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Hierarchical Ring Network Configuration
and Performance Modeling

V. Carl Hamacher, Senior Member, IEEE, and Hong Jiang, Member, IEEE

AbstractÐApproximate analytical queuing network models for expected message packet delay in 2-level and 3-level hierarchical ring

interconnection networks (INs) are developed. A major class of traffic carried by these INs consists of cache line transfers between

processor caches and remote memory modules in shared-memory multiprocessors. Such traffic consists of short, fixed-length

messages; they can be conveniently transported by the slotted-ring transmission technique which is studied here. The packet delay

results derived from the models are shown to be quite accurate when checked against a simulation study. As well as facilitating

analysis, the analytical models can be used to determine optimal sizes for the rings at different levels in the hierarchy, where optimality

is in terms of minimizing average packet delay.

Index TermsÐInterconnection networks, hierarchical rings, slotted rings, shared-memory multiprocessors, queuing models,

message-passing performance.

æ

1 INTRODUCTION

Amain hardware component in a multiprocessor system
is the interconnection network (IN) that connects

together processors and memory modules. One such IN
structure, hierarchical slotted rings, is an interesting base on
which to build large scale shared-memory multiprocessors.
They have received a great deal of attention recently, both
in academia [14], [18], [15], [5], [9], [10], [12], [6] and in
industry [17], [3], [4]. The salient features of this class of INs
are: 1) the physical locality of hierarchical rings blends
naturally with that of computational locality of shared-
memory multiprocessing [14], [9], 2) the hierarchical ring
structure provides natural and efficient broadcasting and
multicasting capabilities that are crucial for process co-
ordination and cache coherence protocols [5], and 3) hier-
archical rings have an inherent and unique capability of
ªdilutingº the impact of hot-spot traffic [18], [9]. Never-
theless, a more popular choice for INs seems to be meshes.
This, as noted in [14], may stem from the fact that mesh-
connected systems are relatively easy to build using off-the-
shelf routers and processors and have good scalability
characteristics. While meshes have superior scaling char-
acteristics relative to hierarchical rings, two comparative
studies of hierarchical rings and meshes in the literature,
one based on approximate modeling [6] and the other based
on detailed execution-driven simulations [14], concluded
that hierarchical rings can outperform meshes under some
practical workloads. More specifically, [14] found that
hierarchical rings perform significantly better than meshes

for system sizes up to about 120 processor nodes if the
workload exhibits moderate to high memory access locality.
Even if there is no memory locality, [14] observed that
hierarchical ring systems perform better than meshes for
systems with large cache lines either if the system is small
or if the global ring has double the normal bandwidth.

Exact analytical modeling of hierarchical slotted-ring
networks is intractable because of the phenomenon of
ªclusteringº of occupied slots in the ring, as observed in
[13], [1]. As a result, analytical studies of such networks
have been based on approximation techniques [13], [1], [18].
With the exception of [18], which analyzed 2-level struc-
tures, hierarchical ring structures have not been studied
analytically so far despite the existence of analytical studies
in the literature on single-level rings [13], [1]. In [13],
buffering and queuing effects were not included at the
input ports and contention for slot access was modeled only
in the single-level ring case. Bhuyan et al. [1] extended the
model in [13] to incorporate buffers at input ports and to
consider a double-ring system where two unidirectional
slotted rings were put in parallel. Zhang and Yan [18]
analyzed a 2-level hierarchical ring system with emphasis
on finding relative performances of a few cache coherence
protocols and the impact of hot spot traffic. Thus, the
models developed in [18] were geared toward specific
coherence protocols under the hot spot traffic condition.
Further, all models in [13], [1], [18] assumed a source
removal packet transfer protocol. Two other recent perfor-
mance studies on hierarchical ring networks were based
entirely on simulations [9], [14].

In this paper, we use approximate analytical techniques
to model the packet delay performance of 2-level and
3-level hierarchical ring networks that operate under a full
range of applied load conditions and a destination removal
protocol, as opposed to source removal. The destination
removal protocol is more efficient in terms of network
channel utilization and has been employed in recent
research prototypes [16], [15]. The model is used to gain
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important insights into the optimal design of hierarchical
ring systems. That is, for a given total node size and traffic
environment, how should one determine the size of rings
on different levels to minimize the expected packet delay?
The effect of doubling the bandwidth of the global ring,
after that ring is shown to be a traffic bottleneck, is also
determined.

