj’s by coordinatewise multiplication) which

preserves the product t1 . . . tn. The WDn
-invariant functions are generated

by δ2i = σi(t
2
1, . . . , t

2
n), the elementary symmetric functions of t21, . . . , t2n,

together with5 γ = (−1)nt1 · · · tn, subject to

(60) δ2n = γ2.

This is the same set of functions given by the coefficients of F (Z) together
with γ, verifying that Def = Res /WDn

in this case.
Note that this setup continues to make sense for low values of n: WD3

is an extension of S3 by (µ2)
2 which coincides with WA3

= S4; WD2
is an

extension of S2 by µ2 and coincides with WA1∪A1
= S2 × S2; and WD1

is
trivial.

The partial resolution corresponding to the kth vertex in the Dynkin dia-
gram has complementary graph Γ0 of the form ΓAk−1

∪ ΓDn−k
, for 1 ≤ k ≤

n−2, or k = n. (The partial resolution for the n−1st vertex can be obtained
from that for the nth by applying an automorphism to the Dynkin diagram.)
The corresponding subgroup in the invariant theory is

(61) Sk × WDn−k
⊂ WDn

,

which can be considered for any k between 1 and n. Note, however, that
this subgroup in the case of k = n−1 corresponds to the complement of two
vertices in the Dynkin diagram—the two “short legs.”

The two polynomials whose coefficients (together with η = (−1)n−ktk+1 · · · tn)
capture the invariant theory for the subgroup (61) are

(62) f(U) =

k∏

j=1

(U − tj) and Zh(Z) + η2 =

n∏

j=k+1

(Z + t2j ).

In particular, the coefficients of f and h, together with η, give coordinates
on the space PRes = Res /W(Γ0). To describe the map PRes → Def, we
relate the coordinates on the two spaces, i.e., we relate the polynomials in
equation (62) to the original polynomial (59), as follows. First write

(63) f(U) = Q(−U2) + UP (−U2),

encoding the coefficients of f into the coefficients of P and Q. Note that if
Z = −U2 then

(64)

k∏

j=1

(Z + t2j ) = f(U)f(−U) = Q(Z)2 + ZP (Z)2

5The sign in the definition of γ was not present in [16], but is convenient here. When
comparing formulas in this paper to those in [16], one should replace Y by (−1)nY to
compensate for this sign change.
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so that

(65)

n∏

j=1

(Z + t2j ) = (Zh(Z) + η2)(Q(Z)2 + ZP (Z)2)

and that γ = ηQ(0), since Q(0) = f(0) = (−1)kt)1 · · · tk. We also write
Q(Z) = ZS(Z) + Q(0) when needed: the coefficents of S, together with
Q(0), are equivalent to the coefficients of Q.

We can now put the polynomial

(66) F (Z) =
1

Z

(
−γ2 +

n∏

j=1

(Z + t2j )

)

which appears in the versal deformation of Dn into the form

(67) F (Z) = h(Z)
(
Q(Z)2 +ZP (Z)2

)
+ η2

(
2Q(0)S(Z)+ZS(Z)2 +P (Z)2

)
;

this, together with the formula γ = ηQ(0), provides the explicit map from
PRes to Def.

For later use, we also observe that the relationship among P (Z), Q(Z), and
f(U) is captured by the existence of a polynomial in two variables G(Z,U)
satisfying

(68) UP (Z) +Q(Z) = (U2 + Z)G(Z,U) + f(U).

This invariant theory analysis has provided precisely the functions we need
in order to use the universal length 2 matrix factorization. If we substitute

(69)
x = X, y = Y − ηS(Z), z = Q(Z), t = P (Z),

u = Z, v = η, w = −h(Z)

in equation (35), we find
(70)
X2+Z(Y−ηS(Z))2+2η(Y−ηS(Z))Q(Z)−h(Z)Q(Z)2−(Zh(Z)+η2)P (Z)2

= X2+Z(Y 2−η2S(Z)2)+2γ(Y−ηS(Z))−h(Z)Q(Z)2−(Zh(Z)+η2)P (Z)2

= X2 + Y 2Z + 2γY − F (Z),

using equation (67). Thus, substituting (69) into (37) gives a matrix factor-
ization of length 2 defined over the space PRes. This will turn out to be the
matrix factorization predicted by Conjecture 3 for the Dn case.

