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The Theory of Quaternion Orthogonal Designs
Jennifer Seberry, Senior Member, IEEE, Ken Finlayson, Sarah Spence Adams, Member, IEEE,

Tadeusz Antoni Wysocki, Senior Member, IEEE, Tianbing Xia, and Beata Joanna Wysocki

Abstract—Over the past several years, there has been a re-
newed interest in complex orthogonal designs for their application
in space–time block coding. Motivated by the success of this
application, this paper generalizes the definition of complex
orthogonal designs by introducing orthogonal designs over the
quaternion domain. This paper builds a theory of these novel
quaternion orthogonal designs, offers examples, and provides
several construction techniques. These theoretical results, along
with the results of preliminary simulations, lay the founda-
tion for developing applications of these designs as orthogonal
space–time-polarization block codes.

Index Terms—Diversity methods, mobile communications, mul-
tiple-input multiple-output (MIMO) systems, polarization.

I. INTRODUCTION: MOTIVATION AND PRELIMINARIES

SPACE-TIME block codes built from generalized complex
orthogonal designs can be viewed as a generalization of

Alamouti’s scheme [1] and were introduced by Tarokh et al.
[18]. These space–time block codes are particularly attractive
because they can provide full transmit diversity while requiring
a very simple decoupled maximum-likelihood (ML) decoding
method [13], [18]. The combination of space and time diversity
moved the capacity of wireless communication systems towards
the theoretical limits, and this technique has been adopted in the
3G standard in the form of an Alamouti code and in the newly
proposed standard for wireless LANs IEEE 802.11n. The suc-
cess of the combined diversity achieved by complex orthogonal
space–time block codes motivated us to consider alternative def-
initions of orthogonal designs that would permit the combina-
tion of space and time diversity with additional forms of di-
versity. We expect that the combination of additional forms of
diversity, for example, frequency and/or polarization diversity,
will further improve capacity.
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Polarization diversity has been studied in the past [4], and
Collins has provided a detailed assessment of the diversity gain
under Rayleigh fading [5]. Recently, the demand for high rates
in mobile communications has raised interest in applying po-
larization diversity, often together with other forms of diversity.
It has been shown that polarization diversity can significantly
add to the performance improvements offered by other diver-
sity techniques and be nearly as effective as spatial diversity for
base station antennas without a noticeable increase in their di-
mensions [6], [14]. In addition, the use of dual-polarized an-
tennas for both transmitter and receiver combined with channel
coding has been previously studied [22]. Polarization diversity
is usually considered separately from the other forms of diver-
sity and there is no well known mechanism of utilizing it jointly
with the other forms rather than through a simple concatenation.
However, it is intuitively clear, and shown through space–time
coding, that it is possible to achieve better performance by using
combined rather than concatenated forms of diversity.

The work of Isaeva and Sarytchev [12] implies that a signal
having components in two orthogonal polarizations can be mod-
eled by means of quaternions, whereby two complex constella-
tions orthogonal to each other on a polarization plane form a
quaternion, or hypercomplex, number [2]. Using this notation,
any rotation on the polarization plane can be represented in a
similar way as a rotation on a complex plane. Similarly, any
change to the polarization bases, e.g., due to differences between
transmit and receive antenna alignments, can be represented in
the quaternion notation as long as the polarization bases are or-
thogonal [12].

Hence, we propose to develop orthogonal designs with
quaternion elements to be used as a basis for orthogonal
space–time-polarization block codes. The generalization
from real orthogonal designs to complex orthogonal designs
was straight-forward, while this further generalization is
significantly complicated by the non-commuting nature of
the quaternions. The proposed application of these quater-
nion designs would allow polarization diversity to be jointly
combined with space and time diversities. Our preliminary
simulations indicate that the proposed quaternion orthogonal
space–time-polarization block codes perform similarly to
complex orthogonal space–time block codes that use twice as
many transmit antennas and twice as many receive antennas.
In addition to further studying this savings on dimension, other
potential performance gains must be further addressed in future
work.