The paper is organized as follows: Section 2 presents a
description of the hierarchical ring interconnection network
model, including enough structural and operational detail
for performance evaluation purposes. Section 3 develops
packet delay models using queuing models to capture the
effect of contention. The analytical models developed are
validated through extensive simulations in Section 4.
Section 5 addresses the issue of optimal configuration using
the analytical models developed in Section 3. We also
include the effect of doubling the bandwidth of the global
ring. Finally, some concluding remarks and prospects for
future work are made in Section 6. An earlier version of this
paper, with a slightly different analytical model, appeared
in [7].

2 HIERARCHICAL RING NETWORKS

The hierarchical slotted-ring IN studied here consists of
unidirectional rings, as employed in [3], [4], [15], [16].
Processor node clusters are only connected to local rings, as
shown in Fig. 1. Each segment, called a station, connects one
cluster into the ring. The station switch, S, removes an
incoming ring packet into its cluster interface if it is the
destination or sends the packet on around the ring
otherwise. This packet-handling protocol is the same as
that used in destination-remove, slotted, Local Area Net-
works (LANs) [13]. The switch also introduces a pending
transmit packet from its cluster interface into the down-
stream station as soon as it observes its own ring input side
to be empty. Ring traffic is thus never blocked.

In the context of memory Read/Write messages in
shared-memory multiprocessors, operations can be de-
scribed briefly as follows: At the destination station, packets
have priority on the cluster bus. If the target memory
module is free to handle the request, it starts the operation
(a Read or a Write) and immediately sends a positive
acknowledgment message back to the source station,
where the acknowledgment is removed by the source
station switch. A negative acknowledgment is returned if
the target memory module is busy and the Read/Write
request message will need to be tried again later by the
source. If the destination memory module is free, a Write
operation requires a request and acknowledgment mes-
sage. A Read operation requires three messages: one to
send the Read request, an acknowledgment, and a later
one from the destination station to return the requested
data. These details are not actually needed for the
network performance modeling done later, but they
explain the use of the destination-remove protocol in
the shared-memory application.

The bit width of a slot in the local ring is assumed to be
enough to carry full information for a memory word Write
message or a two-word reply message to a Read request.
This wide-slot format is used in both [3] and [4] and we will
refer to this slot quantity of information as a packet. Current
cache line sizes in multiprocessor systems consist of
multiple words [8], which will not fit into one slot.
Therefore, cache line transfers would need to consist of
multiple-packet messages. This presents no difficulty for
the IN described here because a wide-slot packet is large
enough to contain source and destination node addresses
and can therefore move through the IN as an independently
routed unit. Also, the order of packets from any one source
is maintained as they reach their destination.

A local ring can be expanded to any desired number of
segments because each station is a regenerative repeater in
the electrical sense. However, from a performance

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 1, JANUARY 2001

Fig. 1. A 2-level hierarchically structured multiprocessor.



standpoint, packet transfer delay will increase linearly,
degrading performance. To alleviate the performance
problem, a higher level ring can be added in the form
of a global segmented ring that is used to interconnect
local rings, as shown in Fig. 1. It operates much like a local
ring with its source and destination stations being local ring
interfaces instead of cluster interfaces. This structure can be
extended to even higher levels. Packet blocking can occur at
the crossover switch between two rings. For example, in a
2-level system, if a packet from a local ring needs to move
up to the global ring at the same time that a continuing
packet on the global ring arrives at the crossover switch,
there is contention for the downstream link on the global
ring, and only one packet can proceed. The other packet
must be temporarily buffered in the crossover switch to
insure that packets are never lost in the network. Details
will be given in Section 3.2.

