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Laparoscopy is a minimally invasive alternative to traditional abdominal surgery.

Unlike traditional surgery, a laparoscopic procedure can be completed using small in-

cisions. The use of these small incision results in reduced pain to the patient, shorter

recovery times, and less trauma to skin, muscle and other tissues. However, these

benefits to the patient are offset by the increased difficulty to the surgeon performing

the procedure. These difficulties include reduced dexterity, reduced perception, and

longer procedure times. The use of small in vivo robotic devices in minimally invasive

surgery is one possible solution to these problems. The movement of these devices is

not constrained by the position of the entry incision, because the devices would be

completely intracorporeal. In addition to improving the quality of minimally invasive

surgery, devices such as these could be used to perform supervised autonomous sur-

gical tasks over a high latency communications channel. This dissertation discusses

the contributions of the author towards the goal of creating surgical robots that can

perform supervised autonomous surgical tasks. First, the design and testing of several

in vivo robotic devices is described. Next, experimental results using visual quality

metrics comparing in vivo cameras to laparoscopes are presented. Next, experiments

conducted with the cooperation of NASA during the NEEMO 9 mission are discussed.

These experiments compared the usefulness of in vivo robots to laparoscopes in simu-

lated surgical tasks. Next, a sterilizable camera device was designed, and then tested

in three survivable pig surgeries. The device was shown to cause no tissue damage or

infection, and was used as the sole visual feedback device for a laparoscopic cholecys-

tectomy. Finally, a prototype system was developed to demonstrate that a dexterous

manipulator device could be used to perform supervised autonomous surgical tasks.

A closed loop controller using visual feedback was implemented to control the robot.

Benchtop tests demonstrating supervised autonomous task completion are presented.

The author believes this work represents some work in using in vivo surgical robots

to automate surgical tasks.
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Chapter 1

Introduction

Laparoscopy is a minimally invasive alternative to traditional abdominal surgery.

Unlike traditional surgery, a laparoscopic procedure can be completed using small

incisions. The use of these small incisions results in reduced pain to the patient,

shorter recovery times, and less trauma to skin, muscle and other tissues. However,

these benefits to the patient are offset by the increased difficulty for the surgeon per-

forming the procedure. Because the incisions are small (1.06 cm-1.4 cm using a 10

mm trocar [1]), the surgeon has no direct access to the surgical environment, and

therefore must used specialized cameras and instruments to perform the procedure.

This means minimally invasive surgery is minimal access surgery from the surgeon’s

point of view [2]. The difficulties introduced include reduced dexterity, reduced per-

ception, and longer procedure times [2]. One possible solution to these problems is

the use of small in vivo robotic devices for minimally invasive surgery. Traditional

laparoscopic instruments have their movement constrained to pivot about the entry

incision. Small robotic devices could be contained entirely in the abdominal cavity,

and therefore the movement of these devices would not be constrained by the size or

position of the incisions.
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1.1 Literature Review

1.1.1 Minimally Invasive Surgery

The roots of minimally invasive surgery can be traced back to the 1800s with visual-

ization devices created by Bozzini in 1805 and Desormeaux in 1853 [3]. These devices

combined mirrors with candles or alcohol lamps to enable non-direct visualization of

internal anatomy. Following the invention of the electric light bulb in 1879 were the

first rigid endoscopes, first by Nitze and Leiter and then by von Mikulicz and Leiter.

These devices were used for urologic procedures as well as viewing the esophagus.

The first true laparoscopic procedure is credited to George Kelling in 1902. Kelling

developed a method for pneumoperitoneum to examine the abdominal cavity of a dog

using a Nitze device. In 1912, Hans Christian Jacobaeus, an internist from Stockholm,

reported on 115 patients who had laparoscopy used for various diagnoses. These early

endoscopes and laparoscopes had a high risk of thermal injury to abdominal tissues

due to the fact that the light source was placed at the distal end of the device.

Improvements to laparoscopy continued over the next several decades. Sharp

tipped trocars were introduced in 1920 by Orndoff. A foot pump operated insuffla-

tor was created by Goetze in 1921. The Veress needle was introduced in 1938 by

Hungarian physician Janos Veress. This needle was a good method of introducing

insufflation with a minimal risk of damage to abdominal organs and is still in use

today.

Laparoscopy began moving from diagnosis to therapeutic use in the 1930s. Fer-

vers, a gynecologist, used electrocautery to perform laparoscopic adhesiolysis in 1933.

In 1936, Boesch performed an endoscopic tubal ligation using electrocoagulation.

Ruddock performed 500 liver biopsies using a peritoneoscope, which increased the

diagnostic accuracy from 63.9% to 91.7%.
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Improvements to light sources and optics came in the 1950s. Fourestier introduced

a quartz light rod in 1952, and Harold Hopkins developed a system using flexible glass

fibers to transmit the image. Later, in 1957, Basil Hirschowitz developed a fiber optic

gastroscope that was less fragile than the rigid quartz light rod. These devices not

only improved color, brightness, and clarity but were also much safer than previous

devices, because the high temperature light source was not at the distal end of the

device.

Laparoscopy did not truly transition from a diagnostic tool to a therapeutic tool

until 1983, when German gynecologist Kurt Semm performed the first laparoscopic

appendectomy. Erich Muhe of Germany performed the first laparoscopic cholecys-

tectomy in 1985. In the United States, the first laparoscopic cholecystectomy was

performed in 1988 by Barry McKernan and William Saye. After this, laparoscopic

procedures quickly become an accepted method of performing surgery. Laparoscopic

surgery is now used for many different procedures including: antireflux surgery; her-

nia repairs; extraction of the spleen, adrenal glands, kidney, and liver lobes; and

colectomy for cancer.

1.1.2 Robotic Surgery

Although laparoscopic surgery is now widespread in use and has several advantages

over conventional open surgery, there are some disadvantages to its use. Because

laparoscopy is essentially “surgery from a distance”, the surgeon cannot directly touch

or manipulate the patient’s anatomy, which results in a lack of tactile feedback. Also,

the surgeon cannot directly observe the work he or she is doing, but must rely upon

a projection from a camera inserted through an incision. This results in a loss of

depth perception, because the three-dimensional operating field is projected to a two-

dimensional image on a monitor. The postures a surgeon must assume to perform
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this type of surgery can result in muscle fatigue and chronic injury [4]. Because of

these problems, several systems have been developed for aiding surgeons in performing

minimally invasive surgery.

In 1984, AESOP (Automated Endoscopic System for Optimal Positioning), the

first surgical robot to receive FDA approval for use in abdominal procedures, was

introduced [5]. This robot is used to hold and position a laparoscope, and is con-

trolled by the surgeon by means of voice commands. Studies done by urologists at

Johns Hopkins showed procedures done using the AESOP system had no increase in

operating time and that AESOP provided a significantly steadier camera platform

as compared to a human camera holder [6, 7]. The AESOP system can also be used

for solo surgeon procedures, where the primary surgeon is the only participant in the

operating field. Geis, et al. performed 24 laparoscopic hernia repairs, cholecystec-

tomies, and Nissen fundoplications in this manner with statistically similar procedure

times as with standard laparoscopic surgery [8]. These studies show that AESOP can

reliably replace a human camera holder and provide a stable camera platform during

laparoscopic procedures.

The Zeus robot (Computer Motion Inc., now owned by Intuitive Surgical) is a

surgical robotic system that was created primarily for endoscopic microsurgery [9].

It consists of two main components: a surgeon side system and a patient side robotic

system. The surgeon sits at a console and controls the robotic arms of the patient side

system using handles while viewing the endoscopic images on a screen. The robotic

system consists of two arms for instruments and a third (AESOP) for positioning

of the endoscopic camera. The Zeus system features hand tremor reduction and

filtering, motion indexing, and motion scaling to increase the precision and accuracy

of movement. In one study by Ghodoussi, et al., the Zeus system was used to complete

a porcine laparoscopic cholecystectomy with the patient in France and the surgeon
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in New York [9]. In another study, the Zeus system was used successfully perform

endoscopic coronary artery bypasses on six dogs, and later on two human patients [10].

The da Vinci surgical system from Intuitive Surgical is a tele-robotic surgical

system similar to Zeus, which consists of three parts. The first part is a control

console with two hand controllers and a 3-D display similar to a pair of binoculars.

The console also contains a computer for the entire system. The second component is a

tower that contains video equipment and the insufflation unit. The third component is

the robot itself. The robot has three arms, two of which hold laparoscopic instruments

and the third which holds the stereo laparoscope. Like Zeus, da Vinci enhances

dexterity with motion scaling, hand tremor filtering, and motion indexing. The cable

driven instruments on da Vinci move with seven degrees of freedom, with two degrees

of rotation. [11]. The imaging system, with two 5 mm scopes placed in a 12 mm

housing [5], can be used in 3-D mode. In this mode, the surgeon’s left and right eyes

view a separate video stream in the binocular display. This 3-D vision mode has been

shown to reduce errors by 93% and increase dexterity by 10-15%, as compared with

using the 2-D mode [12].

Da Vinci received FDA approval for use in general abdominal surgery in July 2000

and is the only system still commercially available. As of June 2008, there were 946

da Vinci systems installed worldwide [13]. The system does have several limitations,

cost being the greatest one. Each da Vinci system costs between $1.0 million to

$1.7 million, with annual service costs of $100,000 to $150,000, which makes them

unavailable to most hospitals. Also, the system can be cumbersome, requiring difficult

tool changes [14,15], significant set-up time, and significant operational space [16]. In

spite of these limitations, the system has gained significant use for certain procedures

such as radical prostatectomy.
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1.1.3 Robotic Endoscopes

While some research has focused on developing large robotic systems that remain

outside the body (e.g., AESOP, Zeus, da Vinci), other groups have focused on sur-

gical robots and video cameras that are completely in vivo. These devices are being

developed for both diagnostic and therapeutic purposes. The PillCam SB, developed

by Given Imaging Ltd., is a commercially available wireless video capsule that can

be swallowed by the patient. The device measures 11 mm x 26 mm and weighs less

than 4 grams [17]. The device contains a light source and imager and can transmit 2

images per second to an external sensor array worn by the patient. This device was

FDA approved in 2001 and is used to diagnose Crohn’s disease, small bowel tumors,

celiac disease, and gastrointestinal bleeding. A similar device, the Sayaka endoscope,

was developed by RF System Lab and entered clinical trials in the United States in

2008 [18]. This device captures 30 two-megapixel images per second and features

LEDs for illumination. The camera draws power through induction charging from a

vest worn by the patient. This vest also contains a wireless receiver that stores the

images for later analysis.

Researchers at the University of Washington are developing a tethered capsule

endoscope (TCE) system using a resonant fiber optic laser scanner, which fits into

a 6.4 mm swallowable capsule [19]. This device uses a piezoelectric tube to vibrate

the tip of a single mode optical fiber in a spiral motion while light is passed through

the fiber, illuminating the area to be imaged [20]. The reflected light is detected

by an external base station through separate multimode optical fibers. The base

station then reconstructs the final images at a 15 Hz frame rate. The device is being

developed as a low cost method of detecting esophageal cancer [21].

Hu et al. have developed an in vivo endoscope with pan/tilt capabilities [22]. This

device has a built-in LED light source, a CCD camera head, and can fit through a 12
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mm trocar. The device has been tested in a porcine model.

Other research has focused on developing devices for colonoscopy. Dario et al.,

have developed an actuation system based on shape memory alloy (SMA) pneumatic

microvalves capable of propelling a microrobot along the colon [23]. The device moves

by inchworm locomotion, achieved by vacuum suction clamping to the colon wall [24].

The device achieved speeds of up to 10 cm/min in a reconstructed colon model.

Breedveld describes an endoscope that uses a ‘rolling donut’ to traverse the colon

[25]. This device is constructed from three stents whose diameter and shape can be

changed to move in the colon. Kim et al. described a ‘smart colonoscope’ that includes

locomotive functions, auto-camera steering functions, and a human friendly user in-

terface [26]. This device, like the devices described by Dario et al., uses inchworm

motion to traverse the colon. This device’s user interface consists of a head mounted

display, eye tracking system with a micro-camera, and a joystick to manipulate the

colonoscope.

Menciassi et al. investigated both inchworm and sliding clampers for locomo-

tion [27]. These devices also used shape memory alloy springs to drive a steering

mechanism. Slatkin and Burdick developed a robotic endoscope to access the small

intestine [28]. This device uses a series of grippers and extensors to propel itself.

The grippers provide traction against the lumen wall while the extensors extend and

retract the space between the grippers. By using a computer to coordinate the mo-

tions of several segments, the device can move along the inside of the gastrointestinal

tract. Prototype devices tested in anesthetized pigs have shown that this type of

device could move through the small intestine.

Other research has focused on developing miniature robotic cameras for other

areas of surgery, such as heart surgery. Researchers at the Robotics Institute at

Carnegie Mellon are working on a robot that can move on the surface of a beating
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heart. The HeartLander consists of two body sections that can independently adhere

to the epicardial surface and translate during motion [29]. The device adheres to

the heart using suction, which is provided by an external pump via a tether. Visual

feedback from the device is sent via a 1.6 mm fiber optic endoscope running through

the tether. The device has been tested in several animal trials with no significant

epicardial damage.

1.1.4 NOTES

Laparoscopic surgery has been highly successful in reducing patient recovery time

and patient trauma. Natural orifice translumenal endoscopic surgery (NOTES) has

the potential to take these advantages a step further. In NOTES, external incisions

are completely eliminated, as the surgeon accesses the peritoneal cavity through a

natural orifice. The transition from laparoscopic surgery to NOTES has the potential

to further reduce patient pain and trauma as the transition from open surgery to

laparoscopic surgery did. Some of the first NOTES procedures were performed by

Kaloo et al. using a transgastric approach in animal models [30]. Five survival exper-

iments were performed on pigs in which the peritoneal cavity was accessed through an

incision in the gastric wall. Wagh et al. successfully performed transgastric oophorec-

tomy and tubectomy in porcine models in survival studies in 2006 [31]. Lima et al.

performed transvesical endoscopic thoracoscopy on six anesthetized pigs in survivable

surgeries [32].

Recently, there have been NOTES procedures successfully performed on humans.

These include a laparoscopically assisted transvaginal cholecystectomy [33], a transvagi-

nal cholecystectomy [34], and a transgastric cholecystectomy [35]. These studies have

demonstrated the feasibility of NOTES, but there are significant limitations. NOTES

is limited by the size of the natural orifice and the need for the instruments to be
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highly flexible in order to traverse these natural lumen. Also, according to Kalloo

et al., there are difficulties in determining orientation, applying off-axis forces, and

passing multiple tools through a single entrance point [36]. New instruments have

been developed to address these limitations, such as the TransPort system from USGI

Medical [37]. Completely in vivo devices have also been developed. These systems

are being developed as transitions to NOTES, enabling abdominal surgery using a

single incision. In these systems, multiple devices are introduced through a single

external incision. The Magnetic Anchoring and Guidance System (MAGS) is a sys-

tem that includes an intra-abdominal camera and instruments such as retractors and

cautery [38]. These instruments are held to the interior abdominal wall by external

magnets. Prototype NOTES devices have been developed at the University of Ne-

braska as a part of this dissertation, and will be discussed further in Sections 2.18,

2.19, and 2.20, as well as in Chapter 6.

1.1.5 Visual Servoing

There have been some efforts to develop surgical robots capable of performing some

tasks autonomously. Much of this research involves visual servoing, which combines

visual tracking and control theory. Some of the earliest work in visual servoing was

by Hill and Park, who used feedback information from a camera for real time control

of a robot [39]. Casals et al. were some of the first to apply visual servoing to surgical

robotics. They created a system to automatically position a laparoscope during a

surgical procedure [40]. This system consisted of a robot to hold a laparoscope, a

vision system, and a controller to generate robot trajectories. The vision system uses

multiple processors for edge extraction, straight line extraction, tool detection, and

measurement of tool position. The tools are marked with straight lines and rings to

facilitate detection. The controller uses the current tool and laparoscope positions to



10

calculate the robot trajectory for optimal placement of the laparoscope. Wei et al.

also designed a system to control the position of a laparoscope [41]. This system uses

color segmentation, rather than a shape detection implementation the Casals system

used, to track the position of surgical instruments. The controller uses the calculated

three-dimensional positions of the instruments to calculate commands for the robot

holding the laparoscope. A different method was developed by Krupa et al., who

used small LEDs attached to the tips of instruments for tracking position [42]. The

system also utilizes a custom laser pointer instrument holder to project laser dots

onto the surgical field to enable tracking even when the instrument tips are not in

the field of view of the camera. The controller uses the tracker data to command an

AESOP surgical robot to automatically position the laparoscopic instruments. Hynes

et al. are researching using a visually servoed robotic system to perform autonomous

surgical tasks such as suturing [43]. This system uses a stereo vision system with two

seven degree of freedom manipulators and has been demonstrated to be capable of

manipulating a length of thread using two grippers. Also, Zong et al. are working on a

visually servoed suturing system for keratoplasty (corneal grafting) [44]. This system

has successfully demonstrated guiding a needle to an objective point autonomously.

1.1.6 Tracking

In order to implement a surgical robotic system using visual servoing, it is necessary

to first develop a visual system for tracking joint position. Visual tracking involves

extracting motion information from image sequences. A simple method of motion

detection is image subtraction, where the difference of pixel values from two sequential

images are examined. If an object is moving relative to a stable background in the

image, this will show up as values significantly different from zero [45]. Gilbert et

al. describe an early video tracking system developed for the U.S. Army White
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Sands Missile Range [46]. This system used pixel intensity to classify each pixel as

target, plume, or background. The target is then separated from the background, and

location and orientation are calculated. These features are used to control the zoom,

azimuth, and elevation of the optics to keep the target in the field of view. Tao et al.

describe a method of tracking an unknown number of moving objects in video using

hidden Markov models [47]. This algorithm is able to track multiple objects with the

presence of clutter, while accounting for appearance/disappearance of objects due to

occlusion. Maccormick and Blake developed a method called probabalistic exclusion

principal, which solves the problem of multiple identical object tracking, in which the

trackers coalesce onto the same target [48]. Other methods of multiple object tracking

have been developed which use feature correspondence [49] and multiple hypothesis

tracking [50]. Uemura, et. al. describe a method of tracking using two-dimensional

color histograms in the hue-saturation plane of HSV color space [51,52]. This method

allows for a changeable color range for tracked objects. Stern and Efros describe a

similar method, which uses multiple color space models for tracking [53]. This method

improves tracker performance by dynamically switching between color space models

to adapt to changing illumination.

1.2 Dissertation Objective and Contributions

The objective of this dissertation is to demonstrate that in vivo surgical robots can be

used in minimally invasive surgery for visual feedback, and eventually for supervised

autonomous surgical tasks. Summaries of the animal surgeries where these devices

were used to both augment and replace conventional laparoscopic visual systems are

given. Experimental results showing that the in vivo cameras described here have

visual quality comparable to standard laparoscopes are presented. These experiments
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include quantitative comparisons using standard visual quality metrics and compar-

isons in completing simulated surgical tasks. Results from survivable animal surgeries

are presented which show that these devices are sterilizable, and can be used in surg-

eries without causing any tissue damage or infection. Finally, preliminary experiments

are discussed which suggest that these devices could be used to perform supervised

autonomous surgical tasks in situations where the patient is a great distance from a

trained surgeon. These experiments involve the design and testing of a system using

a visual tracker as positional feedback for a closed loop visual servoing system to

enable a prototype NOTES robot to complete supervised autonomous tasks.

The work of the author described in this dissertation contributes has two major

contributions to the area of research concerning the use of in vivo robots in minimally

invasive surgery.

1. Electrical design, software design, and testing of at least 19 different prototype

in vivo surgical robots.

2. Some of the first research in using in vivo robots to automate low level surgical

tasks.

The in vivo devices described in Chapter 2 all were a combination of mechanical

design, electrical design, software design. All of the electronics design for these devices

was the work of the author. This includes design of motor drivers, imager printed

circuit boards and all interface hardware. In addition this, all software design and

implementation for these devices was the work of the author. This includes firmware

design for Cypress PSoC and Microchip PIC microcontrollers and development of

control software implemented on a Windows based PC.