The original definition of orthogonal design proposed by
Geramita, Geramita, and Seberry Wallis [10] concerned only
square matrices defined on real variables. An orthogonal design
(OD) of order and type on commuting real
variables , denoted OD , is an

1053-587X/$25.00 © 2008 IEEE
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matrix with entries in the set
satisfying , where denotes the
transpose of a matrix and is the identity matrix of order .
Qualitatively, we say that the rows of are formally
orthogonal and each row has precisely entries of the type

. Geramita, Geramita and Seberry Wallis also showed that
, and so our qualitative description of

applies equally well to the columns of [10]. Geramita and
Geramita [11] first studied orthogonal designs in the complex
domain as matrices of type with
entries in the set
satisfying , where
denotes the Hermitian transpose. This definition can be
generalized to include rectangular designs. We
say that these designs are complex orthogonal designs
(CODs) on real variables . A variation more
widely used in the signals processing literature is the
generalized complex orthogonal design of size and
type with entries in the set of complex variables

satisfying
[13], [18]. We say that these designs are CODs on complex
variables . A number of variations on these
definitions has been considered. For example, if an entry of a
design is a linear combination of the permitted variables, then
the design is said to be with linear processing.

We recall here the properties of the quaternions that are crit-
ical to our discussion and refer the reader to Altmann’s book [2]
for more information. The noncommutative quaternions

satisfy . A
quaternion variable , where , ,

, are real variables has a quaternion conjugate defined by
. It follows that

is real. Given a matrix , where are quaternion

variables, its quaternion transpose is . It follows
from this definition of the quaternion transpose that the product

consists of taking the inner product of the columns of
and the columns of , where the inner product of quaternion
variables and , is said to be . This notion will now
be developed as we define quaternion matrices whose columns
are mutually orthogonal under this inner product.

Definition 1: A quaternion orthogonal design (QOD)
on commuting real variables of type

is an matrix with entries from
, , that satis-

fies . This design is denoted
by QOD . When , we have

. Similarly, we define a
QOD on commuting complex variables to have
entries from the set
including possible multiplications on the left and/or right
by quaternion elements , and to satisfy

. Finally, we define a QOD on noncom-
muting quaternion variables , to have entries
from including
possible multiplications on the left and/or right by quaternion
elements and to satisfy . We

can generalize these definitions to allow the design entries to
be real linear combinations of the permitted variables and their
quaternion multipliers, in which case we say the design is with
linear processing.

Example 2: The matrix is a QOD on

real variables . The matrix is a QOD

on complex variables , . Finally is the most

obvious example of a QOD on the quaternion variable . QODs
on quaternion variables are the most difficult to construct.

In Section II, we provide two construction techniques that uti-
lize real and complex orthogonal designs to build quaternion or-
thogonal designs. In Section III, we define quaternion-commu-
tivity and quaternion amicable designs in an effort to develop
construction techniques that do not rely on existing real and
complex orthogonal designs. In Section IV, we describe sim-
ulation results of a quaternion orthogonal design applied as a
space–time-polarization block code. The paper is concluded and
some open problems are described in Section V.

II. CONSTRUCTION TECHNIQUES USING

REAL AND COMPLEX DESIGNS

In this section, we provide two construction techniques that
use existing real and complex orthogonal designs to build
quaternion orthogonal designs. The constructions demonstrate
that QODs exist, and the resulting examples help build intuition
concerning the behavior of these novel designs. The noncom-
mutativity of the quaternions prevents simple generalizations
of construction techniques for ODs or CODs. However, the
new techniques that we propose for constructing QODs can be
readily modified to construct ODs or CODs.

In Section II-A, we define quaternion permutation matrices
and use these matrices, along with existing ODs and CODs, to
construct QODs. In Section II-B, we define symmetric-paired
complex orthogonal designs and use these designs to build
QODs.

A. Quaternion Permutation Matrices

We present here our most simple, and potentially most useful,
method for constructing quaternion orthogonal designs. The
construction requires only readily available real or complex
orthogonal designs and what we define below as quaternion
permutation matrices.

Definition 3: An matrix is a quaternion permutation
matrix if it has one nonzero element per row and per
column and if .