Note that over the origin of PRes, our construction specializes to a matrix
factorization for the rational double point Dn, of the form Φ = XI4 − Ξ,
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Ψ = XI4 + Ξ, where

(71) Ξ =




0 Y (−Z)
k
2 0

−Y Z 0 0 (−Z)
k
2

(−1)n−1(−Z)n− k+2

2 0 0 −Y

0 (−1)n−1(−Z)n− k+2

2 Y Z 0




if k is even, and

(72) Ξ =




0 Y 0 (−Z)
k−1

2

−Y Z 0 (−Z)
k+1

2 0

0 (−1)n−1(−Z)n− k+3

2 0 −Y

(−1)n−1(−Z)n− k+1

2 0 Y Z 0




if k is odd. These are the Gonzalez-Sprinberg–Verdier matrix factorizations
for Dn.

Note that the “universal flop of length 2” from section 5 is a special case of
our construction when n = 4 and k = 2. In that case, f(U) = U2 + f1U + f0

has degree 2 and h(Z) = Z + h(0) has degree 1; it follows that Q(Z) =
−Z+Q(0) and P (Z) = P (0), where P (0) = f1 and Q(0) = f0. We also have
S(Z) = −1. Thus,

(73)
x = X, y = Y + η, z = −Z +Q(0), t = P (0)

u = Z, v = η, w = −Z − h(0)

or conversely,

(74)
X = x, Y = y − v, Z = u, η = v

h(0) = −u − w, P (0) = t, Q(0) = z + u

and so it is clear that x, y, z, t, u, v, w is just another set of coordinates for
the space spanned by X, Y , Z, η, h(0), P (0), Q(0). Thus, the universal flop
of length 2 and the D4 deformation with k = 2 coincide.

The classification theorem of [16], when specialized to flops of length 2,
asserts that for every flop Y 99K Y + of length 2, after shrinking Y there is a
map π : Y → ∆ to the unit disk ∆ and a map

(75) ρ : ∆ → PRes(ΓD4
−{central vertex})

such that the pullback via ρ of the deformation of D4 coincides with X,
and the pullback via ρ of the universal partial resolution coincides with Y .
Thus, since we have just shown that our universal flop of length 2 coincides
with the deformation of D4 over PRes(ΓD4

−{central vertex}), Theorem 3
will follow once we have verified that the Grassmann blowup in the case
k = 2, n = 4 gives the simultaneous partial resolution, i.e., once we have
verified Conjecture 3 in this case.
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Returning to the case of general n ≥ 4, we next show that the maximal
Cohen–Macaulay module associated to our matrix factorization is reducible
for a few special values of k (for each fixed n). To see this, we introduce the
following invertible change of basis matrices:

(76)

B0 :=




X − η Y Q(0) 1
−1 0 0 0

−Q(0) 1 0 0
Y 0 1 0


 , B1 :=




1 0 0 0
−X − η Y Q(0) 1
−Q(0) 1 0 0
Y 0 1 0


 ,

B2 :=




1 0 0 −1

2

0 1 −1

2
Z 0

0 0 1 0
0 0 0 −1


 , B3 :=




1 0 1 0
0 −1 0 1
1 0 −1 0
0 −1 0 −1


 .

When k = 1, we have P (Z) = 1, S(Z) = 0 and Q(Z) = Q(0), and we find
(77)

B0ΦB
−1
1 =




ϕ1 0 0
0 ϕ2 0
0 0 XI2 − ξ1



 , and B1ΨB
−1
0 =




ψ1 0 0
0 ψ2 0
0 0 XI2 + ξ1





where ϕ2 = ψ1 = 1, ϕ1 = ψ2 = X2 + Y 2Z + 2γY − F (Z), and

(78) ξ1 =

[
η −Q(0)Y −Z −Q(0)2

Y 2 − h(Z) −η +Q(0)Y

]
.