The research described in Chapter 6 is, to the author’s knowledge, some of the

first research done in the use of small in vivo surgical robots to automate low level
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tasks. The author designed the electronics which control the robot used in these

experiments. In addition, the author developed the software used to complete these

tasks. This involved developing a real-time visual tracking system, integrating an

existing stereo vision algorithm, and designing a PID controller to enable closed loop

position control of the surgical robot.

1.3 Dissertation Outline

The remainder of this dissertation consists of the following chapters. An overview of

all the in vivo robotic devices that were designed and tested as part of this disserta-

tion are described in Chapter 2. Electronic design and software are discussed, and a

summary of in vivo test results for each robot is given. Chapter 3 describes exper-

iments conducted to compare image quality of the in vivo robots described here to

image quality of a standard laparoscope. Several image quality metrics are used, in-

cluding MTF, color accuracy, and distortion. The NEEMO experiments are described

in Chapter 4. This project, which was a collaboration with NASA, investigated the

use of in vivo robots for long term space missions. Data were also gathered to per-

form statistical comparisons of standard laparoscopes and in vivo robots. Chapter 5

discusses the use of an in vivo robot used as sole visual feedback in multiple surviv-

able animal surgeries. Chapter 6 discusses using an in vivo dexterous manipulator

to perform supervised autonomous surgical tasks. This system uses a real-time vi-

sual tracker and a positional controller to show the feasibility of these tasks. Finally,

Chapter 7 discusses suggestions for improvements on the in vivo devices described

in this dissertation, including improvements to the visual tracker and stereo vision

components of the task completion system, and suggestions for improvements on the

NEEMO experiments to better prove the efficacy of these in vivo robots.



14

Chapter 2

In-Vivo Robots

This chapter discusses all the in vivo robots that were developed as a part of this

dissertation. A short description of each robot is given, with images and system block

diagrams provided. In vivo tests of each device was used in are also discussed. Tables

2.2 and 2.3 on pages 80-81 summarize all the robots described here. It should be

noted that the design and testing of these devices was a team project, and that the

work of the author relates to the electronics and software aspects of the design of

these robots, as well as systems integration and testing. Details of the mechanical

designs can be found in the work of Rentschler [54], Lehman [55], and Wood [56].

2.1 Manipulator (M3-20a)

The M3-20a robot is a three degree of freedom manipulator arm designed for the

manipulation of tissue during laparoscopic surgery. The device, shown in Figure 2.1,

has three 20 mm diameter resin joints powered by brushed DC motors with quadrature

encoders. A diagram of the control electronics is shown in Figure 2.2.

A PC containing a Motion Engineering (MEI) PCI-DSP [57] runs a MFC based

control program. MFC, or Microsoft Foundation Classes, is a library that wraps
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Figure 2.1: M3-20a Robot

Figure 2.2: M3-20a System Flowchart

the Microsoft Windows API in C++ classes to simplify application design. All the

Windows-based control programs subsequently discussed in this dissertation have

been developed using MFC. The program reads data from a standard universal se-

rial bus (USB) joystick, and sends commands to the MEI card. The PCI-DSP is a

PCI (Peripheral Component Interconnect, a standard personal computer expansion

bus) digital signal processor (DSP) based motion controller card, which can drive

up to 4 axes in open or closed loop configurations. In this setup, a simple velocity

controller was configured, with feedback coming from each motor’s integrated quadra-

ture encoder. The PCI-DSP generates an bipolar analog voltage output for driving
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motors, which is converted to pulse-width modulated (PWM, a modulation scheme

that involves varying the duty cycle of a square wave) and direction signals by a

custom motor driver printed circuit board, or PCB. This PCB features a Cypress

Programmable System on a Chip (PSoC) [58], which is configured to convert the

bipolar analog signal from the PCI-DSP to a PWM and direction output. The PWM

and direction signals drive an H-Bridge (a device consisting of 4 transistor switches,

which allows driving of the load in two directions) integrated circuit motor driver,

which in turn drives each motor on the robot.

The M3-20a was tested in vivo in an anesthetized pig on June 9, 2003. The device

successfully retracted a small section of liver, which showed that it could produce

enough force at the end effector to move tissue. However, the device proved too large

to operate effectively in the insufflated peritoneal cavity. Also, the lack of a stable

mounting platform hindered the device’s performance.

2.1.1 Author’s Contributions on M3-20a

The author’s contributions in the design and testing of the M3-20a were software

development, electronics hardware design, and in vivo testing. The details on these

contributions follow.

The Windows based PC control program mentioned in the previous section was

developed and tested by the author. The program was developed in Microsoft Visual

Studio using the previously mentioned MFC class library. The program was devel-

oped as a dialog based application. A screen capture of the dialog window is shown

in Figure 2.3. The Position Status section displays the current velocity, command

position, actual position, and error position, all read from the PCI-DSP motion con-

troller card. The Axis Status displays any error conditions reported by the PCI-DSP.

It contains buttons to reset error conditions and stop each axis individually. The
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Figure 2.3: M3-20a Control Software

Motion Control section allows for limited coordinated motion. The user enters indi-

vidual axis positions and these motions are executed by the motion controller. This

feature only allows for specifying absolute axis positions, not the Cartesian position

of the end effector.

A collaboration diagram of the C++ classes comprising the software is shown in

Figure 2.4. The CMotionControl class is a C++ wrapper for the PCI-DSP software li-

brary, which was written in C. It also provides data members and functions for storing

multi-point motion profiles generated by the user from the GUI. The CJoystick class

is used to read data from a USB joystick connected to the PC. The joystick interface

is through the DirectInput library contained in the Microsoft DirectX multimedia

library. These two classes are data members of the main dialog class, CManipulator-

JoystickDlg. This class implements a timer thread, updated at 33 Hz, which reads
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data from the joystick, updates the dialog indicators, and sends velocity movement

commands to the PCI-DSP.

Figure 2.4: M3-20a Class Diagram

The author also designed and tested printed circuit boards (PCBs) for interfacing

the analog output signal from the PCI-DSP to the small DC motors driving the M3-

20a robot. The first board, analog to PWM conversion (see Figure A.1 in Appendix

A), features two operational amplifier (op-amp) circuits for each of the three channels.

The first circuit scales the +/- 10 volt output signal to a +/- 2.5 volt signal. The

second circuit shifts this +/- 2.5 volt signal to a 0 to 5 volt signal. At the output

of these op-amp circuits is an 8-bit Cypress PSoC microcontroller. The firmware on

this microcontroller, also developed in assembly language by the author, reads in all

three analog signals using on-board analog to digital converters (with an input voltage

range of 0 to 5V), and converts each to PWM and direction signals. The second PCB

(see Figure A.2 in Appendix A) consists of FAN8200 dual motor driver integrated

circuits (ICs), along with several connectors for interface with the previous PCB and

with the motors on the device.

The author also set up the PC and all support hardware prior to the in vivo test

of this device. During the testing, the author controlled the device under direction of

the surgeon.
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2.2 Crawler (MR-15a-c)

The MR-15a, MR-15b (Figure 2.5) and MR-15c are 15 mm diameter, two wheel

crawlers used to investigate in vivo mobility. The bodies are resin from a rapid

Figure 2.5: Crawler (MR-15b)

prototyping process, with machined aluminum wheels. The wheel types are detailed

in Table 2.1. The wheels are independently driven by brushless DC (BLDC) motors.

Device Wheel Type

MR-15a Ball Screw Helical
MR-15b Rubber Windshield Wiper Blades
MR-15c Deep Helical Groove

Table 2.1: MR-15 Wheel Types

A block diagram of the drive electronics can be seen in Figure 2.6. The joysticks used

here are 2-axis miniature analog joysticks taken from a console game controller. The

analog conversion PCB contains a PSoC microcontroller that converts the joystick

signals to magnitude and direction signals for the BLDC driver PCBs. This enables



20

Figure 2.6: MR-15 System Flowchart

open loop velocity control of each crawler wheel.

The MR-15b was tested in vivo on June 9, 2003, in an anesthetized pig. The

crawler moved well on the liver, but easily wrapped around the soft tissue on the

bowels. The rubber treads were too adhesive for this tissue. Another problem was

the wire tether on the crawler, which limited its mobility.

The MR-15c was tested in vivo on April 9, 2004, in an anesthetized pig. A load

cell (an electronic device that converts force to a voltage signal) was also inserted

and connected to the MR-15c to measure the amount of drawbar, or pulling, force

generated by the robot on the liver, spleen, and bowel. The drawbar force tests

worked well until the right motor failed in the device. The MR-15c was also tested

on October 27, 2004, in the abdominal cavity of a human cadaver. The crawler

functioned properly, but there were significant movement problems. The rigid wheels

on the crawler could not achieve any traction on the slick, rigid organs. Another

major problem was high centering on the exposed middle body section of the robot.

In certain situations, the center of the robot became stuck on a section of tissue and

the robot was unable to generate enough torque to continue moving.
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2.2.1 Author’s Contributions on MR-15a-c

The author’s contributions in the design and testing of the MR-15b and MR-15c

robots were electronics hardware design, software development, and in vivo testing.

The details on these contributions follow.

An overview of the electronics hardware developed by the author for the MR-15b is

shown in Figure 2.7. The analog joysticks were taken from a console game controller.

Figure 2.7: MR-15b Electronics

They consist of two orthogonal potentiometers, of only one of which is used in this

application, which return to center when no force is applied. One joystick is used

for each wheel, to enable independent movement of each wheel. A 5 volt supply

is connected to each joystick, resulting in a 0 to 5 volt output. The joysticks are

connected to a PSoC microcontroller mounted on a prototyping breadboard. The

microcontroller converts each analog joystick signal to the magnitude and direction

signals required by the motor driver. The motor driver is a LB1981 brushless DC

motor driver. The driver is supplied on a PCB with all support circuitry needed

to drive a brushless DC motor, with an analog voltage input for speed and a single

digital input for direction. The motors on the MR-15b device is connected via a

tether to the output connector of the motor driver.

The software design for the MR-15b consisted of the firmware running on the

PSoC microcontroller, written in assembly language. The program ran in an endless

loop, continually reading the analog voltages and converting each to magnitude and

direction signals for driving the LB1981 boards.

The MR-15c shares a majority of the hardware design of the MR-15b, but with
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some differences, shown in Figure 2.8. The PSoC microcontroller and LB1981 BLDC

Figure 2.8: MR-15c Electronics

drivers remain the same, but in place of the analog joysticks is a USB joystick con-

nected to a PC running a control program. This program sends commands to a

USB to I2C (Inter-Integrated Circuit, a two-wire serial bus standard) converter. The

USB to I2C converter sends I2C commands to a MAX521 digital to analog converter

(DAC). The PSoC reads the analog signals from the DAC as with the joystick in the

MR-15b device.

The Windows control software was developed as a command line interface pro-

gram. A class diagram is shown in Figure 2.9 The i2cControl class is a simple wrapper

Figure 2.9: MR-15c Software

for the USB to I2C converter driver, which is provided as a dynamically loaded li-

brary (dll). The class dynamically loads the library and loads all needed functions.

The maxim521 class inherits i2cControl, and is the driver for communicating with

the MAX521 DAC. The robotControl class inherits maxim521 and provides higher

level functions for controlling the MR-15c robot. The CJoystick class, used in the

M3-20a software (Sec 2.1.1), is again used as a wrapper for the DirectInput joystick

interface. The main program creates an instance of both robotControl and CJoystick
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for accessing the robot and Joystick. The program includes modes for joystick control

of the MR-15c, PT-15b (see section 2.3), and MR-15c ramp motor speed generation

for measuring drawbar force.

In addition to the motor control hardware, the author implemented a circuit to

measure drawbar force generated by the MR-15c. A load cell was placed in vivo to

measure the drawbar force, and an external PCB was designed to amplify the load

cell signal. An LT1167 instrumentation op-amp was used to amplify the load cell

signal, which is digitized by a PC with a National Instruments data acquisition card

installed. A National Instruments Labview program was developed to acquire and

save the load cell data, which was analyzed after the in vivo test.

The author also set up all support hardware prior to in vivo testing of these

devices, with the exception of the MR-15a. During the testing, the author controlled

each device under direction of the surgeon, with the exception of the MR-15a.

2.3 Pan and Tilt (PT-15)

The PT-15 devices are 15 mm diameter, fixed base devices constructed of machined

aluminum. Each device has 2 permanent magnet direct current (PMDC) motors, one

of which rotates the main body cylinder axially, with the other tilting the imager/LED

mount. Both the a (Figure 2.10(a)) and b (Figure 2.10(b)) revisions have 2 white

LEDs (light emitting diode) mounted below the imager for illumination. The imager

on the PT-15a device is an off-the-shelf black and white analog NTSC (National

Television System Committee, an analog television format) format wired imager. The

imager on the PT-15b is a custom PCB with an Omnivision OV7930 NTSC camera

chip [59]. The lens is mounted on a threaded insert, which allows for manual changes

of the focus. The focus must be set prior to being inserted in the in vivo environment.
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(a) Pan and Tilt (PT-15a)

(b) Pan and Tilt (PT-15b)

Figure 2.10: Pan and Tilt Devices
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Figure 2.11 shows a block diagram of the drive electronics for the PT-15a and PT-

15b devices. A USB joystick connected to a Windows PC functions as the main user

input. The PC is running a command line program which allows the user to control

a PT-15 device and a MR-15c crawler from the same user interface. A keyboard

command enables the user to switch joystick control between the PT-15 and MR-15

devices. Based on joystick and keyboard commands, the program sends data to a

USB to I2C converter board. This board interfaces with a custom PCB with an I2C

digital to analog converter (DAC). The DAC drives the analog to PWM driver and

PMDC H-bridge drivers, which drive the DC motors on the robot.

Figure 2.11: PT-15 Block Diagram

The PT-15a was tested on February 21, 2004 in an anesthetized pig. The pan-tilt

functionality worked well. The camera returned a good image, but achieving the

correct focus was a problem. Prior to insertion, the focus was set, but it was not

correct. In order to obtain a better quality image, the researchers decided to finish

the procedure as an open procedure, using one large incision rather than the small

incisions a laparoscopic procedure would use. This allowed the researchers to adjust

the focus of the camera to obtain a better quality image, which allowed the surgeon

to complete the procedure.

The PT-15b was tested in vivo on April 9, 2004. The pan-tilt functionality again

worked well. The new Omnivision camera returned a good image, but the focus prob-

lems were still present. Resolution and color reproduction tests were also conducted.
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2.3.1 Author’s Contributions on PT-15a-b

The author’s contributions in the design and testing of the PT-15a and PT-15b robots

were electronics hardware design, software development, and in vivo testing. The

details on these contributions follow.

The author designed and tested the I2C DAC board and integrated it with the

analog to PWM and motor driver boards. The Windows control software developed

for the MR-15c (see Figure 2.9 in Section 2.2.1) also controlled the PT-15a and b

devices. The author also designed the imager PCB on the PT-15b (see Figure A.3 in

Appendix A), which was the first of the devices described in this dissertation with a

custom designed imager. This was the first PCB with the Omnivision OV7930 imager.

The PCB measures 0.502 inches by 0.807 inches and contained the OV7930 imager,

as well as a 14.31818 MHz oscillator and two white light emitting diodes (LEDs) for

illumination. It requires a 5 volt power supply and has analog video output.

The author also set up all support hardware prior to in vivo testing of these

devices. During the testing, the author controlled each device under direction of the

surgeon.

2.4 Wireless Camera (WC-15a)

The WC-15a is a passive, wireless camera made of machined plastic. It is attached

to the inner abdominal wall by means of a wire barb, see Figure 2.12. The device

is entirely passive, with no motors for movement. The main PCB contains a voltage

regulator and an Omnivision OV7930 NTSC camera chip. The video output from

the camera board is sent to an off-the-shelf wireless video transmitter. The device is

powered by three batteries.

The WC-15a was tested in vivo on April 9, 2004. Attaching the device to the
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Figure 2.12: Wireless Camera (WC-15a)

inner abdominal wall using the wire barb was cumbersome. As with previous devices,

the difficulty in changing focus made obtaining a good video image time consuming.

However, when the camera was adjusted to the correct focus, the video quality was

acceptable.

2.4.1 Author’s Contributions on WC-15a

The author’s contributions in the design and testing of the WC-15a robot was elec-

tronics hardware design and in vivo testing. The details on these contributions follow.

The wireless video transmitter used in WC-15 requires a 9V power supply. Three

3 volt batteries (see Figure 2.12) were used in series for the power supply. A round

PCB was designed and fabricated which made contact with the negative terminal of

the battery pack. The positive terminal was connected to the battery PCB by a short

length of wire. The battery PCB has a one contact receptacle which mates with a pin

on the imager PCB to supply 9 volts to the board. The ground connection is made
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with a short length of wire. The wireless transmitter fits between the imager PCB

and the battery PCB and connects to the imager PCB for power, ground and video.

The electronics are placed in the plastic tube prior to testing.

The author also set up all support hardware prior to in vivo testing, including a

receiving antenna, wireless reciever, and video recording and display devices.

2.5 Adjustable Focus (AF-20a)

The AF-20a device is a fixed base camera, built to test an remotely adjustable focus

mechanism. The focus is adjusted by a BLDC motor which is connected to the

Figure 2.13: Adjustable Focus (AF-20a)

PCB in an aluminum mount. The PCB contains an OV7930 imager, LED driver

and two white LEDs. The external interface connector routes power, NTSC video,

serial camera control bus (SCCB), and BLDC connections. A block diagram of the
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system is shown in Figure 2.14. The AF-20a device was an important step forward

Figure 2.14: AF-20a Block Diagram

in the improvement of in vivo imaging in two respects. First, this device was the

first with an remotely adjustable focus. Previously, the camera devices had to be

placed at a fixed distance from the area of interest to achieve an in-focus image.

With the AF-20a, the camera could be focused on areas of varying distance easily.

The second improvement was image adjustment. The OV7930 imager has several

internal registers used to adjust image characteristics such as contrast, saturation,

tint, and brightness. This enabled the researchers to improve the video quality from

the device. The AF-20a was tested in vivo on December 1, 2004. The adjustable

focus mechanism worked well enough to verify the proof of concept; however, there

was some sticking in the mechanism that caused some difficulty. The camera settings

adjustments were very beneficial in improving image quality. An image capture from

the device can be seen in Figure 2.15.

2.5.1 Author’s Contributions on AF-20a

The author’s contributions in the design and testing of the AF-20a robot were elec-

tronics hardware design, software design, and in vivo testing. The details on these

contributions follow.
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Figure 2.15: AF-20a In vivo Gall Bladder Image

Figure A.4 in Appendix A shows a schematic of the PCB designed by the author

for the AF-20a robot. This board features a OV7930 imager and support components,

as well as connectors for passing the brushless motor signals to the focus motor. The

user interface designed for the AF-20a robot is shown in Figure 2.16. It allows the

user to change gain, color balance, hue, saturation, brightness, exposure, sharpness,

horizontal flip, and vertical flip. It was developed in Microsoft Visual Studio using the

MFC library. The class diagram for the AF-20a control software is shown in Figure

2.17. The main dialog class, Dlg OV7930, controls all GUI properties. The ov7930

class serves as an interface to the high level imager functions, such as brightness and

exposure. This is derived from ovSccb, which generates low level serial commands

for the imager. The i2cControl class communicates with the USB to I2C converter

board, which sends commands to the imager IC.

The author also set up all support hardware prior to in vivo testing of this device.

During the testing, the author controlled each device under direction of the surgeon.
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Figure 2.16: AF-20a User Interface

Figure 2.17: AF-20a Software
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2.6 Crawler (MR-20a)

The MR-20a is a 20 mm crawler with aluminum wheels. Due to high centering

problems with previous crawlers, the MR-20a was designed with a very small space

between the wheels. Because the main purpose of this device was to find solutions to

mobility problems, this device had no camera system. Two externally driven brushed

DC motors are used to drive the wheels. The system setup is similar to the PT-15

device (Fig 2.11).

(a) Helical Wheels (b) Male Wheels

Figure 2.18: Crawler (MR-20a)

The MR-20a was tested in vivo on December 17, 2004. Two different sets of

wheel treads were tested, a male profile with 8 grousers (Figure 2.18(b)) and a helical

profile with 10 grousers (Figure 2.18(a)). The male wheel performed poorly because

its grousers were too thick, which caused it to behave like a smooth wheel with little

traction. The helical wheel performed much better, and was able to traverse the

bowel and other organs. The control scheme was also found to be flawed. Up to

this point, the joystick value (0% to 100%) was directly mapped to the PWM duty

cycle. When the joystick was actuated, the rotational speed of the wheels increased

too rapidly and the wheels had a tendency to ‘spin’ while gaining no traction. This
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test demonstrated that finer control of speed was needed.