3 CONTENTION (QUEUING) MODEL FOR PACKET

DELAY

In [6], [12], we developed packet delay and throughput
performance measures for hierarchical rings in the light
traffic (no contention) situation. While contention-free
models are easy to develop and useful for rough network
comparison purposes, any detailed evaluation of a network
must consider contentions that occur. Further, only conten-
tion models can identify potential system performance
bottlenecks. In this section, analytical models will be
developed to capture the effect of contention under a full
range of applied loads.

3.1 Packet Destination Distribution

Applications that run on shared-memory multiprocessors
will have different patterns of message destination locality
as the processor clusters (containing one or more proces-
sors) make memory Read/Write requests to remote
memory modules. These patterns may range from situa-
tions where a cluster references mainly only a small number
of other cluster memories (high locality) to situations where
references are uniformly distributed over all other clusters
(low/no locality). In the first case, clusters that reference
each other often should be located on the same local ring.

Conversely, if such situations dominate, the size of the local
ring in a hierarchical ring network can be chosen to best
match the size of the typical locality sets. If applications
tend to have uniform destination distributions, then, for a
fixed total number of clusters, the various ring sizes can be
chosen to minimize average packet delay. An example of
this network design optimization is given in Section 5.

In the models to be developed, the following parameters
reflect packet destination locality. In H2 (2-level systems), P
is the probability that a packet is destined for a cluster on
the same local ring, with 1ÿ P being the probability that it
will need to move over the global ring to a different local
ring. In H3 (3-level systems), PL is the probability of a
ªsame local ringº destination. PM is the probability that the
packet is destined for another local ring attached to the
same intermediate ring; while PG � 1ÿ �PL � PM� is the
probability that the packet must move all the way up
through the global ring, eventually moving down through
the hierarchy to a local ring on a different intermediate ring.

3.2 Queues in the Network

FIFO queues are associated with each local ring station
interface and interring interface, as shown in Fig. 2 and
Fig. 3, respectively. At a station interface, shown in Fig. 2,
the packet at the head of the queue waits until an empty slot
passes by or a full slot destined to the local station arrives
and the packet is removed from the slot by the station, at
which time the head packet is transmitted onto the slot.
Thus, a slot is deemed empty if it 1) contains no valid packet
or 2) contains a packet destined to the local station and will
be removed by it. The transmitted packet will then travel to
its destination station unblocked if the destination is on the
local ring or to the interring interface otherwise. At the
interring interface, shown in Fig. 3, the packet joins the FIFO
queue for the higher level ring. Once at the head of the
queue, the packet follows similar steps as in the case of a
local station interface; that is, the packet accesses the first
empty slot and moves around the ring to join the FIFO
queue at another interring interface connecting down to the
destination ring or up to a higher-level ring, depending on
the destination. Ultimately, the packet is removed from the
ring by the destination station. Thus, the packet delay, d (see
Fig. 2), of a packet is the sum of
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1. queuing delays at all FIFO queues on its entire path
from source station to destination station,

2. slot access time at all interfaces on its path, that is, the
time between when the packet reaches the head of a
FIFO queue and when it gets an empty slot,

3. slot traverse time, the total time the packet spends
moving through ring segment slots on its entire
path, and

4. a final time step into the destination station bus
buffer.

Part 3 of the packet delay is uniquely determined by the

source and destination addresses and the network config-

uration, independent of traffic density and contention.
Clearly, parts 1 and 2 of packet delay capture the effect of

contention and, hence, are traffic density dependent.

Unfortunately, it is extremely difficult to model the

contention exactly, due to the dependence among full slots.

This dependence, also known as ªclustering of full slots,º
has been observed in [13], [1], where, as traffic intensifies,

full slots tend to cluster together to form ªtrainsº of slots, as

opposed to full slots being uniformly and independently

distributed on the rings. This dependence makes an exact

analysis intractable [11]. A second factor that complicates

the exact analysis is the issue of finite buffers. To make the
analysis tractable and simple, we circumvent the problems

by making two main simplifying assumptions. First, we

assume that the event of a slot being full is independent of

that of other slots. Second, we assume the FIFO buffers at all

interfaces are infinite in size. Fortunately, these assump-
tions have been shown to be not problematic in [13], [1], [18]