Theorem 4: Let be an orthogonal design or complex
orthogonal design of type . Let be an
and be an quaternion permutation matrix. Then
is an quaternion orthogonal design of type .

Proof: If is real, write
. If is complex, write
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. In either case, the
coefficient is real. Now, consider

which clearly satisfies the required orthogonality constraint so
that is a quaternion orthogonal design.

We note that Theorem 4 holds for any quaternion matrices
and such that and . Our re-

striction to matrices that have exactly one nonzero quaternion
element per column and per row is meant to show the simplicity
of this idea and to facilitate the construction of such quaternion
permutation matrices. This construction shows that orthogonal
designs over the quaternion domain exist and can be constructed
in a straightforward way.

Example 5: For simplicity, let be the identity matrix. Let

. Let be an OD on real

variables , . Then, is QOD on real

variables , . Now, let be a COD on real

variables . Then, is a QOD on

real variables , . Finally, let be a COD

on complex variables , . Then, is a

QOD on complex variables , .

B. Symmetric-Paired Designs

We now present a construction technique that uses specially
chosen pairs of complex orthogonal designs of size to
build quaternion orthogonal designs.

Definition 6: Two complex orthogonal designs and
are said to be symmetric-paired designs if is symmetric
and/or if is symmetric.

We recall that complex amicable designs and satisfy
and/or [21]. Hence, the proposed

definition of symmetric-paired designs has a resemblance to am-
icability. The concept of amicability is revisited in Section III-B.

Lemma 7: Let and be matrices whose entries include 0
and arbitrary complex variables (for example, and could be
complex orthogonal designs). If is a symmetric matrix,
then , where . Similarly, if

is a symmetric matrix, then , where
.

Proof: Suppose that is a symmetric matrix and de-
note , where is a complex variable

and so , are real variables. Then
. Thus

which follows since the symmetry of implies that
and , and since for . It

follows that , where .
It follows similarly that if is symmetric, then

, where .

Example 8: Consider the following CODs on real variables

, , , : and . One

can confirm that

is symmetric. Lemma 7 then implies that ,
which we now confirm directly:

It is similar to show that is also symmetric, which implies
that .

Theorem 9: Let and be complex orthogonal designs
COD and COD re-
spectively, on commuting complex variables . If

is symmetric, then is a quaternion orthogonal
design QOD on the complex
variables . Specifically,

Proof: Since and are complex, we have
and . Then

(by Lemma 7)
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Hence, if and are CODs on complex variables
and is symmetric, then is a quater-

nion orthogonal design on complex variables .
Corollary 10: Let and be complex orthogonal de-

signs COD and COD
respectively, on commuting real variables . If

is symmetric, then is a quaternion orthogonal
design on real
variables . Specifically,

Example 11: The designs and

, where and are commuting com-

plex variables, are COD designs that are equivalent
to Alamouti’s code [1]. It is straightforward to verify that

is symmetric. Then, gives ,

which is a QOD with linear processing on complex
variables , . Defining a quaternion variable

shows that . Hence, can also

be considered a QOD on the one quaternion variable .
Example 12: Since our examples have been restricted to

2 2 designs thus far, we provide an example using maximum
rate, minimum decoding delay CODs of size 4 4. To show
variety, we allow a scalar multiple of one of our complex
variables.

is a COD satisfying . Also

is a COD satisfying . It fol-
lows that

so is symmetric. Then, Lemma 7 implies that
. So, according to Theorem 9

satisfies the orthogonality constraint
. Hence, is a QOD

with linear processing on the complex variables , , . It is
possible to rewrite this example using quaternion variables , ,
where (for example) and . We omit
the details for brevity.

We note that in applying Theorem 9 (similarly Corollary 10),
and need not contain the same variables, since we can

simply take the union of their variables as the set of possible
variables and set certain coefficients and to be zero as nec-
essary. We illustrate with the following examples.

Example 13: We apply Theorem 9 to the following
complex orthogonal designs on complex variables , :

and . We can say that

is a COD and is a COD , with both
designs defined on the complex variables . It is straight-
forward to verify that is symmetric. Then,

gives , which is a QOD

with linear processing on complex variables , . Writing

we have , which shows

that can also be considered a QOD on the quaternion
variable .