2.6.1 Author’s Contributions on MR-20a

The author’s contributions in the design and testing of the MR-20a robot were elec-

tronics hardware design and in vivo testing. The details on these contributions follow.

The MR-20a control hardware consisted of a modified MR-15c setup (see Figure

2.19). This existing setup was modified by using the M3-20a analog to PWM and

Figure 2.19: MR-20a Block Diagram

motor driver PCBs in the place of the BLDC drivers. This allowed the MR-15c

software to be used for control without any modifications.

The author also set up all support hardware prior to in vivo testing of these

devices. During the testing, the author controlled each device under direction of the

surgeon.

2.7 Crawler (MR-15d)

The 4th generation of the 15 mm crawler (Figure 2.20) features aluminum helical

profile wheels with a small gap between them. This device also has a new spring

tail to aid in maneuverability. Like the MR-20a, this device has no camera system,

only two externally driven brushed DC motors. After the control problems with the

previous MR-20a device, a new joystick mapping technique was implemented by the
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Figure 2.20: Crawler (MR-15d)

author for this crawler. A screenshot of this mapping feature can be seen in Figure

2.21. The graph in the left of the dialog box displays the current mapping, with the

joystick input magnitude value on the x-axis and the output value on the y-axis. The

output value is scaled by a factor of 10 which results in the PWM output duty cycle.

The controls on the right side of the dialog box enable the user to define either a

piecewise linear or a third order polynomial mapping. The MR-15d was tested in

vivo on January 21, 2005. The device was able to traverse the liver, spleen, small

bowel and large bowel easily and without causing tissue damage. The new joystick

mapping function was a great improvement in controlling the crawler, allowing finer

control of the wheel speed which reduced the chance of wheel slippage. The helical

wheel shape and use of a spring tail were confirmed to facilitate the best mobility

in the in vivo environment. The MR-15d was also tested in vivo on July 22, 2005.

This test was used to gather drawbar force information using a load cell. A load cell

was attached to the crawler, with the other end held stationary by the surgeon. A

ramping PWM signal was sent to the device while the drawbar force was recorded by

the computer.
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Figure 2.21: Joystick Mapping GUI

2.7.1 Author’s Contributions on MR-15d

The author’s contributions in the design and testing of the MR-15d robot were elec-

tronics hardware design and in vivo testing. The details on these contributions follow.

The electronics driving the MR-15d robot was a new setup designed and tested

by the author, shown in Figure 2.22. A new PCB, the PIC driver PCB, was designed

Figure 2.22: MR-15d Drive Electronics

and tested (see Figure A.5 in Appendix A). This PCB contains a RS-232 level shifter

to convert RS-232 voltage levels to TTL voltage levels. A PIC microcontroller, from

Microchip [60], reads serial commands from a host PC and generates PWM signals
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which drive the M3-20a motor driver PCB. These drivers actuate the motors on the

MR-15d robot. The PIC driver PCB was designed to drive several different types of

robots, and contains an OV7930 imager interface, as well as capability for driving a

camera focusing actuator. The firmware on the microcontroller generates all signals

for these interfaces based on serial commands from a host PC.

The control software for the MR-15d was also an improvement over previous con-

trol software. A new Windows based GUI was developed by the author using the

MFC library, and is shown in Figure 2.24. This software featured the new joystick

mapping system, discussed previously, as well as the capability of generating motor

ramping profiles for tests measuring drawbar force. The collaberation diagram for

Figure 2.23: MR-15d Collaboration Diagram

this new software is shown in Figure 2.23. The previously mentioned CJoystick class

is a wrapper for the DirectInput library and includes functions for configuring and

reading data from a USB joystick. The crawlerCam class includes functions for read-

ing and writing the configuration registers of a OV7930 imager. The Comm32Port

class provides an interface to a serial port, but was not developed by the author [61].

The crawlerControl class inherits the Comm32Port and crawlerCam base classes and

provides functions for motor control, focus actuator control, and camera control. The

CCrawlerControlDlg class is the main dialog class. It instantiates CJoystick and

crawlerControl objects to interface with a USB joystick and a MR-15d or MR-20b
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robot device. This class also updates all GUI objects in the main dialog. This new

control software was developed to control both the MR-15d and MR-20b robots,

which were designed and built concurrently. The MR-15d, which has no imager or

focusing actuators, only required the motor drive functions for operation.

The author also set up all support hardware prior to in vivo testing of this device.

During the testing, the author controlled the device under direction of the surgeon.
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Figure 2.24: Crawler Control: Main window
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2.8 Crawler (MR-20b)

The MR-20b adds a camera board to the MR-20a device. The crawler requires a 10

mm wide ribbon cable for camera signals and power, in addition to the existing motor

wires. This device does not incorporate adjustable focus capabilities, due to space

constraints. The software used to control the MR-15d is used to control this device.

The MR-20b was tested in vivo on January 21, 2005. The movement of the device

was severely limited by the addition of the flat ribbon cable. The additional wires

also had a tendency to elevate the tail of the device, which forced the camera to tilt

down about 10◦. The camera functioned returned an image that was observed to be

acceptable, but the lens was smudged easily.

2.8.1 Author’s Contributions on MR-20b

The author’s contributions in the design and testing of the MR-20b robot were elec-

tronics hardware design and in vivo testing. The details on these contributions follow.

An imager PCB was designed and fabricated for the MR-20b robot. It contains a

OV7930 imager and support components for the imager (see Figure A.6 in Appendix

A). The drive electronics used for the MR-15d device were also used for the MR-20b

device. Since the MR-20b included an imager, the OV7930 serial camera interface

on the PIC driver PCB was used to control imager settings. The control software

Figure 2.25: MR-20b Drive Electronics
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developed for the MR-15d was also used to control the MR-20b. The MR-20b took

advantage of the camera control settings to enable adjustment of the video image

during testing.

The author also set up all support hardware prior to in vivo testing of this device.

During the testing, the author controlled the device under direction of the surgeon.

2.9 Tilt Camera(T-15a)

The T-15a is a fixed base camera device with tilt capability. The device rotates

about a point roughly in the middle of the main body tube to adjust the angle of the

camera from 0◦ (Figure 2.26(a)) to about 45◦ (Figure 2.26(b)). The T-15a also has

an adjustable focus mechanism, built in LEDs for illumination, and a small handle

to grasp the device using a laparoscopic tool.

(a) Tilt = 0◦ (b) Tilt = 45◦

Figure 2.26: T-15a Fixed Base Camera

The T-15a was tested in vivo on March 18, 2005. There was difficulty in placing

the device due to the top heavy design and the freely swinging tilting mechanism.
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Also, the tripod base was unstable on the uneven surface. The tilting mechanism

and LEDs functioned as designed. The camera functioned well initially, but quickly

became cloudy. After the test, the lens was found to have fluid in it, which resulted

in the cloudy image.

2.9.1 Author’s Contributions on T-15a

The author’s contributions in the design and testing of the T-15a robot were electron-

ics hardware design and in vivo testing. The details on these contributions follow.

An imager PCB was designed and fabricated for the T-15a robot. The schematic

is identical to the MR-20b imager PCB (see Figure A.6 in Appendix A), but a new

circuit board layout was designed to be compatible with the different mechanical

design of the T-15a device.

The T-15a used the same drive electronics (Figure 2.27) and control software as

the MR-20b and MR-15d. The tilt actuation is controlled from the joystick, and the

focus actuator is controlled by two pushbuttons in the GUI. The author also set up

Figure 2.27: T-15a Drive Electronics

all support hardware prior to in vivo testing of this device. During the testing, the

author controlled the device under direction of the surgeon.
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2.10 Crawler (MR-20c)

The MR-20c (Figure 2.28) is a 20 mm diameter crawler. It features a Omnivision

OV7930 imager, two drive motors, and focusing capability. A block diagram of the

electronics can be seen in Figure 2.29. To reduce the number of external wires needed,

the control and motor drive electronics are integrated into the robot using two PCBs.

PCB 1 contains a PSoC microcontroller and FAN8200 H-Bridge ICs to control the

three motors on the device. PCB 2 contains the OV7930 imager and was similar in

design to previous OV7930 PCBs. The robot is connected externally to a control box,

which provides power, control signals, and a video interface. The control box serves

to provide power to the device, as well as send control signals from the PC to the

device. The control box is connected via a RS232 serial interface to a PC running

a control program. The crawler movement commands are input via a USB joystick

attached to the PC.

Figure 2.28: Crawler (MR-20c)

The MR-20c was tested in vivo on September 12, 2005 in a canine surgery con-

ducted at the University of Rochester Medical Center. Two procedures, a prostatec-
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Figure 2.29: MR-20c Block Diagram

tomy and a nephrectomy, were completed using the MR-20c and the T-15b (Section

2.11) with the laparoscope for visual feedback. Two MR-20c devices were available

for the procedures. The mobility of the MR-20c was still hindered by thin tissues,

such as the omentum. The focusing on one device failed, and one of the wheels on

the other device was not functioning properly. The devices were used to view the

abdominal wall, assist with proper trocar placement, and provided the surgeon with

multiple viewing angles [62]. The devices provided the surgeon with an additional

frame of reference not available with a standard endoscope.

A variant of the MR-20c, seen in Figure 2.30, was also built. This device was used

in the NEEMO experiments in March, 2006, that will be fully described in Chapter

4. The only difference in this variant was the wheel shape, which was grooved with

rubber washers placed in the grooves to facilitate movement in the simulator box

which was constructed for the NEEMO experiments.

2.10.1 Author’s Contributions on MR-20c

The author’s contributions in the design and testing of the MR-20c robot were elec-

tronics hardware design and in vivo testing. The details on these contributions follow.

As previously mentioned, the MR-20c contained two separate PCBs: one with
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a microcontroller and motor drivers and one with an imager. A schematic of the

microcontroller/motor driver PCB can be seen in Figure A.7 in Appendix A. The

schematic of the imager PCB is identical to previous OV7930 PCBs and can be seen

in Figure A.6.

An control box for the MR-20c robot was also designed and built by the author.

This control box allows for control of a MR-20c and a T-15b tilt camera simultane-

ously. This control box is shown in Figure 2.31. The control box has a two line liquid

crystal display (LCD) for displaying status information to the user, a rotary selector

switch for selecting the device to control, another rotary control for LED brightness

adjustment, a switch for actuating the camera focus and T-15b tilt adjustment, and

a power switch. The device is powered from a 12 volt wall adapter and connects to a

PC via a RS-232 serial cable. The schematic for the control box PCB can be seen in

Figures A.9 and A.10, with a block diagram shown in Figure 2.32. The PC communi-

cates with the control box via a RS-232 serial connection. The main processor of the

control box is a RCM3200 core module, featuring a Rabbit 3000 microcontroller [63].

The MR-20c device is connected directly to the RCM3200 over a two-wire serial link.

The RCM3200 translates joystick data and imager commands from the PC to com-

mands for the MR-20c robot. The control box also serves as the user interface to the

Figure 2.30: MR-20c (NEEMO variant)
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Figure 2.31: MR-20c/T-15b Control Box

T-15b robot. The RCM3200 generates PWM signals for a FAN8200 motor driver,

which drive the focus and tilt motors on the T-15b. A PIC16F873 microcontroller

from Microchip is connected to the RCM3200 via another two-wire serial bus. The

PIC16F873 is capable of controlling up two four separate OV7930 imagers, although

only one is used in this setup. The function switch and tilt/focus switches are con-

nected to a Maxim MAX7311 I2C port expander, which allows the RCM3200 to read

in multiple digital signals over a single I2C connection. The control box is also ca-

pable of controlling an separate LED light source, used in the NEEMO experiments

(see Chapter 4). A quadrature encoder is used as a brightness control, and is read

directly by the RCM3200’s built in quadrature decoder. Finally, a LCD is connected

to the RCM3200’s external data bus. The LCD is used for displaying status messages

to the user.

The software on the MR-20c device was written in C and assembly language by
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Figure 2.32: MR-20c/T-15b Control Box Block Diagram

the author. The software initializes the OV7930 imager and then starts an loop,

waiting for an external command to arrive. When a command arrives, the software

parses it and generates either motor signals for the drive motors or focus actuator, or

a camera command for the OV7930 imager.

The software on the control box was written in C. A flowchart of the program is

shown in Figure 2.33. The program first checks for a joystick command packet and

processes it if one is present. It then reads in the current state of the LED brightness

control, mode switch, and tilt/focus switch. The LCD is then updated with status

information. The program then updates the appropriate device based on the state of

the mode and tilt/focus switches.

The author also set up all support hardware prior to in vivo testing of the MR-20c
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Figure 2.33: Control Box Software

device. During the in vivo testing, the author controlled the device under direction

of the surgeon.

2.11 Tilt Camera(T-15b)

The T-15b (Figure 2.34) is a 15 mm tilt camera device. Electrically, it is identical

to the T-15a device. There are some mechanical changes that deal with the tilting

mechanism, handle, and sealing of the device. The T-15b is connected to the same

control box as the MR-20c. Unlike the MR-20c, this device does not have an on-board

controller or motor driver, due to space constraints. A block diagram of the T-15b

system can be seen in Figure 2.35.

The T-15b was tested alongside the MR-20c on September 12, 2005, in the canine

surgery described in Section 2.10. The video quality was sufficient to aid in trocar

placement and providing additional viewing angles during the procedures, but the

lens had to be changed after the first lens became cloudy due to a leak. The tilting

functionality was acceptable, and focusing mechanism was functional. As with the

MR-20c, this device provided the surgeon with an additional frame of reference not

available with a standard endoscope.
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Figure 2.34: Tilt Camera (T-15b)

Figure 2.35: T-15b Block Diagram

A variant of the T-15b, seen Figure 2.36, was also built. The only change was the

handle and LEDs on the top of the device were replaced with a flat cap.

This device, along with the MR-20c, was used in the NEEMO experiments in

March, 2006, that will be fully described in Chapter 4.

2.11.1 Author’s Contributions on T-15b

The author’s contributions in the design and testing of the robot were electronics

hardware design and in vivo testing. A schematic of the OV7930 imager PCB can be

seen in Figure A.6. The T-15b robot shares control hardware and software with the
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Figure 2.36: T-15b NEEMO variant

MR-20c device. Details of this hardware and software can be found in Section 2.10.1.

The author also set up all support hardware prior to in vivo testing of the T-15b

device. During the in vivo testing, the author controlled the device under direction

of the surgeon.

2.12 Biopsy Crawler (BMR-22a)

The BMR-22a (Figure 2.37) is a 22 mm crawler with aluminum helical profile wheels.

The device is externally powered and controlled. It features a camera based on the

Omnivision OV7930 imager and a biopsy grasper. This grasper is used to sample a

specific piece of tissue for later analysis. A block diagram can be seen in Figure 2.38.

User input is from a USB joystick and an on-screen GUI running on the host PC. The

robot and PC interface over a serial link. A PSoC controller on the robot interprets

commands from the PC and commands the OV7930 imager and the FAN8200 H-

Bridge motor drivers, which drive the drive wheels and the biopsy arm actuator.
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Figure 2.37: BMR-22a Biopsy Crawler

Figure 2.38: BMR-22a Block Diagram

The BMR-22a was tested in vivo December 14, 2005. The goal was to demonstrate

tissue manipulation by taking a sample of liver tissue. This goal was accomplished,

as the device successfully sampled the liver twice. The BMR-22a was also successful

in traversing several tissues, including liver and small bowel.

2.12.1 Author’s Contributions on BMR-22a

The author’s contributions in the design and testing of the robot were electronics

hardware design and in vivo testing. The details on these contributions follow.
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The author designed and tested a PCB for the BMR-22a robot. The schematic

for this board can be seen in Figure A.11 in Appendix A. The functionality of this

board is similar to the two board combination found in the MR-20c robot (see Section

2.10), except the third motor driver is used to drive the biopsy actuator instead of a

camera focus actuator. The control box described in Section 2.10.1 is used to control

the BMR-22a robot.

The author also set up all support hardware prior to in vivo testing of the BMR-

22a device. During the in vivo testing, the author controlled the device under direc-

tion of the surgeon.

2.13 Wireless Crawler (WMR-22a)

The WMR-22a (Figure 2.39) is a 22 mm crawler with aluminum helical profile wheels.

The device is battery powered and receives motor commands over a wireless link from

the host computer. A block diagram of the WMR-22a can be seen in Figure 2.40. The

user controls the crawler from a USB joystick, which is connected to a PC running

a control program. The wireless transceiver is connected to the PC via a RS-232

link. The crawler commands are received by the transceiver on the WMR-22a device.

These commands are sent to the PSoC controller over a two-wire serial link. The

PSoC controller converts these commands to PWM commands for the FAN8200 H-

Bridge IC, which drives the motors on the robot. Due to space constraints in the

robot and lack of a suitable wireless video transmitter, a camera was not included on

this device.

The WMR-22a was tested in vivo on December 14, 2005. The goal was to test

wireless transmission of motor commands. The wireless transmission of commands

was intermittent, but the robot worked well when the transmission was good. The
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Figure 2.39: WMR-22a Wireless Crawler

Figure 2.40: WMR-22a Block Diagram

transmission was much better when the transmitting antenna was placed inside the

abdomen of the pig, indicating that the transceivers did not have enough power to

transmit through the abdominal wall. The mobility of the device was hindered by the

use of shorter wheels, which caused the crawler to frequently become high centered.

This device did prove that wireless control of these in vivo robots is possible.

2.13.1 Author’s Contributions on WMR-22a

The author’s contributions in the design and testing of the robot were electronics

hardware design and in vivo testing. The details on these contributions follow.

The author designed and tested a PCB for the WMR-22a robot. The schematic
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for this board can be seen in Figure A.12 in Appendix A. The control box described

in Section 2.10.1 is used to control the WMR-22a robot.

The author also set up all support hardware prior to in vivo testing of the WMR-

22a device. During the in vivo testing, the author controlled the device under direc-

tion of the surgeon.

2.14 Crawler (MR-12a)

The MR-12a is a 12 mm crawler designed to demonstrate natural orifice surgery with

in vivo robots. It has aluminum wheels, 2 PMDC motors, but no other electronics

(See Figure 2.41).

Figure 2.41: MR-12a Endoluminal Crawler

The MR-12a was tested in vivo on December 14, 2005. The device was introduced

into the stomach through the esophagus. An incision in the stomach was created, and

the device was introduced into the abdominal cavity. The crawler then traversed the

abdominal cavity. The crawler was then moved back into the stomach, and retrieved

back through the esophagus. The device performed well throughout the test, in spite

of rigorous handling and use in very wet conditions.
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2.14.1 Author’s Contributions on MR-12a

The author’s contributions in the design and testing of the robot were electronics

hardware design and in vivo testing. The details on these contributions follow.

The control box described in Section 2.10.1 is used to control the MR-12a robot.

The software on the control box was modified by the author to add a mode for

controlling a simple mobile robot with two drive motors.

The author also set up all support hardware prior to in vivo testing of the MR-12a

device. During the in vivo testing, the author controlled the device under direction

of the surgeon.

2.15 Mobile Camera (MRC-100)

The Mobile Robotic Camera, or MRC-100, is a mobile camera device. These were

designed to be sterilizable and easier to mass produce than previous robots. Two

versions were built: Version A (Figure 2.42) has a metal body and machined plastic

wheels and Version B (Figure 2.43) has an all plastic body and wheels. The drive

electronics are similar in both versions (see Figure 2.44). Each has two PMDC motors

for movement, a CMOS imager, focusing capability using a voice-coil motor type

actuator, a Atmel AT89C5131 microcontroller [64], and a TB6557 H-Bridge chip from

Toshiba [65]. The AT89C5131 is a 8051 based device with full speed USB controller

on-board. It also features a UART, 5 PWM channels, and an internal oscillator. The

TB6557 device contains four H-bridge drivers, used for driving the motors; and two

constant current drivers, one of which drives the focusing actuator. It interfaces with

the microcontroller via a three-wire serial interface and independent PWM channels.