Thus, the rank 2 maximal Cohen–Macaulay module (Φ,Ψ) is a direct sum
of the rank 1 module (XI2 − ξ1, XI2 + ξ1) and the trivial modules (ϕ1, ψ1)
and (ϕ2, ψ2). This is to be expected, since the corresponding vertex in the
Dynkin diagram has coefficient 1 rather than 2.

When k = n, we have h(Z) = 0, η = 1 and we find

(79) B2ΞB
−1
2 =

[
ξ2 0
0 ξ2

]

where

(80) ξ2 =

[
−P (Z) Y − S(Z)

−Y Z + ZS(Z) − 2Q(Z) P (Z)

]

This time, the rank 2 maximal Cohen–Macaulay module (Φ,Ψ) is a direct
sum of two copies of the rank 1 module (XI2 − ξ2, XI2 + ξ2). Again, we
expected a rank 1 module due to the coefficient of this vertex in the Dynkin
diagram being 1.

Finally, for k = n− 1, we have h(Z) = 1 and we find

(81) B3ΞB
−1
3 =

[
ξ3 0
0 ξ4

]
,
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where

(82) ξ3 =

[
ηP (Z) +Q(Z) −Y + ηS(Z) + P (Z)

Z(Y − ηS(Z) + P (Z)) + 2ηQ(Z) ηP (Z) −Q(Z)

]

and

(83) ξ4 =

[
−ηP (Z) −Q(Z) −Y + ηS(Z) − P (Z)

Z(Y − ηS(Z) − P (Z)) + 2ηQ(Z) ηP (Z) +Q(Z)

]
.

This time there are two inequivalent summands of smaller rank, and indeed,
this subgroup of the Weyl group is not obtained by deleting a single vertex
from the Dynkin diagram. The two summands correspond to the two short
legs of the Dynkin diagram, and blowing up the given maximal Cohen–
Macaulay module will necessarily blow up both of the corresponding curves.

We are now ready to carry out the Grassmann blowup, in the case of k
between 2 and n − 2, inclusive. In the first chart, after using λ1 and λ2 to
eliminate α1,1 and α2,1, respectively, the Grassmann blowup is defined by the
ideal (λ1,2, λ2,2, λ3) where

(84) λ1,2 = Y − ηS(Z) + α1,2Q(Z) + α2,2P (Z)

allows us to eliminate Y , and

(85) λ2,2 = X + ηP (Z) − α1,2ZP (Z) + α2,2Q(Z)

allows us to eliminate X. The remaining generator is

(86) λ3 = α2
2,2 + α2

1,2Z − 2ηα1,2 − h(Z),

which defines the versal deformation of a Dn−k singularity,6 since h(Z) is a
monic polynomial of degree n− k − 1.

In the other chart, after using µ1 and µ2 to eliminate β1,1 and β2,1, re-
spectively, the Grassmann blowup is defined by the ideal (µ1,2, µ3,2, µ3). We
have

(87) µ3,2 = X − ηP (Z) − β1,2h(Z)P (Z) − β2,2(Y − ηS(Z))

which allows us to eliminate X on this chart, but

(88) µ1,2 = Q(Z) + β1,2(Y − ηS(Z)) + β2,2P (Z)

does not immediately allow elimination. The third generator is

(89) µ3 = β2
2,2 + Z − 2ηβ1,2 − β2

1,2h(Z).

6Note that we are including here the cases of D3 = A3 and D2 = A1 ∪A1, and that the
deformation theory works correctly in these “degenerate” cases.
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To understand the geometry of this chart, we follow an algebraic trick
introduced by Tyurina [26]7 and form the combination

(90) µ̃1,2 = µ1,2 −G(Z, β2,2)µ3.

where G is the polynomial from equation (68). We then use the defining
property for G to compute:
(91)
µ̃1,2 = (Y − ηS(Z))β1,2 + f(β2,2) + 2ηG(Z, β2,2)β1,2 +G(Z, β2,2)h(Z)β2

1,2

= (Y − ηS(Z) +G(Z, β2,2)h(Z)β1,2 + 2ηG(Z, β2,2))β1,2 + f(β2,2).