Example 14: We apply Corollary 10 to the CODs and
from Example 8. We can denote as a COD
and as a COD on the real variables

. Then, .

It can be shown that ,
so that is a QOD with linear pro-
cessing on real variables , , , . Alternatively,
writing , we have

, which shows that our matrix can

also be considered a QOD with linear processing on the quater-
nion variable .

The QODs produced in Examples 11, 12, and 14 clearly con-
tain no zero entries. As space–time block codes with no (or few)
zero entries have practical advantages when used in signal pro-
cessing [17], we expect that QODs with no zero entries will have
similar advantages. However, the quaternion case is complicated
because although each entry in the above examples is nonzero,
it is not the case that each entry is a full quaternion variable

, with all nonzero real components
. It would likely be useful if all entries were nonzero in at least

one of the polarization planes. Further work must be completed
to determine any practical implementation advantages of these
designs with no zero entries.

III. QUATERNION CONSTRUCTION TECHNIQUES

The goal of this section is to develop theory that can be
used to construct QODs without a reliance on ODs or CODs.
Although the OD- and COD-dependent construction techniques
of Section II provide insight into quaternion orthogonality and
contribute to a library of examples of QODs, the resulting
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QODs are necessarily limited by the structure of the OD and
COD building blocks. In practical applications, the goal will
be to maximize the rate and minimize the decoding delay of
the QODs. By relying on CODs in constructions, we may be
limiting the rate of the resulting QODs due to limitations of
the CODs. Therefore, it is of practical importance to develop
QOD construction techniques that do not rely on existing ODs
or CODs.

This section also differs from Section II in that the focus is
on QODs that are defined naturally on quaternion variables, as
opposed to QODs that are defined naturally on real or complex
variables and then manipulated to be written using quaternion
variables. QODs on more than one quaternion variable appear
to be the most difficult type of QODs to construct.

In Section III-A, we define quaternion-commutivity as a way
to overcome certain of the difficulties presented by the non-com-
mutivity of the quaternions. In Section III-B, we define quater-
nion amicable designs, which we expect to be building blocks in
future QOD constructions. In Section III-C, we investigate cer-
tain conditions required to build 2 2 QODs on two quaternion
variables.

A. Quaternion-Commuting Variables

The noncommutivity of the quaternions is clearly a hurdle
in developing construction techniques for QODs, as it prevents
simple generalizations of known construction techniques for
ODs and CODs. In this subsection, we investigate a possible
condition that would allow us to keep the benefits of including
the and components of the quaternion variables while re-
stricting the quaternion variables so that they behave more like
commuting variables.

Definition 15: Let and be two quaternion variables. Then,
and are said to quaternion-commute when

and/or .
Our next example shows the utility of this definition as ap-

plied to two quaternion variables.
Example 16: Given the success of the Alamouti code repre-

sented by the COD , it is natural to start with

and look for modification that would con-

vert into a QOD on quaternion variables , . Of course,
only satisfies the orthogonality constraint if and commute.

However, the modification satisfies the orthog-

onality constraint if and are chosen to be quaternion-com-
muting variables. In this case

and similarly for . Thus, is a QOD on the quaternion-
commuting variables and .

We now address the natural question of which quaternion
variables quaternion-commute. To do this, we must introduce
some notation:

Definition 17: Let , be quaternion variables with
and , where

, are real variables for . Then, we denote the
product , where

Similarly, , where

Lemma 18: Two quaternion variables and quaternion-
commute with (and/or ) if and only if

is real (and/or is real).
Proof: Using the notation developed in Definition 17,

we see that just as , we have
. Thus

Hence, is real. The case for follows similarly
with . (We observe
that for both and to hold, we require

, for all , , .)
Example 19: Suppose and are quaternion-com-

muting variables such that is real. Then,

is a QOD on these specific quaternion-com-

muting variables and . This follows as

It also holds that
We will later show in condition 2) of Example 24 that the pro-
posed matrix is also a QOD if the quaternion variables ,
are instead restricted so that only , where
is as defined in Definition 17.