The imager used is a MT9V125 from Micron [66]. The color CMOS sensor has a

640x480 pixel array with NTSC video output. The MT9V125 is a 1/4 inch optical
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format imager housed in a 52-Ball IBGA package, measuring 9 mm x 9 mm. It features

color correction, auto white balance, gamma correction, and black level conditioning.

It communicates with the microcontroller via a two wire serial interface. The imager,

microcontroller, and motor driver are all integrated on a custom PCB. A six conductor

cable connects the device to an external breakout box (added after the April 10, 2007

test), which provides a USB port for connecting to a host PC, a RCA jack for video

output, and a power input jack.

The software on the microcontroller configures the device as a virtual serial port.

The operating system on the control PC identifies the device as a standard serial

port via a device driver supplied by Atmel [67]. A custom control program on the

PC sends user commands from a USB joystick and the GUI to the robot. A block

diagram of the system can be seen in Figure 2.44.

Figure 2.42: MRC-100 Version A

The MRC-100 version A was tested in vivo on August 11, 2006. All motors,

actuators, and electronics were functional in benchtop testing prior to the in vivo
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Figure 2.43: MRC-100 Version B

test. During the test, there were some problems with excessive camera noise and

interference. Also, the use of an electrosurgical generator caused the MRC-100 to

reset or simply stop responding. It was determined that more adequate shielding was

needed to prevent this kind of interference. Mobility was also difficult due to problems

navigating with the on-board camera and the tendency of the device to wrap up in

its own tether.

MRC-100 Version B was tested on April 10, 2007. The device was sterilized prior

to the surgery. After sterilization, the device was tested on the benchtop to ensure

the sterilization process did not have any detrimental effects on it’s operation. The

motors, focusing mechanism, and camera adjustments functioned as they did prior

to sterilization. The electrocautery interference was still a problem, and it was also

noted that the USB power supply was noisy. This caused interference in the video

output.
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Figure 2.44: MRC-100/CPT-100 Block Diagram

2.15.1 Author’s Contributions on MRC-100

The author’s contributions in the design and testing of the robot were electronics

hardware design and in vivo testing. The details on these contributions follow.

The author designed and tested a PCB for the MRC-100. A schematic for this

board can be seen in Figure A.13 in Appendix A. This schematic was shared with

the PCB designed for the CPT-100 (Section 2.16), but the layouts of the two boards

differ slightly. The MRC-100 PCB (see Figure 2.45) was designed for two motors,

where the CPT-100 was designed for one motor (see Figure 2.49). The software for

the MRC-100, also developed by the author, is described in Section 2.17.

The author also set up support hardware prior to in vivo testing of the MRC-100

device. During the in vivo testing, the author controlled the device under direction

of the surgeon.
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Figure 2.45: MRC-100 PCB

2.16 Ceiling Pan-Tilt (CPT-100)

The Ceiling Pan-Tilt, or CPT-100, is a fixed camera that attaches to the abdominal

wall by means of an external magnetic handle. Figure 2.46 shows the CPT device and

magnetic handle on the benchtop. The surgeon can move the handle, which changes

the viewpoint of the robot. The CPT-100 also has a motor which allows the camera

to tilt +/- 45◦. This panning and tilting allows for a complete view of the surgical

environment. As with the MRC-100, two versions of the CPT-100 were developed:

an all metal prototype (Figure 2.47) and a plastic body device (Figure 2.48). The

drive electronics are nearly identical to the MRC-100 (Section 2.15), except in the
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Figure 2.46: CPT-100 Magnetic Attachment

place of one motor are two white LEDs used for illumination.

Figure 2.47: CPT-100 Version A

Version A of the CPT-100 was tested in vivo on August 11, 2006. The device

functioned well, with no major difficulties. Version B was tested in vivo on April 10,

2007; May 29, 2007; and July 17, 2007 in survivable animal studies. These studies

are discussed in detail in Chapter 5. The CPT-100 was also tested in vivo on August
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Figure 2.48: CPT-100 Version B

21, 2007. This test was a NOTES procedure in which the CPT was introduced into

the abdominal cavity through an incision in the stomach.

2.16.1 Author’s Contributions on CPT-100

The author’s contributions in the design and testing of the CPT-100 robot were

electronics hardware design and in vivo testing. The details on these contributions

follow.

The author designed and tested a PCB for the CPT-100 (see Figure 2.49). A

schematic for this board can be seen in Figure A.13 in Appendix A. As previously

mentioned, this PCB is similar to the MRC-100 PCB. The software for the MRC-100,

also developed by the author, is described in Section 2.17. The author also set up all

support hardware prior to in vivo testing of the CPT-100 device. During the in vivo

testing, the author controlled the device under direction of the surgeon.
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Figure 2.49: CPT-100 PCB

2.17 CPT-MRC Software

The control software for the CPT-100 and MRC-100 devices was developed and tested

by the author. All Windows based software, with the exception of the USB CDC

driver, was developed in Microsoft Visual Studio in the C++ language. The firmware

for both devices was developed in µVision2, from Keil Software, in C. A block di-

agram of the software system is shown in Figure 2.50. The user interacts with the

program through a graphical user interface, or GUI. This GUI, shown in Figure 2.51,

was developed using the Microsoft Foundations Class (MFC) library, and is dialog

based. The MRC-100 motors are controlled by the user through a USB joystick.

The device control library, also written in C++ by the author, contains several C++

classes used to access the MRC-100 and CPT-100 devices. The device control li-
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Figure 2.50: CPT-MRC Software

brary communicates with the CPT/MRC device through the USB CDC driver. This

driver, which is a standard Windows driver, implements the USB Communications

Device Class interface. With the CPT/MRC device configured as a CDC device, the

CPT/MRC device is displayed in Windows as a standard RS-232 serial port. This

enables the device control library to access the device as a standard serial port, sim-

plifying development. The CPT/MRC device firmware is based on a sample USB

CDC implementation supplied with the microcontroller.
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Figure 2.51: CPT-MRC User Interface

2.18 Dexterous Manipulator (AB1)

The AB1 (Figure 2.52) is the first generation of in vivo devices designed for NOTES

procedures. It is designed to be an in vivo surgical platform, with cameras and

instruments integrated on the device. This device has a central “body” link and two

“arm” links, all made from machined aluminum. Each arm is connected to the body

by a rotational shoulder joint providing yaw. The distal segment of each arm features

a prismatic joint that moves each end effector. The left end effector is a gripper that

is actuated by a small motor. The right end effector is a heat cautery device. A

DC current is passed through the element, which then heats up enough to cut tissue.
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Each end effector can also rotate about the long axis of the arm. The robot also has

Figure 2.52: AB1 Robot

two permanent magnets attached to the back of the body. These magnets, along with

a external magnetic handle, enable the device to “attach” to the internal abdominal

wall during surgery (see Figure 2.55). A more detailed discussion of the mechanical

design can be found in work by Lehman [55].

A block diagram of the electronics can be seen in Figure 2.53. The AB1 robot

contains 2 MRC-100 PCBs (See Section 2.15). These boards are connected to an in-

terface box with two flat flex ribbon cables. The interface box contains two breakout

boards that have an RCA-type receptacle for video, and a USB connector for con-

nection to the PC. The interface box also houses a National Instruments USB-6008

Analog/Digital I/O board. The 6008 reads signals from the main controller, the Vir-

tual Incision (see Figure 2.54). The Virtual Incision is a controller that is based on a

surgeon’s operation of standard laparoscopic tools during minimally invasive surgery.

Potentiometers mounted on the device are used to sense position. Design details for

this device can be found in work by Wood [56]. The GUI based program on the PC
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Figure 2.53: AB1 Block Diagram

receives data from the USB-6008 and through the GUI and sends motor and camera

commands to the robot. The control scheme is an open-loop, velocity control setup,

as no positional feedback mechanism was available to design a closed loop controller.

The AB1 was tested in vivo on May 15, 2007, in an anesthetized pig. An at-

tempt was made to introduce the device into the peritoneal cavity via an incision in

the stomach to demonstrate a NOTES-type procedure. The plan was to insert an

overtube down the esophagus of the pig, and pass the AB1 down this tube and into

the stomach. An incision was to be made in the lining of the stomach. Next, the

surgeon would manually move the AB1 into the peritoneal cavity through this inci-

sion using the endoscopic tools. However, this approach failed when it was discovered

that the esophagus of the pig used in the procedure was too small to allow passage

of the overtube. The decision was then made to introduce the device into the peri-

toneal cavity via an abdominal incision. This incision was closed after the robot was

inserted. The robot was controlled with the virtual incision controller and allowed

the surgeon to successfully manipulate and cut tissue. In spite of the problems with

insertion, this experiment demonstrated that a robot of this type could be used in

NOTES procedures.
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Figure 2.54: Virtual Incision Controller

2.18.1 Author’s Contributions on AB1

The author’s contributions in the design and testing of the AB1 robot were electronics

hardware design, software development, and in vivo testing. Since the electronics

hardware on the AB1 used existing PCBs from the MRC-100, the author’s work was

integration and design of the interface box described in the previous section. The AB

software developed by the author will be discussed in Sections 2.21 and 6.2.4. During

in vivo testing, the author set up all support hardware for the device, and monitored

the device software interface while the surgeon controlled the robot.
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Figure 2.55: AB1 In vivo

2.19 Dexterous Manipulator (AB2)

The next revision of the AB robot series is the AB2, seen in Figure 2.56. This device

differs from the AB1 in several ways:

1. Body built by a rapid-prototyping process rather than machined aluminum.

2. Stereo camera pair built on a separate module, attached to body with magnets.

3. Motor drivers are external.

The system block diagram for this device can be seen in Figure 2.57, and is very

similar to the AB1 robot, except for the addition of two more MRC-100 PCBs in the

interface box for driving the robot’s motors. This change was made to allow a higher

voltage supply for the motors. In the AB1, the motor supply voltage was limited to

the supply voltage of the USB, which limited the total power available for driving
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Figure 2.56: AB2

the motors. A new virtual incision controller (see Figure 2.58) is used to control the

device. This device features two, three-axis analog joysticks. The USB-6008 is used

to digitize the analog joystick values for use by the control program. As with the AB1,

open-loop velocity control is used on AB2. The AB2 was tested in vivo on December

18, 2007 in an anesthetized pig. The plan was to perform a NOTES cholecystectomy,

advancing the AB2 through an overtube into the stomach and then introducing the

AB2 to the abdominal cavity through an incision in the stomach. At the beginning

of the procedure, it was decided that the esophagus of the animal was too small to

allow the AB2 to move through. The AB2 was then introduced to the abdominal

cavity through and incision in the abdomen. Ultimately, mechanical problems forced

the team to perform the operation as an open procedure.
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Figure 2.57: AB2 Block Diagram

Figure 2.58: Virtual Incision Controller 2.0

2.19.1 Author’s Contributions on AB2

The author’s contributions in the design and testing of the AB2 robot were electronics

hardware design, software development, and in vivo testing. As with the AB1, the

electronics hardware on the AB2 used existing PCBs from the MRC-100. The author’s

work was integration and design of an upgraded interface box described in the previous

section. The AB software developed by the author will be discussed in Sections 2.21

and 6.2.4. During in vivo testing, the author set up all support hardware for the

device, and monitored the device software interface while the surgeon controlled the
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robot.

2.20 Dexterous Manipulator (AB3)

Figure 2.59: AB3

The third and final iteration of the AB robots is the AB3, seen in Figure 2.59. This

device has a similar mechanical design as the previous AB robots, but the electronics

are somewhat different. A block diagram of the AB3 system can be seen in Figure

2.60. The major change to the AB3 is the design of a dedicated dual imager PCB

(see Figure 2.61). This PCB features two Micron MT9V135 imagers. The board also

contains a ultra bright white XR-E series LED from Cree [68]. The XR-E series can

produce up to 100 lm of luminous flux at 400 mA of current. This is the first AB

robot to have a light source built in. Two MRC-100 PCBs are added to the interface

box to communicate with the Micron imagers on the AB3. These are modified MRC

boards with the imager chips removed and wires patched into the camera control

lines. The other two MRC boards function as before on the AB2 device, driving the
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Figure 2.60: AB3 Block Diagram

motors on the robot. An LED illumination control was also added to the interface

box (not shown in the drawing).

The AB3 was tested in vivo on March 25, 2008, in an anesthetized pig. Unfor-

tunately, the cautery arm of the device was damaged during insertion and was only

partially functional. The imagers worked well, and the video quality was sufficient for

the surgeon to perform the procedure using only the AB3 video for visual feedback.

Also, the gripper arm was fully functional, and was able to manipulate tissue well

enough to perform a partial cholecystectomy with the partially functional cautery

arm. The second in vivo test using AB3 was performed on May 30, 2008, in an

anesthetized pig. In this test there were no problems, and the surgeon was able to

use the device to perform a partial cholecystectomy. A video frame grab showing the

view from both imagers can be seen in Figure 2.62. This successful test did, however,

show some limitations of the AB3 platform. Because the rotation of the arms was

constrained to one plane, no “up-and-down” motion was possible. This motion is

essential to performing surgical procedures. The heat cautery tool was also noted to

be inferior to the standard electrosurgical instruments typically used in laparoscopic
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(a) Top View (b) Bottom View

Figure 2.61: AB3 PCB

Figure 2.62: AB3 In vivo view

surgery. These tests did show that it is feasible to perform laparoscopic procedures

using a completely in vivo surgical platform. The AB3 device was also used in exten-

sive benchtop tests to show feasibility of using these types of robots for supervised

autonomous surgical tasks. These experiments will be discussed in Chapter 6.

2.20.1 Author’s Contributions on AB3

The author’s contributions in the design and testing of the AB3 robot were electronics

hardware design, software development, and in vivo testing. The details on these

contributions follow.
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The previously mentioned AB3 PCB was designed and tested by the author. A

schematic of this board can be seen in Figure A.14 in Appendix A. The interface

box for the AB3 was also designed by the author. An internal wiring diagram of the

interface box can be seen in Figure A.15. The box contains four separate MRC-100

PCBs. Two of these boards were modified by removing the imager chips and routing

the serial camera control signals to the AB3 PCB. This allowed the existing camera

control software to be used with the AB3 robot. The other two MRC-100 PCBs were

used for motor control by routing the motor driver outputs to the AB3 PCB. All

four MRC-100 boards were connected to a built in USB hub in the interface box. A

USB-6008 I/O board read signals from the Virtual Incision controller and also sent

commands to the gripper motor driver, which was a single axis motor driver PCB.

The AB3 device connected to the interface box via a 25-pin connector.

The AB software developed by the author will be discussed in Sections 2.21 and

6.2.4. During in vivo testing, the author set up all support hardware for the device,

and monitored the device software interface while the surgeon controlled the robot.

2.21 AB Robot Software

The AB robot control software was developed by the author in C++ using Microsoft

Visual Studio and is a dialog based graphical user interface. The main window is

shown in Figure 2.63. This window monitors for MRC-100 boards connected to the

computer and displays these to the user. The Control menu allows the user to access

the other modules of the program: connect with AB device, Open Loop Control,

Joystick Control, Joint Control, and Closed Loop Control. The software loads device

settings from an external text file settings.ini. These settings include device comm

port mapping and joystick axis to device joint mapping.
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Figure 2.63: AB Robot Control Main Window

The joint control dialog, shown in Figure 2.64, allows the user to move each joint

individually for testing purposes. The joint mapping data is loaded from the settings

file.

The joystick control dialog, shown in Figure 2.65, allows the user to control the AB

robot using the virtual incision controller. The dialog displays the current position

of each joint on the virtual incision controller. The controller to robot joint mapping

is loaded from the settings file.

The open loop dialog, shown in Figure 2.66, allows the user to run open loop

tests on individual robot joints. It is integrated with frame grabbers and the tracking

software developed for the surgical task completion experiments, which are discussed
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Figure 2.64: AB Robot Joint Control Dialog

in Chapter 6. The user creates a text file with a series of joint commands and time

steps, for example:

4

.1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 25 0

0 0 0 0 0 0 25 0

0 0 0 0 0 0 0 0

In this example, the user specifies 4 data points, spaced at 0.1 second intervals. Each

column represents a specific joint on the robot. The values in each row are commands
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Figure 2.65: AB Robot Joystick Control Dialog

sent to each motor, ranging from −100% to +100%. This file would command the

cautery shoulder joint to move at 25% speed at 0.1 sec, and stop the joint at 0.3 sec.

This allows the user to set up any motion profile needed. The dialog provides the

option to: save frame grabs at each time step, save frame grabs and tracking data,

or perform only the movement.

The last module of the AB robot user interface software is the closed loop control

dialog. This was developed by the author to perform the task completion experiments,

and is discussed in detail in Section 6.2.4.

A class diagram of the AB robot driver software, also developed by the author,

is shown in Figure 2.67. The class for interfacing with the AB3 robot, AB3 Device,

is derived from the DualBoardDevice class. DualBoardDevice contains two instances

of the NSSDevice class, corresponding to the two MRC-100 boards used to drive

the motors on the AB3 robot. The NSSDevice class was originally developed for

the CPT-100 and MRC-100 robots. The NSSDevice class contains an instance of

the NSS serialUSB comms which handles communications with individual CPT and

MRC boards. The AB3 Device also contains an instance of the overheadTracker
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Figure 2.66: AB Robot Open Loop Dialog

class, which is used in the task completion experiments and will be discussed in

Section 6.2.4.
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Figure 2.67: AB Software Collaboration Diagram
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2.22 Summary

The robots described in this chapter were designed and tested as a part of this dis-

sertation. These robots included mobile robots, adjustable focus cameras, fixed base

cameras, a mobile robot biopsy platform, and dexterous manipulator devices. The

author was the sole designer of the electronics and software aspects of all the devices

discussed here. Tables 2.2 and 2.3 summarize the in vivo robots and list dates of in

vivo tests for each device.
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Robot Type Test Date(s) Notes

M3-20a Manipulator 06-09-2003
3 degree of
freedom
manipulator arm

MR-15b Crawler 06-09-2003
15 mm crawler, no
imager

MR-15c Crawler
04-09-2004
10-27-2004

15 mm crawler, no
imager

PT-15a Fixed Base 02-21-2004
Pan-tilt camera,
wireless

PT-15b Fixed Base 04-09-2004
Pan-tilt camera,
wired

WC-15a Wireless Camera 04-09-2004
Passive wireless
camera

AF-20a
Adjustable Focus
Camera

12-01-2004
Fixed base,
adjustable focus
camera

MR-20a Crawler 12-17-2004
20 mm crawler, no
imager

MR-15d Crawler
01-21-2005
07-22-2005

15 mm crawler, no
imager, 1st
successful mobility
platform

MR-20b Crawler 01-21-2005
20 mm crawler
with camera

MR-20c Crawler 09-12-2005

20mm crawler,
used in NEEMO
experiments and
canine surgeries

T-15a Fixed Base 03-18-2005
Tilt camera with
adjustable focus

T-15b Fixed Base 09-12-2005

Tilt camera with
adjustable focus,
used in NEEMO
experiments and
canine surgeries

Table 2.2: In vivo Robots
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Robot Type Test Date(s) Notes

MR-12a Crawler 12-14-2005

12 mm crawler, no
camera, used to
demonstrate
NOTES

BMR-22a Crawler 12-14-2005
22 mm crawler
with camera and
biopsy tool

WMR-22a Crawler 12-14-2005
22 mm crawler, no
camera, wireless

MRC-100 Crawler
08-11-2006(a)
04-10-2007(b)

15 mm crawler
with camera, used
in survivable
surgeries

CPT-100 Ceiling Camera

08-11-2006(a)
04-10-2007(b)
05-29-2007(b)
07-17-2007(b)
08-21-2007(b)

15 mm tilt
camera, magnetic
attachment, used
in survivable
surgeries

AB1
Dexterous
Manipulator

05-15-2007
Two arm
dexterous device
with stereo camera

AB2
Dexterous
Manipulator

12-18-2007
Two arm
dexterous device
with stereo camera

AB3
Dexterous
Manipulator

03-25-2008
05-30-2008

Two arm
dexterous device
with stereo
camera, used in
task completion
experiments

Table 2.3: In vivo Robots, cont.
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Chapter 3

Camera Comparisons

3.1 Background and Motivation

The majority of in vivo robots described in Chapter 2 have featured an imaging

system to provide visual feedback to the surgeon; either as the sole feedback device

or to augment the laparoscope. In order for these devices to be usable in this function,

the visual quality must be comparable to or better than imaging systems currently

in use. To compare visual quality in a quantitative way, tests were performed to

measure visual quality. The metrics used were modulation transfer function (MTF),

color accuracy, and distortion. MTF measures the overall resolution of a imaging

system, and is expressed in a certain number of line pairs per millimeter. Color

accuracy measures the system’s ability to reproduce colors accurately. Distortion is

an effect that causes straight lines to appear curved.