Thus, introducing the variable

(92) Ỹ = Y − ηS(Z) +G(Z, β2,2)h(Z)β1,2 + 2ηG(Z, β2,2),

we see that µ̃1,2 defines a versal deformation of an Ak−1 singularity:

(93) µ̃1,2 = Ỹ β1,2 + f(β2,2)

since f(U) is monic of degree k. Note that Z can be implicitly eliminated
using µ3 (i.e., equation (89)).

Thus, the Grassmann blowup of Ψ yields a space with a rational curve
lying over the origin, such that the central fiber has both an Ak−1 and a
Dn−k singularity along that curve, and the deformation induces versal de-
formations of these Ak−1 and Dn−k singularities—in fact, the same versal
deformations encoded by our invariant theory analysis. A precisely anal-
ogous thing happens if we blow up Φ instead of Ψ. (This is clear, since
x 7→ −x exchanges the two.) This proves Conjecture 3 in the Dn case, and
hence also proves Conjectures 1 and 2 for length 2, as well as Theorem 3.

Appendix: Matrix Factorizations for E6, E7, and E8

In this appendix, we present the Gonzalez-Sprinberg–Verdier matrix fac-
torizations for E6, E7, and E8. Gonzalez-Sprinberg and Verdier left some
of the entries in the matrices undetermined, and we have made choices for
these. We have also endeavored to make our matrices agree with those found
in Chapter 9 of [28], after substituting Y = x, Z = y, permuting the rows
and columns, and subjecting the matrices ϕ•

ℓ (defined below) to an overall
sign change.

We write the equation for the rational double point in the form

(94) f(X, Y, Z) = X2 + g(Y, Z),

7This is a variant of the original trick which Tyurina used to show the very existence
of simultaneous resolutions for deformations of Dn singularities.
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and consider a maximal Cohen–Macaulay module of length ℓ. Many such
modules can be described in terms of a matrix factorization of ℓ× ℓ matrices
over the ring C[Y, Z]

(95) ϕ•
ℓψ

•
ℓ = −g(Y, Z)Iℓ,

where • is a label (possibly empty) that is used to distinguish among different
modules of rank ℓ when needed. Out of these matrices, we construct

(96) Ξ•
ℓ =

[
0 ϕ•

ℓ

−ψ•
ℓ 0

]
,

which determines the matrix factorization

(97) (XI2ℓ − Ξ•
ℓ)(XI2ℓ + Ξ•

ℓ) = (X2 + g(Y, Z))I2ℓ

for the rational double point. In a few cases, the smaller matrices ϕ•
ℓ and ψ•

ℓ

do not exist, and we give Ξ•
ℓ directly.

For each rational double point, we have included a Dynkin diagram with
vertices labeled by ℓ or ℓ• to make the explicit McKay correspondence clear.

The problem of computing matrix factorizations (ϕ•
ℓ , ψ

•
ℓ ) for g(Y, Z) is

known as the computation of the Auslander–Reiten quiver [4], and it is in
that context that the computations in Chapter 9 of [28] are presented.

Case E6: g(Y, Z) = Y 3 + Z4.

Dynkin diagram:

t t t

t

t t

1+ 2+ 3

2

2− 1−

Matrices:

Ξ±
1 =

[
±iZ2 −Y 2

Y ∓iZ2

]

Ξ±
2 =




±iZ2 0 −Y 2 0
0 ±iZ2 Y Z −Y 2

Y 0 ∓iZ2 0
Z Y 0 ∓iZ2




ϕ3 =



−Y 2 −Z3 −Y Z2

Y Z −Y 2 Z3

Z2 −Y Z −Y 2


 ψ3 =



Y 0 −Z2

Z Y 0
0 −Z Y




ϕ2 =

[
Y 2 −Z3

−Z −Y

]
ψ2 =

[
−Y Z3

Z Y 2

]
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Case E7: g(Y, Z) = Y 3 + Y Z3.