We have demonstrated that quaternion-commuting variables
can be used to build QODs, however Lemma 18 shows that
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quaternion-commuting variables are subject to very strong re-
strictions. Therefore, this construction method is likely to be
difficult for sizes greater than 2, as these would require more
than two mutually quaternion-commuting variables. However,
this notion of quaternion-commuting variables might be useful
in conjunction with other conditions on certain of the quaternion
variables.

B. Amicable Designs

Real amicable designs were defined over a quarter of a cen-
tury ago [15], [16], [19], [20], and yet many questions con-
cerning these designs, as well as complex amicable designs, re-
main unsolved.

Definition 20: Two square real orthogonal designs and
are said to be amicable if and .
Two generalized complex orthogonal designs and are said
to be complex amicable if and/or

.

Example 21: One can confirm that and

are CODs on real variables , , , .

Furthermore, and are complex amicable designs. This can
be seen by noting that

is real and symmetric. This implies that
. So, . One can also verify that

.
Real amicable designs have been used to build complex

orthogonal designs, and there has been a renewed interest in
amicable designs due to the discovery that they can be utilized
in space–time coding [8], [9], [21], [23]. Motivated by the
utility of the real and complex cases, we propose a definition
for quaternion amicable designs and investigate their existence
in the 2 2 case.

Definition 22: Let and be quaternion orthogonal designs.
If , then say and are quaternion amicable
designs.

Lemma 23: Suppose , , , and are quaternion variables
such that

Then, the matrices

and

are QODs on the specific quaternion variables , , , . (Given
, is orthogonal; given , is orthog-

onal.) Also, so and are quaternion amicable
designs.

Proof: Let . Then
. Now, . Hence,

. But
. So . Likewise, it can be shown that

, given . Then,

Thus, we have provided some conditions (albeit restrictive)
under which 2 2 quaternion amicable designs exist. Many
open questions remain concerning the construction and theory
of quaternion amicable designs (as well as for real and complex
amicable designs). A question of particular interest is to deter-
mine if small examples of quaternion amicable designs can be
used to build larger QODs.

C. Size-Two Quaternion Orthogonal Designs

Thus far, it has proven difficult to construct QODs on more
than one quaternion variable. In order to build such designs
without the use of ODs or CODs, we must develop an under-
standing of the forced constraints on the quaternion variables
appearing in these designs. In this subsection, we study con-
straints under which we can design 2 2 QODs on two quater-
nion variables.

Example 24: Consider the matrix , with

and quaternion variables and . Then

For this to be a QOD , we require the off-diagonal ele-
ments to equal 0. We observe

Thus, if one of the diagonal elements equals 0, it follows that the
other element is 0. An analysis shows that for

to hold for arbitrary quaternion variables , , it would be
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required that the following four equations are simultaneously
satisfied:

However, a lengthy analysis shows that it is not possible to si-
multaneously satisfy the above four equations, and therefore we
cannot find solutions to that hold for arbi-
trary quaternion variables , . Nevertheless, by imposing cer-
tain restrictions on the quaternion variables , , we can still ob-
tain conditions under which so that the pro-
posed is a QOD. The following are conditions under which

, where the are the compo-
nents of as given in Definition 17:

1) , , , ;
2) , , , ;
3) , , , ;
4) , , , ;
5) , , , ;
6) , , , .
Hence, given quaternion variables and coefficients that satisfy

one of the above six sets of constraints, we can form a QOD of

the form . We note that solution 2) was pre-

viously presented by Finlayson, Seberry, Wysocki, and Xia [7].
We have deliberately chosen to consider only solutions where
has positive sign, due to our Lemma 25 below.

Lemma 25: Let be the matrix , and let

. Given the condition that , for some
1, 2, 3, 4, if the use of , , , where

implies that is a QOD on quaternion variables and , then
the use of , , and , , also implies that is a QOD.

Lemma 25 is motivated by the preceding Example 24, and its
proof is straightforward. Lemma 25 and Example 24 conspicu-
ously do not consider scaling the (1,1) position with an element
from . We now consider this situation:

Example 26: Consider the matrix , with

. Then

As before, for this to be a QOD , the off-diagonal ele-
ments must equal zero. We can achieve this by placing condi-
tions on and through restricting the terms as fol-
lows:

1) , ;
2) , , , , ;
3) , , , , ;
4) , , , , .