3.2 Methods and Materials

The imager device used in these experiments is the MT9V125 color digital CMOS

image sensor from Micron [66]. The sensor has a 640x480 active pixel array with
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NTSC analog composite video output. The MT9V125 is a 1/4 inch optical format

imager housed in a 52-Ball IBGA package, measuring 9x9 mm. It features color

correction, auto white balance, gamma correction, and black level conditioning, all

user-controllable over a two-wire serial interface. The imager is mounted to a custom

designed PCB. Two 10000 mcd white LEDs were used for illumination. The lens is

a Sunex DSL758 [69], an all plastic lens module for 1/4 inch optical format imagers.

It has a focal length of 3.8 mm and a diagonal field of view of 60◦. This imager/lens

combination was used in the following previously discussed in vivo devices: MRC-100

(pg 54), CPT-100 (pg 58), AB1 (pg 63), AB2 (pg 67), and AB3 (pg 70).

The laparoscope used in these experiments is a Karl Storz 0◦ device connected

to a Storz Tricam SL NTSC camera unit. The Tricam SL contains 3-CCD chips for

processing three primary colors [70]. The light source is a Storz Xenon 175, which

features a 175 watt xenon lamp with a color temperature of 6000 K.

The vision target used for MTF testing is a ISO 12233 Resolution chart printed on

Kodak photo paper, measuring 7.75” x 4.75”. This chart is a standard reference for

measuring resolution of electronic still imaging systems. The chart used for color error

measurements is a Mini ColorChecker from GretagMagbeth, LLC. The ColorChecker

is a standard Macbeth color chart, measuring 3.25” x 2.25”. The resolution chart

and Macbeth chart can be seen in Figure 3.1. For distortion tests, a square grid was

generated from the Imatest (see below) application, and printed using a laser printer.

The experimental setup can be seen in Figure 3.2. It consists of an adjustable

metal arm to hold the laparoscope in a horizontal position, a device to hold the

robotic camera in position, and the vision test target.

The experiments were conducted in a darkened room with no outside light. The

light sources used were the xenon light source for the laparoscope and white LEDs

from the robotic camera. The control unit and light source for the laparoscope can
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Figure 3.1: Vision Targets

be seen in Figure 3.3. The video output from both systems is NTSC composite. A

Sensoray Model 2250 [71] USB 2.0 frame grabber, connected to a laptop PC, was

used to capture frames of video for later analysis.

After all test images were captured, analyses was done using the Imatest [72]

application. This program includes modules for MTF, color error, and distortion

analysis.
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Figure 3.2: Experimental Setup

Figure 3.3: Laparoscope Control and Video Capture
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3.3 Experimental Results

3.3.1 MTF Testing

A commonly used performance metric of optical systems is the modulation transfer

function, or MTF. Several series of black and white bars of equal width are imaged

by the system under test. Each set of bars has smaller widths than the previous. The

finest set in which the line structure can be seen shows the resolution limit of the

system, expressed in line pairs per millimeter.

The Modulation Transfer Function is defined as [73]:

MTF (ν) =
Mi

Mo

, (3.1)

where Mi and Mo are the modulation of the image and the modulation of the object,

respectively. The modulation is defined as:

M =
Ymax − Ymin
Ymax + Ymin

, (3.2)

where Y is the luminance maximum and minimum values. Figure 3.4 shows an

example set of bars, and how MTF is calculated. The square wave in the image

represents the brightness of the bars at a single spatial frequency, and the sine wave

represents the output of the imaging system. The imaging system blurs the square

wave, which results in a sine wave output. Ymax and Ymin are the maximum and

minimum luminance values of the imager output. A plot of the MTF over all spatial

frequencies defines the MTF of the system.

The ISO 12233 resolution chart was used to acquire test images for measuring

MTF for both systems. Several frame grabs from each imaging system were saved

to disk and analyzed with the Imatest application. Imatest uses Fourier analysis
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Figure 3.4: MTF Target

to compute MTF from a knife edge section of the resolution chart. These MTF

curves are plotted in Figure 3.5. Each curve is a different estimate of the MTF from

different regions in the captured images. Figure 3.6 shows the average curves with

both systems plotted on the same axis. The curves show MTF plotted against spa-

tial frequency in cycles per pixel. Values above the Nyquist frequency of 0.5cy/px

have no meaning and are not displayed. Both systems have high MTF values below

0.05cy/px, but the Micron camera drops off much faster than the laparoscope above

this frequency. Qualitatively, this indicates that at spatial frequencies above approx-

imately 0.05cy/px, the laparoscope reproduces the scene with a better contrast ratio

or sharpness.

Again, the laparoscope has significantly better results than the in vivo system.

This is most likely caused by the lower quality optics in the in vivo system, because

the MTF of the system is defined to be the product of the MTFs for each component

of the system (lens, imager, etc) [73]. In the design of these devices, optics quality
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(a) Micron Camera (b) Laparoscope

Figure 3.5: MTF Curves for Both Systems

Figure 3.6: MTF Comparison

must be sacrificed for space, given the small physical size of the in vivo system. The

laparoscope system is able to have higher quality optics, because the optics are all

external.
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3.3.2 Color Accuracy

Color accuracy of the two systems was measured using a Macbeth ColorChecker. The

ColorChecker was placed in uniform illumination, and several frames were captured

for analysis. The Imatest program converts the test images to CIELAB color space,

and compares the test image color value to the actual color value for each color patch

in the ColorChecker chart. Plots of these color differences can be seen in Figure 3.7

(in vivo camera) and Figure 3.8 (Laparoscope). These plots show the ideal color

value and the actual color value, plotted in CIELAB color space. Mean and RMS

color errors are also given. These are summarized in Table 3.1.

System µerror RMSerror

In vivo Camera 8.46 10.90
Laparoscope 14.70 16.60

Table 3.1: Color Error

Figure 3.9 shows color error for each system, plotted against color zone number.

The data in Table 3.1 and Figure 3.9 shows the in vivo camera had significantly less

color error than the laparoscope.

3.3.3 Distortion

Optical lens systems suffer from distortion artifacts. This distortion is a non-linear

effect that causes straight lines in an image to appear curved. For modeling this

non-linear effect, an infinite series is required. However, usually only radial distortion

needs to be considered, which can be modeled with one parameter (κ1) [74]. This is

modeled as:

ru = rd(1 + κ1r
3
d). (3.3)
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Figure 3.7: Micron Camera Color Error

Figure 3.8: Laparoscope Color Error
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Figure 3.9: Color Error for Both Systems

Equation 3.3 relates the undistorted radius ru and the distorted radius rd. This one

term model of distortion is also referred to as barrel (κ1 > 0) or pincushion (κ1 < 0)

distortion.

(a) Laparoscope Distortion (b) In vivo Camera Distortion

Figure 3.10: Lens Distortion

An example of lens distortion can be seen in Figures 3.10(a) (Laparoscope) and

3.10(b) (In vivo camera). The test target for the preceding Figures is a square grid

pattern. As is evident from the images, the laparoscope has significant radial distor-
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tion. The in vivo camera has very little distortion. The results from Imatest confirm

this quantitatively, and can be seen in Table 3.2.

System κ1

In vivo Camera 0.06
Laparoscope 0.35

Table 3.2: Radial Distortion

3.4 Summary

The experiments discussed in this chapter involved comparing two video systems

used in laparoscopic surgery, a standard laparoscope and an in vivo device developed

in part by the author. Benchtop tests were done with both systems, which tested

resolution, color accuracy, and distortion. Analysis was completed on sample images

captured from both systems. The laparoscope scored better on MTF testing, but the

in vivo system scored better on color accuracy and distortion. It was hypothesized

that the lower MTF value for the in vivo system was caused by lower quality (smaller)

optics used for this system. These results show that in vivo robotic camera devices can

produce video that is comparable to standard laparoscopes and can therefore show

great potential for use in MIS procedures. Because this system will be used in MIS

procedures, other metrics can be used to measure the efficacy of these devices. The

analysis shown here could be expanded upon, by including metrics such as noise in

the analysis. Other metrics include data from observing surgeons performing surgical

tasks while using different systems for visual feedback. Preliminary studies to this

effect have already been completed and will be discussed in Chapter 4. Other metrics

could include image or video comparisons, using actual in vivo images captured during

animal surgeries. These images could then be rated by surgeons as to their quality
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and usefulness, although this metric is more subjective than the others presented.
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Chapter 4

NEEMO Experiments

4.1 NEEMO Mission Background

NASA Extreme Environment Mission Operations, or NEEMO, is a NASA project

for simulating long term space exploration. The NEEMO missions are conducted in

Aquarius, an underwater habitat located 3.5 miles offshore of Key Largo, Florida.

Starting in 2001, there have been 13 NEEMO missions, each with 4 Aquanauts and

2 National Undersea Research Center support technicians. The missions last up to

3 weeks, and consist of underwater EVAs and various experiments. These missions

are meant to simulate conditions of life during long term space flight, such as living

aboard the International Space Station.

Aquarius is the only undersea laboratory dedicated to marine science in the

world [75]. It is owned by the National Oceanic and Atmospheric Administration

(NOAA) and managed by the University of North Carolina at Wilmington (UNCW).

Operating 60 feet below the surface, it is deployed next to a coral reef. It provides

life support systems, living and sleeping quarters, and sophisticated research facilities

for up to 6 inhabitants. Aquarius is comprised of several components. The habitat
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module is a 82 ton pressure vessel which is 14 meters long by 3 meters in diameter,

composed of 3 compartments. A 20 m3 wet porch contains an open moon pool, dive

equipment storage, and a shower. The 14 m3 entry lock contains space for computers

and experiments, power equipment, life support equipment, and bathroom facilities.

The 40 m3 main lock is the primary living space. It contains bunks, computer work

stations, kitchen facilities, dining and areas, and life support controls. The Life Sup-

port Buoy is a 10 meter diameter buoy. It contains generators, air compressors, radio

communication equipment and oxygen storage flasks. It supplies Aquarius with air,

power, and communication capability through a three inch diameter umbilical. The

third component of Aquarius is the baseplate. It is a 116 ton structure which provides

a stable and level base for the habitat.

Figure 4.1: External View of Aquarius Habitat

The biggest advantage of Aquarius is longer diving times. Aquarius aquanauts

can increase their diving time to almost ten times that of a surface diver through

saturation diving. This enables them to conduct research much faster than if they
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had to use conventional diving techniques. A typical 10 day saturation mission on

Aquarius would take 60 to 70 days using surface based techniques. This has enabled

scientists working on Aquarius to gain much more information on coral reefs as well

as new technologies for future undersea habitats.

The aquanauts on NEEMO missions are NASA astronauts and other scientists.

Aquarius provides an environment similar to living on the International Space Station

(ISS) in many ways. First, the habitat is similar in size to the modules of the ISS.

Also, the crew must coordinate their work with the remote mission control center

on land in Key Largo. The crew must be isolated from the outside world for up to

three weeks. This isolation is used to develop crew-mission control communications

techniques and to study the impact on behavior and physiology.

NEEMO 9 was an 18 day mission conducted April 3 to 20, 2006. The mission was

a joint project between the Canadian Center for Minimal Access Surgery (CMAS)

at McMaster University, the U.S. Army Telemedicine and Advanced Technology Re-

search Center (TATRC), the National Space Biomedical Research Institute (NSBRI),

the University of Nebraska, and NASA. The goals of the mission were to evaluate

new medical diagnostic and therapeutic technologies to improve medical care in re-

mote and harsh environments, as well as to develop procedures and techniques for

lunar exploration using remotely operated vehicles, tracking systems, and navigation

devices. The four member crew for NEEMO 9 included three NASA astronauts and

one laparoscopic surgeon.

4.2 Experiments

The experiments developed by the UNL researchers for the NEEMO mission were

of two types: surgical task comparison and telementoring. The task comparison ex-
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periments were designed to test the usefulness of the in vivo surgical camera robots

compared to using a standard laparoscope. The telementoring experiment was de-

signed to show that in vivo robots could be used in surgical situations in which an

experienced surgeon in a remote location could telementor crew members through an

unfamiliar surgical procedure. All experiments involved the use of one or both of the

previously described miniature in vivo robots developed for the mission: the MR-

20c (NEEMO variant, see Section 2.10) and the T-15b (NEEMO variant, see Section

2.11). The experiments were performed using the abdominal cavity simulator shown

in Figure 4.2. The crew used standard laparoscopic instruments to manipulate simu-

lated tissue while receiving visual feedback from one of the in vivo camera robots or a

standard laparoscope. The video from the simulator was viewed on a LCD monitor.

Figure 4.2: Abdominal Cavity Simulator

Only one video source was viewed at a time, and the same monitor was used for all

devices.

The first task was a rope passing task, which simulated the surgical task of in-
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specting a long section of bowel. A 30 cm length of rope was marked with colored

sections every 5 cm (See Figure 4.3). Using laparoscopic graspers and only touching

the colored portions, the rope was passed back and forth five times. This was com-

pleted by each crew member once with the tilt robot used for visual feedback, and

once using the laparoscope for visual feedback. The tilt camera used a LED light

source for illumination, while the laparoscope used an integrated xenon light source.

Figure 4.3: Rope Passing Setup

The second task was a stretch and dissect task. This task consisted of using

a laparoscopic grasper to grasp and stretch a piece of simulated tissue, and using

another tool to cut the tissue at a marked location. Two sets of five samples were

used: one placed on an incline, requiring the crew member to pull the tissue to the

right; and the other placed on the rear wall of the simulator, which required the crew

member to pull the sample forward and cut it (See Figure 4.4).

The third task was a telementoring task using the mobile camera robot, along with

laparoscopic tools to perform a simulated appendectomy. The task was setup with a
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Figure 4.4: Stretch and Dissect Task Setup

small piece of tube, acting as the appendix, attached to the bottom of the surgical

trainer box (Figure 4.5). The task was designed to evaluate if a skill set could be

built upon and if the crew members could be telementored through an unfamiliar

surgical situation. Prior to the mission, each crew member was trained on the use

of the mobile camera robot and surgical tools, but not on the specifics of this task.

Immediately before starting this task, the crew member watched a 30 sec video which

described the appendectomy procedure. To start the task, the mobile camera robot

was moved into a position to view the simulated appendix. The crew member was

then telementored through the procedure over a video conferencing link from the

University of Nebraska Medical Center in Omaha, Nebraska. The procedure included

stapling, dissecting, and removing the simulated appendix.
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Figure 4.5: Appendectomy Task Setup

4.3 Results and Analysis

Each crew member completed the rope passing test twice, once using visual feedback

from the tilt robot (Figure 4.6(a)) and once using the laparoscope (Figure 4.6(b)).

Each task was timed and video was recorded for later analysis. The performance

metrics chosen for comparison were: hits, misses, grasps, and time. A hit was defined

as a grasp of a colored rope segment, a miss was defined as grasping a segment between

the colored segments, and grasps were the sum of hits and misses. A perfect score

of 100 hits could be achieved by passing the rope forwards and backwards five times

while hitting each segment and never missing. Repeated measures ANOVA (Analysis

of Variance) tests were performed on each metric, with the results summarized in

Table 4.1. The hypothesis was that the results using the tilt camera would be better

or just as good as the laparoscope results. As can be seen in Table 4.1, all four

metrics showed no significant difference between the tilt camera and the laparoscope



101

(a) Tilt Robot View (b) Laparoscope View

Figure 4.6: Rope Passing Task

(p > 0.05 in all cases). If the time difference for each participant is graphed, as

Metric F (1, 3) p µrobot σrobot µlaparoscope σlaparoscope

Hits 0.570 0.486 97.250 6.450 100.250 5.740
Misses 4.849 0.115 11.000 4.080 17.750 3.860
Grasps 4.699 0.119 108.250 7.590 118.000 3.460
Time(s) 0.570 0.505 260.750 85.640 285.250 53.990

Table 4.1: Rope Passing Analysis

in Figure 4.7, it can be seen that participant 4’s time difference is in the opposite

direction (this participant was faster with the laparoscope) than the other three. If

this case is not considered, the results of the ANOVA for the time metric are very

different. In this case, there was a significant difference between the tilt device and

laparoscope (p = 0.024), with the tests using the tilt device showing a lower mean

completion time (see Table 4.2).

Metric F p µrobot σrobot µscope σscope

N = 4 0.570 0.505 260.750 85.640 285.250 53.990
N = 3 39.613 0.024 225.670 60.140 282.000 65.640

Table 4.2: Rope Passing Time Analysis



102

Figure 4.7: Time Difference Graphs

The stretch and dissect task was similar to the rope passing task. Each crew

member completed the task twice, once with visual feedback from the tilt robot

(Figure 4.8(a)) and once using the laparoscope (Figure 4.8(b)). A full task consisted

of grabbing, stretching, and cutting five tissue samples on the side incline mount,

followed by five samples on the rear mount. Each task was timed and the video

recorded for later analysis. The cut tissue samples were also saved for later analysis.

The performance metrics used here were total time and accuracy. The accuracy

was measured by the distance from the tissue mark to the actual cut in millimeters

and the angle of the cut (an angle of 0◦ corresponds to a cut perpendicular to the

length of the tissue). After measuring the cut tissue samples and analyzing the video,

the data were recorded for analysis. For each participant, all distance and angle

measurements were averaged over each test. Repeated measures ANOVA analyses
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(a) Stretch-Dissect from Tilt Robot (b) Stretch-Dissect from Laparoscope

Figure 4.8: Stretch-Dissect Task

were performed on this data, with the results summarized in Table 4.3. Again, it was

hypothesized that the results for the tilt camera would be equal to or better than

those of the laparoscope. There was no significant difference in results for angular

error (F (1, 3) = 0.727, p = 0.456) or in distance error (F (1, 3) = 0.238, p = 0.659).

There was a significant difference found in total time (F (1, 3) = 10.462, p = 0.048),

with the tilt camera total time (µrobot = 106.0) less than the laparoscope total time

(µscope = 146.75).

Metric F (1, 3) p µrobot σrobot µscope σscope

Angular Error(deg) 0.727 0.456 11.25 2.87 14.00 4.83
Distance Error(mm) 0.238 0.659 1.08 0.40 0.95 0.02
Total Time(s) 10.462 0.048 106.00 31.62 146.75 24.53

Table 4.3: Stretch and Dissect Analysis

Each crew member successfully completed the appendectomy task, using the mo-

bile robot for visual feedback. No quantitative measures were made during these tasks,

but near and far views of the simulated appendix can be seen in Figures 4.9(a) and

4.9(b). The successful completion of this task by all crew members demonstrates that

training participants to complete an unfamiliar task using miniature surgical robots.
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After each crew member completed all three tasks, a series of survey questions were

(a) Near View From Crawler (b) Far View From Crawler

Figure 4.9: Appendectomy Task

completed. The questions asked the crew members to rate they were satisfied with

the performance of the tilt and the laparoscope on depth perception, lighting, video

feedback, camera control, and overall functionality. These questions were answered

on a scale from 1 to 5, with 1 meaning strongly disagree and 5 meaning strongly agree.