Dynkin diagram:

t t t

t

t t t

2′ 3′ 4

2′′

3 2 1

Matrices:

ϕ′
2 =

[
Y 2 −Y Z2

−Z −Y

]
ψ′

2 =

[
−Y Y Z2

Z Y 2

]

ϕ′
3 =




Y 2 −Y Z2 Y 2Z

−Y Z −Y 2 −Y Z2

−Z2 −Y Z Y 2



 ψ′
3 =




−Y 0 Y Z
Z Y 0
0 Z −Y





ϕ4 =




0 0 Y 2 −Y Z2

0 0 −Y Z −Y 2

Y −Z2 0 Y Z
−Z −Y −Y 0


 ψ4 =




0 −Y Z −Y 2 Y Z2

Y 0 Y Z Y 2

−Y Z2 0 0
Z Y 0 0




ϕ3 =




−Y Z −Y 2 −Y Z2

Z2 Y Z −Y 2

−Y Z2 −Y Z



 ψ3 =




0 −Y Z Y 2

Y 0 −Y Z
Z Y 0





ϕ2 =

[
−Y Z Y 2

−Y −Z2

]
ψ2 =

[
Z2 Y 2

−Y Y Z

]

ϕ1 =
[
−Y 2 − Z3

]
ψ1 =

[
Y
]

ϕ′′
2 =

[
Y 2 −Y Z2

−Y Z −Y 2

]
ψ′′

2 =

[
−Y Z2

Z Y

]

Case E8: g(Y, Z) = Y 3 + Z5.

Dynkin diagram:

t t t

t

t t t t

2′ 4′ 6

3′′

5 4 3 2

Matrices:

ϕ′
2 =

[
−Z3 Y 2

−Y −Z2

]
ψ′

2 =

[
Z2 Y 2

−Y Z3

]
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ϕ′
4 =




0 −Z3 Y 2 0
−Z2 0 −Y Z −Y 2

Y Z2 0 −Z3

0 −Y −Z2 0


 ψ′

4 =




0 Z3 −Y 2 −Y Z2

Z2 0 0 Y 2

−Y 0 0 Z3

Z Y Z2 0




ϕ6 =




0 0 0 −Y 2 −Y Z2 −Z4

0 0 0 −Z3 Y 2 Y Z2

0 0 0 −Y Z −Z3 Y 2

−Y −Z2 0 0 0 −Z3

0 Y −Z2 Z2 0 0
−Z 0 Y 0 Z2 0




ψ6 =




0 0 Z3 Y 2 Y Z2 Z4

−Z2 0 0 Z3 −Y 2 −Y Z2

0 Z2 0 Y Z Z3 −Y 2

Y Z2 0 0 0 0
0 −Y Z2 0 0 0
Z 0 −Y 0 0 0




ϕ5 =




Z3 Y 2 0 0 0
0 −Z3 −Y 2 Y Z2 Z4

0 −Y Z Z3 Y 2 Y Z2

−Z2 0 −Y Z Z3 −Y 2

Y −Z2 0 0 0




ψ5 =




−Z2 0 0 0 −Y 2

−Y 0 0 0 Z3

0 Y −Z2 0 0
−Z 0 −Y −Z2 0
0 −Z 0 Y Z2




ϕ4 =




Z3 −Y 2 0 0
0 −Y Z Z3 Y 2

Y Z2 0 0
−Z 0 Y −Z2


 ψ4 =




−Z2 0 −Y 2 0
Y 0 −Z3 0
0 −Z2 −Y Z −Y 2

Z −Y 0 Z3




ϕ3 =



−Y 2 −Z4 −Y Z3

−Y Z Y 2 −Z4

−Z2 Y Z Y 2


 ψ3 =



Y 0 Z3

Z −Y 0
0 Z −Y




ϕ2 =

[
Y 2 −Z4

−Z −Y

]
ψ2 =

[
−Y Z4

Z Y 2

]

ϕ′′
3 =



−Y 2 −Y Z2 −Z4

−Z3 Y 2 Y Z2

−Y Z −Z3 Y 2


 ψ′′

3 =



Y Z2 0
0 −Y Z2

Z 0 −Y
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