In this example, we have limited our list to cases with positive
and due to the following Lemma 27; the proof of this lemma

is straightforward.

Lemma 27: Let be the matrix , and let

. Given the condition for some
, if the use of , imply that is a QOD on quaternion

variables and , then the use of the , ; ,
; , and , also imply that

is a QOD.
To see the distinction between QODs of the types introduced

in Examples 24 and 26, let be the QOD

for some . We can write

, where .

However, the conditions required to make a QOD are not
consistent with the conditions required for to be a QOD.
Therefore, the designs introduced in Examples 24 and 26 are
not equivalent.

A very similar analysis can be done using quaternion pre-
multipliers on the right, rather than the left, of the entries of a
QOD . Despite the differences due to the noncommu-
tivity of the quaternions, the constraints are similar. We omit the
details for brevity.

IV. SIMULATION RESULTS

In this section, we provide some numerical results concerning
the implementation of a quaternion orthogonal design as an
orthogonal space–time-polarization block code (OSTPBC). As
with traditional complex orthogonal space–time block codes
[18], OSTPBCs can be used in scenarios involving transmis-
sion of complex signals from several transmit antennas to one or
more receive antennas, as shown in Fig. 1. The only difference
is that with OSTPBCs the antennas are dual polarized antennas.
Hence, in case of a single receive antenna and transmit an-
tennas, each channel is described by the channel gain matrix

, for , where

and are complex channel gains for signals received with
the same polarization as they were transmitted, and and
are complex channel gains for a cross-polar scatter, i.e., signals
received with different polarization from that at which it was
transmitted due to scatter, reflections, and polarization twist be-
tween the transmit and receive antennas.

Introducing representation of a quaternion variable
as , transmission of the dual-polarized signal

through the channel described by a matrix can be modeled as
a product . Hence, the received quaternion signal is given
by

where , are complex additive noises being the indepen-
dent identically distributed (i.i.d.) zero-mean two-dimensional
Gaussian random variables with identical variance per dimen-
sion.
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Fig. 1. Considered transmission system utilizingN dual-polarized transmit an-
tennas Tx1; . . . ; TxN , and a single receive dual-polarized antenna.

In this paper, we will consider only the case of a single re-
ceive antenna but all considerations can be extended to the case
of multiple receive antennas. If an OSTPBC for transmit
antennas is used, the received dual-polarized signal vector can
be considered as a quaternionic vector, and, using the same no-
tation as above, modeled as

...
...

...

where ; , represent complex noises
being the independent identically distributed (i.i.d.) zero-mean
two-dimensional Gaussian random variables with identical vari-
ance per dimension.

Assuming perfect channel knowledge at the receiver, i.e., as-
suming that matrices are known and constant
for some reasonable time, as in the case of quasi-static condi-
tions, the ML decoding rule for any OSTPBC is equivalent to
finding a set of signal symbols that minimizes the norm

, where is the received signal vector, is the code ma-
trix, and is the matrix of complex channel coefficients. This
is equivalent to finding a set of signal symbols minimizing the
squared norm, which can be expressed as

trace

trace

trace

trace trace

trace

where . Thus, for any orthogonal , the decoding
rule can be decoupled.

We now provide a concrete example by implementing the
QOD of order 2 originally given in Example 11 as an OSTPBC
for two transmit dual-polarized antennas

It can be easily noticed that comprises two Alamouti
codes [1], one used for one polarization and another one, with
switched columns, used for orthogonal polarization. Using the
same notation as above, can be expressed as

where odd columns represent signals transmitted through one
polarization and even columns represent signals transmitted
through the polarization orthogonal to the first one.

For a single receive dual-polarized antenna, the channels
between dual-polarized transmit antennas Tx1 and Tx2, and
the dual-polarized receive antenna Rx1 are described by
their own channel gain matrices, and

, respectively. The received signal vector

is given by

where ; , represent complex noises being the in-
dependent identically distributed (i.i.d.) zero-mean two dimen-
sional Gaussian random variables with identical variance per di-
mension.