Repeated measures ANOVA analysis were performed on the survey data, with the

results summarized in Table 4.4. There were no significant differences between the tilt

Metric df F p µrobot σrobot µscope σscope

Depth Perception 2 0.00 1.000 4.0 1.0 4.0 0.0
Lighting 3 27.00 0.014 2.8 1.0 4.3 0.5
Video Feedback 3 2.46 0.215 3.5 1.0 4.3 0.5
Camera Control 3 0.06 0.824 3.3 1.5 3.5 1.0
Overall Functionality 3 0.00 1.000 3.5 1.0 3.5 0.6

Table 4.4: Survey Results

robot and the laparoscope in depth perception (F (1, 2) = 0, p = 1), video feedback

(F (1, 3) = 2.46, p = 0.215), camera control (F (1, 3) = 0.59, p = 0.824), and overall

functionality (F (1, 3) = 0, p = 1). For the lighting question, the laparoscope had a

significantly better score (F (1, 3) = 27.0, p = 0.014, µlaparoscope = 4.3, µrobot = 2.8).
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The results presented in Tables 4.1, 4.3, and 4.4 show, for the most part, no

significant difference (p > 0.05) between the results using the in vivo robots and

results using a laparoscope. Examination of the actual results seems to support this

result, as the mean times, errors, etc are similar between the two conditions. Before

drawing any conclusions, a post hoc power analysis must be completed to check the

validity of the results. For all of the previously discussed analyses where no significant

difference (p > 0.05) was found, the post hoc analysis will show the chance that a

Type II error was made. A Type II error indicates that there is an effect in the

population, but the effect was missed by the analysis. For each test, the sample size,

S and the effect size r must be calculated using Equations (4.1) and (4.2).

S = dferror + 1 = N (4.1)

r =

√
F

F + dferror
(4.2)

With r and S, the effect power can be found using the Power, Effect Size &

Sample Size table [77]. Effect power is related to the probability of committing a

Type II error by the following equation: Perror = 1−Power. Based on this, all of the

results in Table 4.5 have at least a 70% chance of being a Type II error, which would

indicate an effect was missed, but is impossible to ascertain the direction of this effect

(i.e. is the laparoscope or miniature robotic device better). There are several ways

of increasing the statistical power of an experiment, the easiest being to increase the

sample size. The Sneeded column in Table 4.5 shows the minimum sample size needed

to reduce the chance of a Type II error to 20% (Power = 80%). The data indicate

that a sample size of at least 50 should be used to increase the statistical power of

the results.
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Metric p F Sactual r Power Sneeded

RP Hits 0.49 0.57 4.0 0.4 < 0.2 44
RP Misses 0.12 4.85 4.0 0.8 0.2 10
RP Grasps 0.12 4.70 4.0 0.8 0.2 10
RP Time 0.51 0.57 4.0 0.4 < 0.2 44

SD Ang Err 0.46 0.73 4.0 0.4 < 0.2 44
SD Dis Err 0.66 0.24 4.0 0.3 < 0.2 82

Sur Depth 1.00 0.00 3.0 0.0 0.0 N/A
Sur Vid Fdb 0.22 2.46 4.0 0.7 0.3 11
Sur Cam Ctl 0.82 0.06 4.0 0.1 < 0.2 343
Sur Overall 1.00 0.00 4.0 0.0 0.0 N/A

Table 4.5: Post-hoc Power Analysis

An overall interpretation of the experimental results presented here is difficult to

give. A cursory analysis of the results would seem to indicate that there is little

difference when using miniature in vivo robots as compared to using a laparoscope

in these laparoscopic training tests. Several of the results (e.g. Total time in rope

passing and stretch-dissect) even indicate that the in vivo robots could be superior.

A more thorough analysis indicates these results have serious “power problems”, due

to the very small sample size. This power problem represents a threat to the validity

of these results. It must be noted that the small sample size was impossible to change

for these experiments, because the NEEMO crew was limited to 4 members. Future

studies of this kind could easily be designed to avoid some of the inherent problems

encountered in this study. Suggestions for future studies will be discussed further in

Chapter 7.

4.4 Summary

NASA Extreme Environment Mission Operations, or NEEMO, is a NASA project for

simulating long term space exploration. The missions are conducted in an underwa-
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ter habitat called Aquarius near Key Largo, Florida. NEEMO 9 was conducted from

April 3 to 20, 2006. University of Nebraska researchers, including the author, devel-

oped some of the experiments performed by the NEEMO crew. The UNL experiments

were surgical task comparison and telementoring using in vivo surgical robots. The

task comparison experiments involved using an in vivo robot and a laparoscope for

visual feedback while performing surgical training tasks. It was hypothesized that the

in vivo robots would be as good, or better, than the laparoscope for visual feedback.

The telementoring experiments involved telementoring the crew members through

a simulated surgical procedure. The statistical results from these experiments were

inconclusive as a result of power problems related to the small sample size. Further

experiments need to be completed to obtain more reliable results.

The author had several roles in the UNL NEEMO experiments:

• Design and testing of printed circuit boards (PCBs) used in the in vivo robots

for these experiments.

• Design and testing of PCB used in the control box used in the experiments.

• Software development and testing of the control box software, firmware on the

robot PCBs, and Windows PC based software used to control the in vivo robots

• Traveled to Johnson Space Center in Houston, Texas for preliminary training

of the NEEMO crew on the robots that were used in the NEEMO experiments.

• Traveled to Key Largo, Florida to deliver the experimental equipment and train

the crew immediately prior to the NEEMO mission.

• Performed statistical analyses on the experimental data obtained from the

NEEMO experiments.



108

Chapter 5

Survivable Pig Studies

In order for the in-vivo robots described in this dissertation to be used in procedures

involving humans, they must meet the following requirements:

1. The devices must be usable without causing tissue damage or transmitting

infection.

2. The devices must be useful in a laparoscopic procedure.

To this end, an experiment was designed using the ceiling pan-tilt (CPT) devices

described in Section 2.16 in three survivable cholecystectomy animal surgeries. A

porcine animal model was used in all three procedures, which were performed on

different dates. In the first procedure, the CPT was used to augment the view of the

surgical field from the laparoscope. In the final two procedures, the CPT was the

sole means of visual feedback for the surgeon performing the procedure. A detailed

description of the procedures and results follow.
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5.1 Ceiling Pan-tilt (CPT) Camera

A small robotic camera, the CPT-100, was designed and built for the survivable pig

experiments. The device can be seen in Figure 5.1. This device attaches to the ab-

Figure 5.1: CPT-100 Robotic Camera

dominal wall by means of small embedded magnets and an external magnetic handle.

The surgeon moves the handle, which changes the view of the surgical field. The

CPT-100 also has a motor allowing the camera to tilt inside the clear polycarbonate

body tube. These two methods of movement allow for a full view of the surgical field.

The device also features two light emitting diodes (LEDs) for illumination. The device

connects to an external breakout box which contains a power supply, USB connector

for command data, and a connector for video output. The CPT-100 is controlled from

a PC using software developed by the author. This software enables LED brightness

control, tilt motor control, and camera settings adjustment.

5.2 Pre-Operative Procedure

In order to satisfy item 1 of the requirements, the device must be sterilizable. Two

sterilization methods currently in use are ethylene oxide gas (EtO) and STERRAD,
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a gas plasma process from Ethicon. Both processes were separately used to ensure

compatibility and effectiveness with the CPT. Ethylene oxide gas was used to sterilize

the CPT used in Animal B. The CPTs used in Animals A and C were sterilized with

STERRAD. A brief description of each process follows.

EtO sterilization uses toxic ethylene oxide gas, a potent anti-microbial agent which

kills viruses, bacteria, and fungi [78]. EtO can be used on instruments where the high

temperature and pressure of steam sterilization can be damaging. STERRAD was

developed in the early 1980s as a alternative to ethylene oxide gas and steam steril-

ization [79]. The technology uses a low-temperature hydrogen peroxide gas plasma.

It is suited to heat and moisture sensitive instruments.

The animals used in this study were anesthetized pigs. The protocol for this study

was approved by the University of Nebraska-Lincoln and University of Nebraska Med-

ical Center Institutional Animal Care and Use Committee (IACUC). Each animal’s

weight and preoperative medications and anesthetics are shown in Table 5.1.

In addition to these medications, an IV line was established to administer any

additional medications. During each procedure, each animal was maintained with

isoflurane and supplemented with oxygen. The animals also underwent a surgical

skin scrub and hair removal.

A partial layout of the operating room is shown in Figure 5.2. Only items relevant

to the operation of the CPT devices are shown. The anesthetized animal was located

on the OR table. The robot control console contained a PC, several LCD moni-

Animal Weight Medications

A 30.6kg
Telazol Xylazine Ketamine IsofluraneB 28.7kg

C 29.5kg

Table 5.1: Preoperative medications and Anesthetics
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tors, and video distribution components. The OR towers each had a CRT monitor,

one used for displaying the CPT image, and one used for the laparoscope image (if

needed). These towers also contained the laparoscope camera controller, light source,

and insufflation equipment. The surgeon stood behind the OR table in a position to

enable viewing of the CRTs on the OR towers. The robot controller (the author) sat

behind the robot control console. The robot controller adjusted LED brightness, tilt

motor position, and camera settings, all under the direction of the surgeon performing

the operation. The tether from the CPT device was connected to a breakout box,

Figure 5.2: OR Layout for Survivable Surgeries

located directly underneath the OR table. The breakout box contained connections

for video output, power, and USB. A USB cable ran from the PC on the robot control

console to the breakout box. Motor, LED, and camera control signals were carried

by this cable. An AC to DC converter supplied power to the breakout box, which
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contained a DC regulator for supplying power to the CPT. The analog video output

signal was routed to a video distribution amplifier on the robot control console. The

distribution amplifier supplied a video signal to the CRT on the OR tower, an LCD

on the robot control console, and a digital video recorder on the robot control console.

5.3 Operative Procedure

After each animal was prepped and anesthetized, a nasogastric tube was inserted and

the stomach was aspirated. Locations for ports and the CPT robot were identified

and marked. The peritoneal cavity was insufflated with CO2 using a Veress needle.

Next, a 12 mm trocar was placed near the abdominal midline for insertion of the

CPT and laparoscope (laparoscope used for animal A only). The sterilized CPT was

removed from a sealed bag and connected to the breakout box. Power, USB, and

video connections were made. The control software on the PC was used to verify

functionality of the focusing mechanism, tilt capability, LED brightness, and camera

settings of the CPT. Camera settings were changed to provide the best image, camera

focus was set to a position deemed optimal by the surgeon. The CPT was inserted

into the insufflated peritoneal cavity. During insertion, the CPT was drawn to the

abdominal wall by using an external magnetic handle. This was done to minimize

the chance that the clear outer tube of the CPT would make contact with any organs

or tissue, which could obscure the operating field from the imager. Once attached

to the abdominal wall, the magnetic handle was used to position the CPT for the

procedure. After positioning, the LED brightness, focus, and tilt were again adjusted

from the PC to provide the best view of the surgical environment. Additional trocars

were introduced for standard laparoscopic tools.

The surgeon used the video from the CPT as visual feedback to perform the
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cholecystectomy. First, the triangle of Calot was exposed by lifting the gallbladder

(Figure 5.3(a)). A duckbill grasper was used to apply downward pressure of the

anterior edge of Hartmann’s pouch. The peritoneum of the superior leaf of the cystic

pedicle was divided from the liver and the inferior peritoneal leaf was exposed. The

incision was completed around the anterior edge of the cystic pedicle and the liver.

The front and back structures of the cystic pedicle were dissected to expose the

cystic duct and cystic artery. The cystic duct was anteriorly separated from the

cystic artery using an electrosurgical hook knife (Figure 5.3(b),5.3(c)). The cystic

artery was clipped and divided with the hook knife. The cystic duct was clipped at

its junciton with the gall bladder (Figure 5.3(d),5.3(e),5.3(f)), completing dissection

of the cystic pedicle. Finally, the gallbladder was separated from the liver (Figure

5.3(g),5.3(h)), inserted into a bag (Figure 5.3(i)), and removed from the abdomen.

After the removal of the gallbladder, the gallbladder bed, duodenal bulb, and

hepatic fixture of the transverse colon were inspected. The subhepatic pouch and

right parahepatic space were irrigated until the returning fluid was clean. The CPT

device was retracted by pulling on the electrical tether. To complete the procedure,

the trocars were removed, the port incisions sutured, and local anesthetic was applied

to the suture sites.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.3: In vivo Images from CPT

5.4 Post-Operative Observations

After the procedure, each animal was transferred to a care facility where they received

care (food, water, washing, etc.) for 14 days. Each animal was monitored for signs

of infection, intestinal obstruction, urinary infection, confusion, etc. At the end of

this period, the animal was placed under general anesthesia. A visual exam of the

suture sites and the site of the magnetic handle was performed to look for signs of

infection, trauma, adhesions, or other abnormalities. Blood samples were taken before

the animal was euthanized. The abdominal cavity was accessed and a visual exam
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of the internal organs was performed, with several biopsies taken for pathological

examination.

5.4.1 Animal A

The surgery for animal A took place on April 10, 2007 [80]. Immediately following

the surgery, the animal was observed to be doing well, with no obvious signs of pain.

For the next 14 days, the animal continued to do well, it was active, had a normal

appetite, and showed no signs of pain or distress. Some minor swelling was observed

around the trocar incisions. On April 24, 2007, the animal was sedated, blood was

collected, and the animal was euthanized. The necropsy showed a mild adhesion of

the abdominal wall to the surface of the liver. The stomach, liver bed, and small

bowel all appeared normal. No infections or abnormalities were noted. Biopsies were

taken of the liver, small bowel, and interior abdominal wall. The pathological report

showed mild congestion of the liver and no histopathological abnormalities on the

small bowel sample. The abdominal wall sample showed fibrosis and mild chronic

inflammation.

5.4.2 Animal B

The surgery for animal B took place on May 29, 2007 [81]. Immediately following the

surgery, the animal was observed to be doing well, with no bleeding present. For the

next 14 days, the animal continued to do well, was active, no bleeding was present,

and it seemed alert. On June 12, 2007, the animal was sedated, blood was collected,

and the animal was euthanized. The necropsy showed no abnormalities, adhesions,

or other problems. Biopsy records for Animal B could not be located.
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5.4.3 Animal C

The surgery for animal C took place on July 17, 2007 [82]. Immediately following the

surgery, the animal was observed to be doing well, with no evidence of pain, had a

good appetite, and its incisions were clean and dry. For the next 14 days, the animal

continued to do well, it was active, had a normal appetite, showed no signs of pain

or distress. On July 31, 2007, the animal was sedated, blood was collected, and the

animal was euthanized. The necropsy revealed a very small inclusion cyst with fluid

in the subxiphoid port incision that was consistent with a cutaneous abscess. The

peritoneum was within normal limits. There were small adhesions to the gallbladder

fascia. The small bowel, colon, stomach were all within normal limits. There was

no evidence of adhesions or other abnormalities in the peritoneal cavity. Biopsies

of stomach, small intestine, and liver were taken. All biopsies showed no significant

histopathological abnormalities.

5.5 Summary

A miniature in vivo camera device (CPT-100) was designed, built, and tested to

show that using these in vivo robots in survivable surgeries is feasible. Each device

was sterilized and used in a survivable animal surgery. In the first surgery, the

CPT augmented the view of the surgical field from the laparoscope. In the final

two procedures, the CPT was used as sole visual feedback during the procedure.

Each animal was observed for 14 days after the surgery, with all animals showing

no negative effects from the surgery or the use of the CPT device. After 14 days,

each animal was euthanized and necropsies were performed. Animals A and C each

showed a mild adhesion, and Animal C had a small inclusion cyst present. All other

tissues and organs appeared to be normal. The biopsies taken from animal A showed
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small problems, and biopsies from animal C showed no abnormalities. These results

show:

1. Small in vivo surgical robots can be successfully sterilized using different ster-

ilization procedures with no damaging effects to the robot.

2. These in vivo robots can be used successfully as the sole means of visual feedback

in laparoscopic procedures.

3. These in vivo robots have been shown to cause no significant damage or infection

in survivable animal surgeries.

The author’s contributions in the survivable pig studies included the following:

1. Design and testing of the printed circuit boards (PCBs) in the CPT-100.

2. Developed and tested the firmware on the CPT-100 used for USB communica-

tions, motor control, LED control, and camera control.

3. Developed and tested Windows PC software including a graphical user interface

(GUI) used to control the CPT-100.

4. In charge of electronics setup for the CPT-100 devices prior to the animal surg-

eries.

5. Under direction of the surgeon, controlled the CPT-100 devices during the three

animal surgeries.
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Chapter 6

Surgical Tasks

The majority of the in vivo robotic devices previously described in Chapter 2 were

designed to augment or replace a laparoscope or endoscope in minimally invasive

surgery, although some have incorporated simple tools such as biopsy graspers (BMR-

22a, Sec 2.12). These devices have been used successfully in several animal surgeries

as visual feedback devices. One of the latest trends in minimally invasive surgery

is natural orifice transluminal endoscopic surgery, or NOTES, which was discussed

in Section 1.1.4. Consequently, some of the latest work in robotic surgery has been

in developing a stable platform for NOTES. In addition to NOTES procedures, this

in vivo surgical platform could be used in a system that is capable of performing

supervised autonomous surgical tasks. Rather than controlling the joints of the robot

directly, the surgeon instead issues commands to direct the robot where to move and

what task should be done, e.g. grasping, cutting, etc. This would enable the surgeon

to perform simple procedures over a high latency communication channel.
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6.1 A Dexterous In vivo Manipulator Robot

In order to move the in vivo robots from surgical assistants to a platform that en-

ables NOTES, a new design approach is needed that provides a stable platform for

manipulation and visualization within the surgical environment, while also allowing

flexibility for insertion. The AB3 robot for NOTES, shown in Figure 6.1, consists of

Figure 6.1: AB3 Robot

two prismatic arms connected to a central body by rotational shoulder joints. The

linkage used for articulation of the shoulder joint can be disconnected, allowing flex-

ibility at the shoulder joint for insertion. The left arm has a gripper end effector

and the right has a cautery end effector. The body contains a stereo camera pair for

visual feedback and magnets for attachment to the interior of the abdominal wall.
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Colored markers on the robot are used for real-time position tracking. Iterations of

this NOTES robot design have been demonstrated in multiple surgeries in a porcine

model including peritoneal exploration and partial cholecystectomy [83].

6.2 Supervised Autonomous Tasks

In addition to using these robots for NOTES, these devices can also be used to perform

supervised autonomous surgical tasks. Such tasks could be useful in situations where

the patient is in a location far from a trained surgeon. A surgeon at a remote location

could control the robot even if the communication channel between surgeon and

patient is of low bandwidth or has very high latency. This could have applications in

several areas, including:

• Long term spaceflight

• First responders on a battle field

• First responders in locations far from a hospital

In order to accomplish this, the robot would need to be able to perform simple

tasks autonomously. To investigate this, a system was designed using an existing

NOTES robot prototype, the AB3. A block diagram of the hardware can be seen in

Figure 6.2. A PC containing a frame grabber is the center of the system. The user

interface, tracker and PID controller are implemented here in C++. The framegrab-

ber receives video input from an overhead camera and the stereo imaging pair on the

AB3 robot. The actuators on the AB3 robot are driven from an external control box,

which is connected to the PC via a USB connection.

This system has three main components: visual tracker, controller, and stereo

vision. The user is presented with a video capture from the robot. The user then
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selects a point on the image for the robot to move to (e.g. a piece of tissue to grasp or

cut). The system uses a stereo correspondence algorithm to compute the location of

this point in 3D space. Once this point is verified by the user as correct, the controller

moves the appropriate end effector to the desired position receiving visual feedback

from the tracker. This process is repeated until the desired task is completed.

Figure 6.2: System Block Diagram

6.2.1 Tracker

To enable positional feedback for each joint controller, a color tracking system was

implemented. In many robotic systems, optical encoders mounted on each motor

could be used for this purpose, but the addition of encoders for this application was

not feasible. Encoders would add significant size to each motor, and thus to the

entire robot. In addition to the increase in size, encoders would add 4-5 wires per

motor to the tether of the robot. For these reasons, an optical tracking system was

implemented. It was decided to affix small color dots to specific points on the robots

joints and track their positions using a color segmentation method. The first step in

this method was to determine the color for the dots to optimize the performance of

the tracker. A method similar to the one developed by Uemura, et al. [52, 51] was

used. This method uses histograms in HSV (Hue-Saturation-Value) color space. A

graphical representation of HSV color space can be seen in Figure 6.3 [84].
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Figure 6.3: HSV Color Space

In this color space, hue is defined by the CIE as the attribute of a visual sensation

according to which an area appears to be similar to one of the perceived colors, red,

yellow, green, and blue, or a combination of two of them [85]. In the HSV cone, this

value is represented as the angular coordinate of the color in question, measured in

degrees, with a value of “pure” red ((1,0,0) in RGB value) corresponding to 0◦ and

360◦. Saturation is defined as the colorfulness of an area judged in proportion to its

brightness ; or, the more a color is concentrated at a specific wavelength, the higher

its saturation. Pure white would therefore have a saturation of 0. In the HSV cone,

saturation is represented as the radial distance from the center of the cone, with 0 at

the center and 1 at the edge. Value, or brightness, can roughly be described as the

total amount of radiant energy. It is represented as height in the HSV cone, with 0
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at the point, and 1 at the base.