Utilizing the principles of quaternionic arithmetic, the
decoding rule can be simplified as follows: the decoding
statistic for is

, and the
decoding statistic for is

where , , ,
and .

To assess the performance gain that can be achieved using the
code and a single receive dual-polarized antenna, the system
was implemented using MATLAB. The following conditions
were assumed.

• The QPSK signal constellation was ap-
plied.

• Total transmitted power in both polarizations and through
both antennas was equal to 1, and equally distributed per
antenna and per polarization. For a fair comparison, the
average total received power in all systems before adding
noise was set to 1, and we used the same SNR normaliza-
tion as used by Alamouti [1].

• Channel coefficient matrices, and were assumed
known at the receiver and kept constant for 1000 data bits.



264 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 1, JANUARY 2008

Fig. 2. Bit-error-rate (BER) performance of the developed scheme (OSTPBC)
using the code Q combined with QPSK modulation in a slow flat Rayleigh
fading channel experiencing random cross-polar scatter compared with the
Alamouti scheme and a single transmit/single receive antenna system.

• The sum of variances of all the channel coefficients was
kept equal to 1 and the variance of the real and imaginary
parts of a particular coefficient was identical. The variances
were drawn randomly, every time the new set of coeffi-
cients was drawn.

• The channel coefficients were generated as random com-
plex Gaussian i.i.d. variables. The additive noise was
assumed to be additive white Gaussian noise added uni-
formly for each polarization and each real/imaginary
component (a quaternion zero-mean Gaussian variable).

The simulation results are provided in Fig. 2. The evident per-
formance improvement compared to the conventional Alamouti
scheme has been achieved without a significant increase in the
dimensions of the antenna system of either transmitter or re-
ceiver. These results are promising, and we expect to explore
further the implementation of QODs as OSTPBCs in future
work. It remains an open problem to determine if these codes
can admit received signal linearization.

V. CONCLUSION

We have established the existence of QODs on real variables,
on complex variables, and on quaternion variables. We offered
construction techniques that utilize existing real and complex
orthogonal designs to build QODs. These constructions provide
insight into the combinatorial structure of QODs, and they are
useful for building a library of QOD examples. However, by de-
pending on existing ODs and CODs, the resulting QODs may be
limited in their rate and delay. We propose that in order to gen-
erate optimal QODs, we must develop construction techniques
that do not limit the QODs through imposing structure based on
ODs or CODs. To work towards the goal of developing QODs
(specifically QODs on quaternion variables) without reliance on
ODs or CODs, we defined and explored the concepts of quater-
nion-commutivity and quaternion amicability. We hope these
concepts will stimulate further work in this area. Our work to-
wards building 2 2 QODs on two quaternion variables illu-

minates some challenges in constructing these designs. Han-
dling QODs on multiple quaternion variables is more difficult
than handling ODs, CODs, or even QODs on real and complex
variables. The noncommutivity of the quaternions, as well as
the increase to four real dimensions in each quaternion variable

, contributes to this difficulty.
Our definition of symmetric-paired designs and our treatment

of amicable designs lead to several open questions. Necessary
and sufficient conditions must be determined for when CODs
and can be constructed so that is symmetric. Similarly,
it must be determined when QODs and can be constructed
so that or . We expect that an anal-
ysis of symmetric-paired and amicable designs will be useful in
future constructions of QODs

Our preliminary simulations involving the application of
QODs as quaternion orthogonal space–time-polarization block
codes, particular those involving the QOD presented in Ex-
ample 11, are promising. The simulations suggest that certain
QODs will be capable of achieving the same performance as
complex orthogonal space–time-block codes that require twice
the number of transmit and receive antennas. It remains to
determine which QODs are optimally suited for application in
space–time-polarization block coding. This determination will
require further simulations and the further development of the
theory of QODs. For example, the maximum rate and minimum
decoding delay of QODs must be determined. In our future
work, we plan to both advance the theory of these novel designs
and further investigate their application as space–time-polar-
ization block codes.
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