To determine the color for the tracker markers, several in vivo images were an-

alyzed. Two of these in vivo test images can be seen in Figures 6.4(a) and 6.5(a).

These images are of large bowel and liver. Figures 6.4(b) and 6.5(b) show the hue

value histograms obtained using Matlab after converting the images from RGB to

HSV color space.

In both the histogram images, most of the pixels are concentrated in the orange-

red to violet-red regions, which is what one would intuitively expect for in vivo images.

After examining several of these images, green (H ≈ 120◦) was chosen as the marker

color. These markers were then made and attached to the robot. Due to the geometry

of the robot, positions of the imagers, and lens selection, the color markers were not

visible over the entire workspace of the robot when using the robot’s cameras. This

effect is illustrated in Figure 6.6, which shows the overhead and robot camera views

for a small joint angle. In this image, the marker on the upper arm is not visible.

Therefore, to speed up development of the entire controller, it was decided to first

implement the tracker from an overhead view. In a final stand-alone system, overhead

tracking would not be feasible, because the in vivo robot would be the only source

of visual feedback from the operating environment. However, the methods described

below would have similar implementations tracking from an robot camera view versus

an overhead view.

A flowchart of the tracker implementation can be seen in Figure 6.7. The tracker

was written in C++ using OpenCV, an open source computer vision library [86],

which was designed for real-time computer vision applications. First, the tracker is

initialized with the starting marker positions. This is done either from a initialization

file, or manually by the user clicking on the approximate locations in a video frame

displayed in the user interface. The video image is digitized by the frame grabber and
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(a) Original Image
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(b) Hue Histogram

Figure 6.4: Large Bowel
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(a) Original Image
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(b) Hue Histogram

Figure 6.5: Liver and Abdominal Wall
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(a) Overhead View (b) Robot Camera View

Figure 6.6: Tracker Marker Obstruction

converted from RGB to HSV using an OpenCV library function. A binary image is

calculated using the the hue channel according to Equation 6.1.

MH(x, y) =

 1 HLow < I(x, y) < HHigh

0 else.

 (6.1)

Here, HLow and HHigh are the range of hue values of the colored markers, MH(x, y)

is the pixel at (x, y) in the hue mask image, and I(x, y) is the pixel at (x, y) in the

original image. An example of this can be seen in Figures 6.8(a) and 6.8(b). The

white pixels in Figure 6.8(b) have a value of 1. This mask has significant amounts

of noise in it. To reduce this noise, another mask image is calculated using the same

method as in Equation 6.1, but on the saturation channel. This mask can be seen

in Figure 6.8(c). These two binary masks are combined using a pixel by pixel logical

AND operation, resulting in the final mask image, Figure 6.8(d).

After isolating the areas where the possible markers are in the image, these ar-

eas need to be located in the image. Using the OpenCV function cvFindContours,

the connected components are located in the resultant binary image. The central

moments are then calculated for each connected component. An area thresholding
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Figure 6.7: Tracker Operation

operation removes all components below a certain area in pixels. The centroid for

each of the remaining moments is stored in a list. This list is compared to the last

known positions of each marker and all distances are calculated. An example list is

shown in Table 6.1. In this situation, three markers are being tracked and four possi-

ble markers have been identified. The data in the table dXy represents the distance in

pixels from marker X to possible marker y. Each column is then sorted and ranked,

with the shortest distance being ranked one. The possible marker location with a

rank of one is then used for the next location for each marker. This simple ranking

system has been shown to work in normal benchtop operating conditions. A more

sophisticated system would need to be implemented to track a faster moving robot,

to deal with temporary occlusions, or large changes in lighting. One possibility could

be the feature correspondence algorithm proposed by Zhongxiang and Ronghua [49],

on which the method described here is loosely based. This method uses multiple

features to compute the best match for each item.
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(a) Test Image (b) Hue Mask

(c) Saturation Mask (d) Hue-Saturation Mask

Figure 6.8: Hue-Saturation Masks

The next step is calculating the end effector positions using the joint marker

positions. This process is summarized below:

1. Convert marker coordinates to right handed coordinates

2. Calculate rotation angle (rotation of image and/or robot)

3. Calculate robot origin in image coordinates

4. Convert markers to robot coordinates

5. Calculate wrist length and shoulder angle using inverse kinematic equations

6. Calculate end effector position
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Current
Marker A B C

Possible
Markers

1 dA1 dB1 dC1

2 dA2 dB2 dC2

3 dA3 dB3 dC3

4 dA4 dB4 dC4

Table 6.1: Distance Table

First, the marker coordinates must be converted from the left handed image coordi-

nates to a right handed coordinate system, shown in Figure 6.9. The equations for

Figure 6.9: Image Coordinate Conversion

conversion are:

xright = xleft

yright = ymax − yleft,
(6.2)

where ymax is the height of the image capture in pixels. A pixels to millimeters scaling

factor, Smm, is then calculated using the positions of markers M1 and M2 (see Figure

6.10). Since these are fixed markers, the distance between them can be measured and

stored as a constant in the program. Next, an angular correction is calculated. This

is to correct for any rotation in the robot or the camera. The correction is calculated
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using markers M1 and M2:

θrot = tan−1

(
yM2 − yM1

xM2 − xM1

)
. (6.3)

θrot is then used to calculate the center point of the robot body (body marker center

Figure 6.10: AB Robot Measurements

or BMC):

xBMC = xM1+b2∗cos(θrot)+xM2−b3∗cos(θrot)
2

yBMC = yM1+b2∗sin(θrot)+yM2−b3∗sin(θrot)
2

.
(6.4)
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The BMC, pixels to mm scale factor (Smm), and b1 from Figure 6.10 are used to

transform the marker points from image space to robot space, (See Equations 6.5 and

6.6). Matrix S is used to scale the positions from pixels to millimeters, using the

previously calculated Smm value. T1 is a matrix used to calculate the translation of

the body marker center to the robot origin, a shift of b1 mm along the y axis. R is

the rotational matrix used to calculate the transformation due to the image rotation,

θrot. The second translation matrix, T2, is used to calculate the shift of the body

marker center, (xBMC , yBMC).

S =



Smm 0 0 0

0 Smm 0 0

0 0 0 0

0 0 0 1


T1 =



1 0 0 0

0 1 0 b1

0 0 1 0

0 0 0 1


, (6.5)

R =



cos(θrot) − sin(θrot) 0 0

sin(θrot) cos(θrot) 0 0

0 0 1 0

0 0 0 1


T2 =



1 0 0 −xBMC

0 1 0 −yBMC

0 0 1 0

0 0 0 1


. (6.6)

Combining these matrices, we get the overall translation-rotation-scaling matrix:

Tov = Smm



cos(θrot) − sin(θrot) 0 −xBMC cos(θrot) + yBMC sin(θrot)

sin(θrot) cos(θrot) 0 −xBMC sin(θrot)− yBMC cos(θrot) + b1

0 0 1 0

0 0 0 1


.

(6.7)
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Equation 6.7 is then used to translate the marker locations from image space to robot

space. Using the inverse kinematic equations 6.8–6.11 derived by Wood [56], the joint

variables θ1g, θ1c, a2g, and a2c are calculated. For the cautery arm, x = xM4, y = yM4;

and for the gripper arm, x = −xM3, y = yM3.

a2 =
√
x2 + y2 − 2xa1 + a1

2 − a3
2 (6.8)

θ1 = tan−1

(
A

B

)
(6.9)

A =
xa3 + ya2 − a1a3

x2 + y2 − 2xa2 + a2
2

(6.10)

B =
a2(x− a1)− ya3

x2 + y2 − 2xa1 + a1
2

(6.11)

Using the kinematic model of the device provided by Wood [56], the positions of the

end effectors can now be calculated in the robot frame using Equations 6.12 and 6.13.

The a4 term is added to account for the distance between marker M3 or M4 and

the tip of the end effector. The previous calculations did not take this factor into

consideration.

xg = −(a2g + a4g) cos(θ1g)− a3g sin(θ1g)− a1g

yg = (a2g + a4g) sin(θ1g)− a3g cos(θ1g) (6.12)

xc = (a2c + a4c) cos(θ1c) + a3c sin(θ1c) + a1c

yc = (a2c + a4c) sin(θ1c) + a3c cos(θ1c) (6.13)
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Assessing tracker performance proved to be somewhat difficult. Tracking the ac-

tual position of the end effectors with high accuracy would require additional hardware

and modifications to the robot, such as using an external optical tracking system. It

was decided to find actual position by manually selecting the end effector position

from the image captures, and recording these values. When these values were added

to a scatter plot with the calculated tracker position, the data showed similar amounts

of variability, even when the data set consisted of images where the end effector did

not change position. Rather than introduce this measurement error into the evalua-

tion of the tracker, only the stationary tracker data will be analyzed. Figure 6.11(a)

shows a scatter plot of 60 consecutive calculated locations of the stationary cautery

end effector. The actual value of the end effector was found by analyzing several of

the images at higher magnification. An error plot for this data is plotted in Figure

6.11(b). The mean error for this data is 1.625 pixels, which an error of approximately

0.4 mm. Compared to the size of the simulated tissue (3.6 mm or 11%) and the open

gripper size (6.5mm or 6.1%), this amount of error was determined to be acceptable,

and no further analysis was conducted on the tracker error.
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6.2.2 Controller

With the tracker functioning, the position controller could be designed. The first step

in designing the controller is to model the system, with a separate model for each

joint. Using the tracker previously developed, open loop step tests were performed

and the joint position data were recorded for later analysis. Data were recorded for

step input magnitudes of 25%, 50%, 75%, and 100% of maximum in both forward and

reverse directions. These data were imported into Matlab and fit to a linear model.

Inspection of the step output data indicated that a simple model would most likely be

sufficient for modelling this system. The step data was fit to the form y(t) = mt+ b

for each step magnitude and direction, for a total of eight fits. The system transfer

functions were then calculated according to the following:

Y (s) = X(s)H(s)⇒ H(s) =
Y (s)

X(s)
, (6.14)

where Y (s) is the Laplace transform of the output, X(s) is the Laplace transform

of the input (unit step in this case), and H(s) is the transfer function of the system.

Y (s) and X(s) are found using 6.15 and 6.16.

y(t) = mt+ b
L↔ Y (s) =

sb+m

s2
(6.15)

x(t) = u(t)
L↔ X(s) =

1

s
(6.16)

The transfer function of each joint is then found to be:

H(s) =
sb+m

s
. (6.17)
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wherem and b are the values found in the time domain fit. The Matlab step function is

used to calculate a simulated step response for each transfer function. This simulated

response is plotted with the recorded response. These plots can be seen in Figures

6.15-6.18 on pages 142-145 at the end of this section.

These eight transfer functions are then analyzed to find the best transfer function

for each joint. Eight step simulations are calculated for each transfer function, one

for each of the experimental step inputs tested. The differences between each of

these simulations and the actual experimental data are calculated, and RMS error

values are calculated. These RMS values are stored in an array. Next, the mean

value over each row (or each fit) is calculated. The corresponding transfer function

of the minimum of these means is deemed to be the best fit. This process is better

illustrated in Table 6.2

The above process is completed for each joint. The resulting transfer functions

are shown in Equation 6.18.

Hgw(s) = −0.4316s+1.585
s

Hcw(s) = −0.2325s+1.407
s

Hgs(s) = 0.01367s−0.07039
s

Hcs(s) = 0.0146s+0.01185
s

(6.18)

A PID control scheme was decided upon, due to the ease of implementation of

Fits Experimental
y1 y2 · · · y8 Mean Error⇓ Output ⇒

H(s)1 eh1,y1 eh1,y2 · · · eh1,y8 ⇒ µ1(eh1,y1, eh1,y2, · · · )
H(s)2 eh2,y1 eh2,y2 · · · eh2,y8 ⇒ µ2(eh2,y1, eh2,y2, · · · )

...
...

...
...

...
...

H(s)8 eh8,y1 eh8,y2 · · · eh8,y8 ⇒ µ8(eh8,y1, eh8,y2, · · · )

Best Fit ⇐ min(µ1, µ2, · · · )

Table 6.2: Transfer Function Decision Table
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this type of controller. The control system block diagram can be seen in Figure 6.12.

In this diagram, R is the command position, G is the transfer function of the PID

controller, H is the system transfer function, T is the tracker, and Y is the PWM

output signal.

Figure 6.12: Joint Control System

The transfer function for a continuous time PID controller is:

G(s) = Kp +
Ki

s
+Kds. (6.19)

where Kp is the proportional gain, Ki is the integral gain, and Kd is the derivative

gain. Looking at each term in the time domain we have:

g(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d

dt
e(t), (6.20)

where e(t) represents the error at time t. To implement these terms in a digital

computer, the following approximations are used [87]:

p(k) = Kpe(k),

i(k) = i(k − 1) +Kie(k),

d(k) = Kd(e(k)− e(k − 1)),

(6.21)
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where e(k) is the error term at time k. The equation for the output of the controller

at time k, which is implemented in software is given in Equation 6.22.

u[k] = Kpe[k] +Kiiint +Kd(e[k]− e[k − 1])

iint =



k∑
t=0

e[t] imin < iint < imax

imax iint > imax

imin iint < imin


(6.22)

A separate controller was designed for each joint and implemented in C++. A

flowchart of this controller can be seen in Figure 6.13.

Figure 6.13: PID Controller Implementation

After modeling the system and discovering it can be described as a quasi-zero

order system, the traditional process of analytically determining PID constants was

not investigated. Instead, the PID constants were manually tuned on the benchtop.

This process resulted in a controller in which no derivative control was necessary.

Therefore, the final system is described as a P-I controller. A plot of the gripper

end effector position while executing a movement from 88◦ to 62◦ with PI constants
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p = 500, i = 15, and imax = 20 can be seen in Figure 6.14(a). At the start of

motion, the error is very large which results in a P value of nearly 100. When the

output PID value exceeds 100 for a short time after the integral term starts to grow,

the output is limited to 100, because a PWM duty cycle of over 100% cannot be

realized. As the error drops, the P value drops off, and with it, the output. At

approximately 2.8 seconds, the integral component has reached its limit of 20. This

maximum was introduced to stop the integral term from becoming dominant. At 3.4

seconds, all values drop to zero when the joint has reached the “in position” window,

or minimum error, (See Figure 6.13). This window, set at 0.5◦ in this example, is

necessary to prevent the controlling from oscillating over the set point indefinitely,

since it is unlikely it will achieve the precise command position. When controlling

the shoulder joints, the angle is not variable being controlled, rather it is the slider

position. Due to the geometry of the slider-crank mechanism, the slider-joint angle

relation is not linear [88]:

s = L2 sin(Φ) + L1

√
1−

(
e+L2 cos(Φ)

L1

)2

Φ = θjoint − 105◦,

(6.23)

where s is the slider position, and θjoint is the measured joint angle.

A separate controller was implemented for each joint. The PID constants used

can be seen in Table 6.3. The “Position Limits” parameters were introduced to stop

Joint p i imax In Position Position Limits

Cautery Wrist 12.0 2.0 50.0 0.5 mm 70 mm-100 mm
Gripper Wrist 12.0 2.0 50.0 0.5 mm 78 mm-105 mm
Cautery Shoulder 500.0 10.0 20.0 0.5◦ 88◦-140◦

Gripper Shoulder 500.0 15.0 20.0 0.5◦ 85◦-130◦

Table 6.3: PID constants
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all joint motion and prevent damage to the robot if a command position is given that

is out of the movement range.
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Figure 6.14: Position and PID Internal Values
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Figure 6.15: Gripper Shoulder Models



143

0 0.5 1 1.5
−0.05

0

0.05

 

 

Step Input Magnitude = 100%

Time (sec)

S
lid

er
 P

os

Simulated
Acutal

0 0.5 1 1.5
−0.05

0

0.05

0.1

 

 

Step Input Magnitude = −100%

Time (sec)

S
lid

er
 P

os

Simulated
Acutal

0 1 2 3
−0.05

0

0.05

 

 

Step Input Magnitude = 75%

Time (sec)

S
lid

er
 P

os

Simulated
Acutal

0 1 2 3
−0.05

0

0.05

0.1

 

 

Step Input Magnitude = −75%

Time (sec)

S
lid

er
 P

os
Simulated
Acutal

0 1 2 3 4
−0.05

0

0.05

 

 

Step Input Magnitude = 50%

Time (sec)

S
lid

er
 P

os

Simulated
Acutal

0 1 2 3 4
−0.05

0

0.05

0.1

 

 

Step Input Magnitude = −50%

Time (sec)

S
lid

er
 P

os

Simulated
Acutal

0 2 4 6
−0.05

0

0.05

 

 

Step Input Magnitude = 25%

Time (sec)

S
lid

er
 P

os

Simulated
Acutal

0 2 4 6
−0.05

0

0.05

0.1

 

 

Step Input Magnitude = −25%

Time (sec)

S
lid

er
 P

os

Simulated
Acutal

Figure 6.16: Cautery Shoulder Models
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Figure 6.17: Gripper Wrist Models
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Figure 6.18: Cautery Wrist Models
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6.2.3 Stereo Vision

The stereo vision component of the system is used to compute the desired end ef-

fector position based on user input. The user is presented with one of two images

from the stereo imager pair on the robot, where he or she selects a piece of tissue to

grasp or dissect. The software then uses a stereo correspondence algorithm to find

the corresponding point in the image from the other stereo imager. The software

then computes the three-dimensional coordinates from the disparity and known cam-

era geometry. This system illustrates the two basic steps in computer based stereo

imaging: correspondence and calculating three-dimensional coordinates from a pair

of two-dimensional coordinates. This stereo vision algorithm was not developed by

the author; rather an existing stereo vision algorithm was integrated into the system

by the author.

Correspondence refers to calculating disparity values for features in an image. A

point in the field of view of a pair of imagers will project onto different points of the

image plane in each imager. The difference in the positions of these corresponding

projected points is referred to as disparity. Manually finding these corresponding

points is usually trivial, but developing an algorithm to accomplish this is a highly

complex topic, and is a heavily investigated topic in computer vision. Numerous

algorithms have been developed and several of these were evaluated and ranked by

Scharstein and Szeliski [89].

When the correspondence problem is solved, three-dimensional coordinates can be

calculated from the pair of corresponding image points. A process for accomplishing

this in the system described here is shown below. Figure 6.19 shows a top-down

projection of a single camera imaging an object at point P . Point P (x, y) is the point

of interest. It lies a distance robj from the camera, O, and has coordinates (xobj, yobj).

The horizontal field of view is defined as θfov, with −xmax and xmax defining the field
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Figure 6.19: Single Camera

that is viewable at distance yobj from the camera. The quantity of interest is θobj,

the angle of the point with respect to the x-axis. Another angle necessary for the

calculations, θa, is defined as:

θa =
π − θfov

2
. (6.24)

The field of view of the camera is projected onto the imager with a width of N

pixels. We will define −N
2

as the leftmost pixel, corresponding to −xmax and N
2

as

the rightmost pixel, corresponding to xmax. The equations of xmax and ymax can then

be written as:

xmax = r cos(θa)

ymax = r sin(θa).
(6.25)

Using the relationship between xmax and the total number of pixels given above, the
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coordinates of a point on the line y = yobj is:

x(n) = r cos(θa)
(

2n
N

)
y(n) = r sin(θa),

(6.26)

where n is the horizontal pixel position of the point. Using this, the angle θobj can

be found:

tan(θobj) = mobj =
yobj

xobj
= sin(θa)

cos(θa)( 2n
N )

= N tan(θa)
2n

θobj = tan−1
(
N tan(θa)

2n

)
.

(6.27)

Figure 6.20 shows the setup extended to two cameras. This time, the origin is centered

between the two cameras separated by a distance d. This distance d is also known as

the baseline. The slopes of the two lines, mobj,1 and mobj,2 are found using Equation

6.27.

Figure 6.20: Dual Cameras
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The two line segments are defined as:

yi = mobj,ix+ bi i = [1, 2]. (6.28)

The intercepts are calculated to be:

bi =
mobj,id

2
. (6.29)

Because these two lines intersect, the coordinates (xobj, yobj) of point P can then be

found:

xobj = b2−b1
m1−m2

yobj = mobj,ixobj + bi.
(6.30)

These give the x and y coordinates of a point in one horizontal plane. Extending

these results to three dimensions is analogous to the previous calculations, but with

the vertical field of view (θfov,v), the vertical number of pixels V , and the vertical

pixel position, v (see Figure 6.21). The vertical slope, mobj,v is given by;

mobj,v = V tan(θa,v)

2v
. (6.31)

The z coordinate is then given by:

zactual = mobj,v

(√
x2
obj + y2

obj

)
. (6.32)

The x coordinate remains unchanged, but the y coordinate must be adjusted due to

the angle θobj,z:

xactual = xobj

yactual = yobj cos (mobj,v) .
(6.33)
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Figure 6.21: Stereo Vertical Adjustment

These results are only valid for a system in which the optical axes of the cameras

are parallel, and the cameras are placed at y = 0, z = 0. Due to time constraints and

the complexity of stereo correspondence algorithms, it was decided to use an existing

algorithm designed by Psota [90], rather than designing an algorithm specific to this

application. In future development of this system, this algorithm would be replaced

with an approach customized to this problem to allow for real-time performance.

6.2.4 Software

To integrate the tracker, stereo vision algorithm, and PID controller, a Windows based

graphical user interface (GUI) was developed by the author. This interface built on

the existing AB3 control software and is based in one main dialog, shown in Figure
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6.22. The “Tracker Control” area of the main dialog is the user interface to the tracker.

The program allows for live tracking, using images captured from a framegrabber or

off-line tracking, using previously captured images. The image source is set by a radio

button selection. When operating in off-line mode, the user must choose a sequence

of files to use for tracking, by clicking the Choose File... button. The filename must

be part of a sequence of images, with a suffix of xx, where xx is a number. When a

file is selected, the file name and index are displayed on screen. To update the tracker,

buttons marked + and - are used. These load the next image and previous image files,

respectfully, and update the tracker state. There are several controls for adjusting

the color tracker. The Hue Low, Hue High, Sat Low, Sat High fields define the hue

and saturation ranges used to calculate the mask images shown in Figure 6.8. The

default values are loaded from a configuration file at program startup. The Update

HS button enables the user to manually adjust the hue and saturation ranges. The

Color Calibrate button enables a guided color calibration method to find the hue and

saturation ranges. An overhead frame capture is presented to the user, who manually

selects areas (using the mouse) in the image corresponding to the tracking markers.

When area selection is complete, all selected pixels are combined, and the program

calculates the range of hue and saturation represented by the user selections and

updates the values in the program. The Position Calibrate button allows the user to

interactively enter the position of the tracker markers. The current overhead capture

is presented to the user, who clicks on each point in specific order. This updates the

trackers current “guess” of the marker positions. The current marker positions are

also displayed in the field below the Update HS button. The Show Capture button

displays the current overhead capture image. The Start Tracking starts live tracking

of end effector positions updated at 10 Hz when using the framegrabber. The AB3

Meas button allows the user to fine tune the device dimensional constants used in
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calculating end effector position.

The “Controller Parameters” area allows user interaction with the PID controller.

The constants P ,I,D,Imax, and Emax can be changed by the user at any time. These

default values are loaded at startup from a configuration file. A static field displaying

the current position of each joint is also displayed. These fields are updated while the

controller is operating. Below the current position fields are user editable fields to

enter the desired joint positions. Home position buttons move all joints back to their

default positions. Step cursor buttons enable the user to move the joints by 10 mm

(wrist joints) or 5◦ (shoulder joints) under PID control. The Controller State indicator

displays when the controller thread is active and the Controller Fault indicates when

a controller error condition has occurred. The controller can be started and stopped

with the Start Move and Stop Controller buttons, respectfully. The gripper actuator

is opened and closed via two buttons.

The stereo vision component is also controlled from this dialog. The Set End Eff

Target button presents an overhead capture to the user, who clicks on the image

to store the desired end effector positions. The Find Target Psota Method button

presents the user with a left camera image. The user clicks on the desired target

point, and the algorithm calculates the three dimensional position. After calculation

is complete, the program prompts the user for the desired end effector. The Find

Target Manual Method button presents the left and right images to the user. The

user must manually find and click on the corresponding points in the images. The

program uses the pixel positions to calculate the point in three dimensional space.
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Figure 6.22: Supervised Autonomous Task User Interface
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The PID controller, stereo algorithm interface, and tracker are all implemented

in the digitalController class. A collaboration diagram of this class is shown in Fig-

ure 6.23 The main dialog class of the GUI instantiates a digitalController object.

Figure 6.23: digitalController Collaboration Diagram

This class implements functions for control law calculations for all joints, as well as

worker thread to implement the control loop. The digitalController object contains

a member, AB3Device, a pointer to an Asclepius object. The Asclepius object is the

interface to the AB3 device. The digitalController object also contains four pid mem-

ber objects, one for each joint. The pid object stores all values needed by the PID

controller, including constants, current position, error, command position, and gain

terms. The Asclepius class has member attributes of overheadTracker, frameGrabber,
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asclepiusMotorMap, and openLoopCommands objects. The openLoopCommands

class stores data for open loop control, and is not used with closed loop PID control.

The asclepiusMotorMap contains joystick mapping information used when control-

ling the AB3 device with the Virtual Incision controller. The frameGrabber class

wraps the Sensoray framegrabber library in a C++ class. It supports up to three si-

multaneous framegrabber boards. The overheadTracker class, which is derived from

the visualTracker class, implement all tracking functions.

6.3 Results

Several benchtop tests of the system were conducted. The robot was placed in a

mount to keep it stationary, while a piece of rubber band was placed in a separate

mount in the middle of the robot’s workspace to simulate a piece of tissue. A digital

camcorder was mounted above the robot and tissue model. The overhead view of the

setup can be seen in Figure 6.24.

Figure 6.24: Supervised Autonomous Task Setup
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The benchtop tests consisted of a simulated stretch and dissect task. The steps in

this task are listed below, with end effector position plots and camera views following

in Figures 6.25-6.31. The graphs marked “End Effector Paths” are plots of the cal-

culated end effector positions at each time step. Those graphs with only a single dot

at the end effector position represent steps where that particular joint did not move.

1. User selected location on tissue model to grasp by clicking on red mark in Figure

6.25(c). Stereo matching algorithm calculates final position and displays to user

for confirmation prior to movement.

2. Robot moved gripper arm to selected location, position plot in Figure 6.26(a),

final position in Figures 6.26(b)-6.26(d).

3. User manually closed gripper from a on-screen button in the GUI. This joint is

controlled in an open-loop velocity mode, and care must be taken not to over

extend the joint in either direction.

4. User retracts gripper arm using a control in the GUI which translates the joint

by a set distance. This stretches tissue to prepare for dissection. See Figure

6.27(a).

5. User selected point to cut with cautery arm, and stereo matching algorithm

calculates final position with user confirmation. Cautery arm then moves into

position (Figure 6.28(a)).

6. With the cautery arm in the correct position, the dissection would occur here,

but the cautery device was not functional at the device at the time of testing.

7. Cautery arm retracted after simulated dissection, as in Step 4, see Figure 6.29.
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8. User extended gripper arm back to original position, as in Step 4, see Figure

6.30.

9. User manually opens gripper and releases tissue, as in Step 3.

10. User moves arms back to starting position, by clicking “Home joints” control in

the GUI, Figure 6.31.

All images and data were saved for later analysis. Figure 6.32 shows positional

data from the cautery end effector during the movement in step 6 of the task, calcu-

lated after the test from saved data. A graph of the tracker positional error over this

movement is shown in Figure 6.33. The maximum measured error during tracking

was 0.7 mm, with a mean error of 0.3mm. These figures are typical of all movements

over both arms.
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Figure 6.32: End Effector Position

Figure 6.33: Positional Error
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6.4 Summary

A completely in vivo surgical platform capable of completing supervised autonomous

surgical tasks could be very useful in several situations where a patient is a long

distance from a trained surgeon. A device such as this could be controlled remotely

by a surgeon without the need for a low latency communications channel for real-

time video. A prototype system was designed and tested around an existing robotics

platform, the AB3 (See section 2.20). This system consisted of a visual tracker, a

controller, and stereo vision. User interaction was through a custom designed GUI

running on a standard PC. The user selects a point from one of the robots two

cameras and the system automatically moves the specified end effector to that point.

The tracker locates and tracks colored dots mounted on the robot, and calculates

end effector positions in real time. A PID position controller was then designed for

each joint. Each joint was characterized by performing open-loop step input tests

and analyzing the position data recorded by the tracker. The PID parameters were

manually tuned to optimize the controller performance. To locate points of interest

that the robot will interact with, a stereo vision system is needed. This system

can calculate three-dimensional coordinates from a pair of two-dimensional images

using a stereo matching algorithm. To save time, an existing algorithm was used in

the prototype system, but future development of the system will include designing

a stereo vision specifically for this application. Benchtop tests were conducted using

the prototype system. These tests were simulated stretch and dissect procedures, in

which the robot (with minimal user interaction) grasps a piece of simulated tissue

and dissects it with a cautery tool. The system performed well, but several areas will

need to be addressed before a system such as this is used in an in vivo environment.

These will be discussed in Chapter 7.

The work presented in this chapter, to the best knowledge of the author, represents
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some of the first contributions to the field of surgical robotics in using in vivo robots to

automate surgical tasks. There has been some research done in automating surgical

tasks, but this research has used visually servoed external robots. This research

includes automating tasks in keratoplasty (corneal shaping) by Zong et al. [44] and

automating suture tying by Hynes et al. [43]. Similar research is studying the use of

visual feedback to automate steering of medical needles in soft tissue [91].
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Chapter 7

Conclusions and Future Work

The work outlined in this dissertation has shown that miniature in vivo robots can

be used in minimally invasive surgical procedures for providing visual feedback, and

in the near future, to be a completely intracorporeal surgical platform capable of

performing supervised autonomous surgical tasks. The author was the sole electronics

and software designer for 19 different in vivo robots described here. These robots

varied in both form and function, and included mobile robots, fixed base cameras,

wireless cameras, a mobile robot with biopsy capability, a prototype wireless crawler,

ceiling pan-tilt cameras, and three types of dexterous manipulators. The design work

for these included printed circuit board layout, firmware, interface, PC based control

software, motor control, a digital controller, and a vision based real-time tracker.

To show that these in vivo cameras have visual quality comparable to standard

laparoscopes, comparisons using several visual quality metrics were completed. These

results show that a laparoscope has somewhat higher visual quality than the in vivo

cameras, but it is believed that with improved optics and lighting, the in vivo cameras

could have comparable visual quality. During experiments conducted in cooperation

with NASA during the NEEMO 9 mission, an in vivo camera robot was compared
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with a laparoscope as a visual feedback device for completing simulated laparoscopic

surgical tasks. The results indicate that the in vivo camera is no worse, and possibly

as good as a standard laparoscope, but further experiments of this kind will be needed

to confirm this. A sterilizable in vivo camera robot was designed and built to show

that these types of devices can be used safely in minimally invasive surgery. Three

survivable animal surgeries were completed using a sterilized CPT camera device

as sole visual feedback for a cholecystectomy. All three procedures were completed

successfully, and the miniature robot caused no tissue damage or infection. Finally,

a dexterous manipulator robot was used to demonstrate a proof-of-concept that in

vivo surgical platforms could be used to perform supervised autonomous surgical

tasks. Devices such as these could be used in emergency procedures, long term space

flight, or anywhere the patient is not near a trained surgeon. A surgeon in a remote

location could still use these devices to perform simple procedures, even if there

is no low latency communication channel available. Finally, some suggestions for

improvements and future work related to the topics previously discussed will now be

given.

7.1 Statistical Comparisons

Chapter 4 described experiments done in cooperation with NASA on the NEEMO 9

mission. The goal of these experiments was to compare the usefulness of the in vivo

robotic devices described here with a standard laparoscope. The NEEMO crew mem-

bers all completed multiple tasks using each camera system for visual feedback. The

analyses of these results indicate that there is no significant difference in performance

metrics between the in vivo cameras and laparoscopes. However, the experiments

suffered from low statistical power, due to the small number of participants. Several
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suggestions for the design of future studies are given below:

1. Participants should be surgeons, because these are the people who will be using

the devices in practice.

2. A larger sample size will be necessary to ensure adequate statistical power. A

sample size of 50 participants would reduce the chance of a Type-II error to

20%.

3. The participants should be randomly assigned to perform tasks with the in vivo

robot or the laparoscope; or if each participant uses both systems the order in

which they are used should be randomly assigned.

4. Use a more sophisticated statistical model to analyze the data. Rather than the

ANOVA models used here, an ANCOVA (analysis of covariance) model could

be used. With this model, covariates such as amount of laparoscopic experience,

could be factored into the analysis which would improve the statistical power

of the results.

7.2 Supervised Autonomous Task Completion

The prototype system for supervised autonomous task completion developed in Chap-

ter 6 worked well under benchtop conditions, but several aspects of it need to be

improved before it is a viable in vivo solution. The overhead tracker that was im-

plemented worked to develop the position controller, but is clearly not an acceptable

long term solution, as there are several problems with the current implementation:

1. No “overhead” camera in an in vivo environment.

2. Need to initialize tracker with approximate positions of each marker.
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3. Error due to inaccurate device measurements.

In a standalone in vivo system, the system would need to track joint positions using

only views from the robot cameras, as no overhead camera would be present. Tracking

from the robot view introduces new problems, including how to deal with occlusions

when the joint is not in the field of view. Fortunately, this is a well studied area of

computer vision, and many algorithms have been developed that are able to cope with

occlusions [92] [46] [47]. In addition to a modified tracking algorithm, the locations

of the device cameras could be designed in such a way that minimizes areas where

the tracker markers are not visible. This would need to take into consideration other

factors, including physical size and configuration of the device, and the camera’s view

of the operating environment.

The tracker also required initialization of the approximate starting positions of

each marker. One possible way to eliminate this requirement would be to use different

color markers for each joint. Looking back at Figures 6.4(b) and 6.5(b) pages 124-125,

it can be seen that there is a large range of hue values that do not appear in the in

vivo test images. In theory, several different colors of marker could be tracked in the

same way the markers in this system were tracked.

The joint controllers described in Section 6.2.2 were shown to function adequately

for the simple benchtop tests presented here. Before in vivo tests were attempted, they

should be improved in several aspects. A global path planner should be added that

could avoid collisions with other tools and unwanted tissue interaction. A controller

should also be added for the gripper end effector to allow the software to control the

opening-closing actuation of the end effector.

As mentioned previously, an existing stereo correspondence algorithm was used

in the prototype system. In future systems, this should be replaced with a solution

designed specifically for this application. The algorithm used here was accurate, but
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too slow for use in a surgical environment. The new algorithm should be implemented

in C++, possibly using the OpenCV library, which has several stereo vision library

functions. The stereo vision system could also be used to improve the tracker. If a

unique marker would be attached to each end effector, the color tracker previously

described could locate the markers position in both the left and right images, the

three-dimensional coordinates of the end effector could then be determined, and fi-

nally joint angles from that position. This is a simplification of the problem, and

does not address such issues as end effector orientation or any of the inverse kine-

matic calculations that would be necessary to implement such a system. However,

this implementation has one significant advantage not previously mentioned: track-

ing joint position visually and in real-time would eliminate the need for optical or

magnetic encoders on the motors of a device. This has the potential to significantly

reduce the size of such devices.
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Appendix A

Electronics
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Figure A.7: MR-20c Control PCB
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Figure A.9: NEEMO Controller Box PCB-Main
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Figure A.10: NEEMO Controller Box PCB-Imager and Motor Drive



184

11

22

33

44

55

E
E

D
D

C
C

B
B

A
A

1

U
ni

ve
rs

it
y 

of
 N

eb
ra

sk
a

R
ob

ot
ic

s 
an

d 
M

ec
ha

tr
on

ic
s 

La
b

M
ec

ha
ni

ca
l E

ng
in

ee
ri

ng
Li

nc
ol

n,
 N

E
 6

85
88

-0
65

6
U

SA
1

B
M

R
-2

2a
 I

m
ag

er
/M

ot
or

 D
ri

ve
 P

C
B

1.
0

10
/1

0/
20

09
12

:4
1:

44
 P

M
B

M
R

-2
2a

-P
C

B
.S

C
H

D
O

C

T
itl

e

D
at

e:
Fi

le
:

R
ev

is
io

n:

Sh
ee

t
of

T
im

e:

D
ra

w
n 

B
y:

Ja
so

n 
D

um
pe

rt

P0
[7

]
1

P0
[5

]
2

P0
[3

]
3

P0
[1

]
4

SM
P

5

P1
[7

]
6

P1
[5

]
7

P1
[3

]
8

P1
[1

]/
SC

L
K

9

G
N

D
10

P1
[0

]/
SD

A
T

A
11

P1
[2

]
12

P1
[4

]
13

P1
[6

]
14

X
R

E
S

15

P0
[0

]
16

P0
[2

]
17

P0
[4

]
18

P0
[6

]
19

V
cc

20

U
3

PS
oC

C
E

1
2

C
E

2
13

VCC
1

IN
1

6

SGND7

IN
2

9

VS1
4

O
U

T
1

3

O
U

T
2

5

PGND 8PGND
14

VS2 11

O
U

T
3

12

O
U

T
4

10

U
1

FA
N

82
00

M
T

C

C
E

1
2

C
E

2
13

VCC
1

IN
1

6

SGND7

IN
2

9

VS1
4

O
U

T
1

3

O
U

T
2

5

PGND 8PGND
14

VS2 11

O
U

T
3

12

O
U

T
4

10

U
2

FA
N

82
00

M
T

C

PW
M

1

PW
M

2

PW
M

3

D
IR

1

D
IR

2

D
IR

3

D
V

D
D

10
uF

C
1

10
uF

C
2

.1
uF

C
5

.1
uF

C
4

.1
uF

C
3

PW
M

1
PW

M
2

PW
M

3

D
IR

1
D

IR
2

D
IR

3

O
V

_C
L

K

O
V

_D
A

T
A

T
x

R
x

A
V

D
D

A
G

N
D

T
x

R
x

M
1A

M
1B

M
2A

M
2B

M
3A

M
3B

JP
10

JP
12

A
G

N
D

1

A
V

D
D

2

A
B

R
T

3

B
K

L
T

4

V
R

E
Q

6

V
R

C
H

G
7

V
id

eo
 O

ut
10

O
V

D
D

11

E
V

D
D

12

E
G

N
D

13

SC
C

B
_E

14

VPXO/VFLIP 15

X
C

L
K

1
16

X
C

L
K

O
ut

17

D
V

D
D

18

D
G

N
D

19

FSI
20

GAMMA21

VHS/MIR22

FODD/HGAIN23 PWDN 24

FASTB 25

SI
O

_C
26

SI
O

_D
27

AWB1S
28

U
4

O
V

79
30

.1
uFC
11

.1
uF

C
10

.1
uF

C
8

.1
uF

C
7

.1
uF

C
9

D
V

D
D

A
V

D
D

10
uF

C
6

D
V

D
D

A
V

D
D

A
V

D
D

A
G

N
D

X
C

L
K

1

V
R

E
Q

V
R

C
H

G

V
id

eo
O

ut

N
C

1
G

N
D

2

O
U

T
3

V
cc

4
Y

1

14
.3

18
18

M
H

z

D
V

D
D

O
V

_C
L

K
O

V
_D

A
T

A

D
V

D
D

D
V

D
D

D
V

D
D

D
V

D
D

D
V

D
D

10R
1

10FB
1

10
uF

C
12

75R
2

JP
13

JP
14

JP
15

JP
16

N
T

SC
_1

X

N
T

SC
_1

X

1 2

J2 H
ea

de
r 

2

1 2 3 4 5

J1 H
ea

de
r 

5

1 2 3 4

J3 H
ea

de
r 

4

JP
5

JP
2

JP
4

JP
3

JP
1

OV_PWD

O
V

_P
W

D

Figure A.11: BMR-22a PCB
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Figure A.15: AB3 Interface Box
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