and by our own simulation validation studies.
With the above assumptions, we model the contention in

parts 1 and 2 of packet delay using the M/G/1 queuing

center model, similar to the approach in [1] and [18] where

source-remove one-level and two-level rings, respectively,

are analyzed. The key in this method lies in finding the
expected service time of the M/G/1 service center which

models a particular FIFO queue. This expected service time

is effectively the expected time that a packet at the head of

the queue waits before it gets an empty slot. In what

follows, we first define the necessary parameters and list
assumptions for the analysis and then give a detailed

description of the analytical model.
It should also be noted that, from the modeling view-

point, there is also a buffer, called a ring link buffer,

associated with each ring link in the system, as shown in

Figs. 2 and 3 in narrow bars. It only needs to have capacity

for one packet because:

1. Packet arrivals occur only at discrete time points and
the associated ring link ªserverº has a constant
service time of 1 discrete time step; and

2. This ring link buffer has priority over station FIFO
queues and interring crossover queues in competing
for access to the ring link ªserver.º This priority
policy is consistent with the implementations of the
NUMAchine [15], [14] and KSR [4].

We will not need a specific notation to identify these buffers

because their total occupancies can be derived from ring

utilization, which can be calculated directly from input

packet traffic and packet travel patterns. This will become

clear later.

3.3 Definitions and Assumptions

Time is discretized into clock ticks. One tick is the time

needed for a packet to move between adjacent slot segments

in any ring or from a ring link buffer to a FIFO queue in an

interring interface (see Fig. 3) or from a ring link buffer to a

station cluster bus buffer at a destination (see Fig. 2). The

models to be developed are based on the following system

parameters:

1. �: identical traffic arrival rate at each local station,
i.e., number of independent packets per clock tick
arriving at a local ring station FIFO queue,

2. packet destination locality in H2 is determined by
probability P as defined in Section 3.1,

3. packet destination locality in H3 is determined by
probabilities PL and PM as defined in Section 3.1,

4. N : total number of local stations in the network,
5. L: number of stations on a local ring,
6. M: number of local rings on an intermediate ring in

3-level networks,
7. G: number of lower-level rings connected directly to

the global ring. Note that G � N
L in 2-level ring

networks and G � N
LM in 3-level ring networks.

Furthermore, we make the following assumptions:

1. The traffic arrival rate at each station and interring
interface FIFO follows a Poisson process.

2. One packet can be completely carried by one slot.
3. A packet is removed from the network by the

destination immediately after it reaches the destina-
tion station cluster bus buffer (see Fig. 2).
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3.4 General Model

The basic idea of this analysis is to solve the M/G/1
queuing model for all FIFO queues (local stations and
interring interfaces), which will give rise to expected queue
lengths at all FIFO queues. In order to do this, we need ring
utilizations. Using Little's result, these results can then be
used to derive expected packet delays as follows.

Let Qi, 1 � i � N , denote the queue length at local
station S�i� and let QLÿG�i� and QGÿL�i� denote, respectively,
the local-ring to global-ring FIFO queue length and the
global-ring to local-ring FIFO queue length of the interring
interface i, 1 � i � N

L for the 2-level ring. Similarly, for the
3-level ring, let QMÿL�i�, QLÿM�i�, QGÿM�j�, and QMÿG�j�
denote, respectively, the middle-ring to local-ring, local-
ring to middle-ring, global-ring to middle-ring, and middle-
ring to global-ring FIFO queue lengths. Here, 1 � i � N

L and
1 � j � N

LM . Further, let UL, UM , and UG represent the ring
link utilizations in local, intermediate, and global rings,
respectively. In steady state, Little's result applies and the
expected packet delays for H2 and H3, TH2 and TH3, are:

TH2 � Average Number of Packets in System

System Throughput
�

XN
i�1

Qi �
XNL
i�1

�QGÿL�i� �QLÿG�i� � 2L��1ÿ P �� � �N � N
L�UL

N�

�N
L UG �N�
N�

:

�3:1�

TH3 � Average Number of Packets in System

System Throughput

�
XN
i�1

Qi �
XNL
i�1

�QMÿL�i� �QLÿM�i� � 2L��1ÿ PL��
24
�
XNLM
i�1

�QMÿG�i� �QGÿM�i�

� 2LM�PG� � N �N
L

� �
UL � N

L
� N

LM

� �
UM

� N

LM
UG �N�

�
� 1

N�
:

�3:2�
In each equation, Y denotes the expected value of the

variable Y . The numerator in (3.1) represents the total
population (of packets) in FIFO queues, interring interfaces,
and rings. Aside from average queue lengths, Q, interface
and ring packet occupancies are accounted for as follows:
The term 2L��1ÿ P � accounts for packets in the two links
leading from ring buffers to FIFO queues, as shown in Fig. 3
(the step from ti to ti�1). The terms �N � N

L�UL and N
L UG

account for packets in all local rings and the global ring,
respectively, and the term N� accounts for packets in all
links leading into station cluster bus buffers, as shown in
Fig. 2 (the step from tdÿ1 to td). The denominator represents
the system throughput. An implicit assumption here is that
the system is nonsaturated and in steady state, making the

system throughput equal to the total packet arrival rate.
Similar comments apply to the terms in TH3.

3.5 Ring Utilizations

In H2 and H3, all local rings have L� 1 links, with the extra
link being needed to incorporate the interring interface to
the intermediate level ring. All global rings have G links,

while, in H3, intermediate rings have M � 1 links, with the
extra link incorporating the interface to the global ring.

Because of the destination-remove protocol, it is easy to
see that, on average, a packet traverses half of the links on

any ring it moves over to reach its destination. This assumes
that destinations are uniformly distributed inside the local,
intermediate, and global sets of packets.

H2: Assuming symmetry over all stations, there are two
types of utilizations: UL for all local rings and UG for the
global ring.
UL: To derive UL, consider a period of T time steps.

During this time, there are two sources of traffic onto each
local ring: one from local stations Qi and the other from the
global ring through QGÿL. Traffic from Qi can be further

divided into two parts, namely, those packets staying in the
same local ring with probability P and those going up to the
global ring with probability 1ÿ P . They all use �L� 1�=2

links on average. Thus, traffic from Qi uses L�T �L� 1�=2

links over time T .
The total traffic from global ring QGÿL can be

calculated as:

�GÿL �
XGÿ1

1

L��1ÿ P �
�Gÿ 1� � L��1ÿ P �

because 1=�Gÿ 1� of the global packets from each of the
Gÿ 1 other local rings will be destined for any local ring. Of
this traffic, each packet uses �L� 1�=2 links on average.

Total number of links used by this traffic over T is
L��1ÿ P �T �L� 1�=2. Since there are �L� 1�T links avail-
able over T , we have

UL � L�
2
� L��1ÿ P �

2
� L��2ÿ P �

2
: �3:3�

UG: Each global packet uses G=2 links on average and
there are GT links available over T . There are a total of
N��1ÿ P �T packets over T , thus

UG � N��1ÿ P �T G
2
� 1

GT
� N��1ÿ P �

2
: �3:4�

Also note that

�LÿG � �GÿL � L��1ÿ P �: �3:5�
H3: As in H2, consider a period of time T . We define the

following locality terms:

ªLocalº: all source traffic staying on the local ring with
probability PL;

ªMiddleº: all source traffic going L ! M ! L with
probability PM ; and

ªGlobalº: all source traffic going L ! M ! G ! M ! L

with probability 1ÿ PL ÿ PM .

HAMACHER AND JIANG: HIERARCHICAL RING NETWORK CONFIGURATION AND PERFORMANCE MODELING 5



UL: Over T time steps, there are two sources of traffic

going onto each local ring: Qi and QMÿL. All packets from

Qi, whether L, L ! M ! L, or L ! M ! G ! M ! L

bound use �L� 1�=2 links on average. Thus, traffic from Qi

uses a total of L�T �L� 1�=2 links over T .
Packets coming down from QMÿL can be divided into

two groups:

1. L! M! L packets from other local rings attached
to the same intermediate ring. There are M ÿ 1 such
local rings and each of them sends 1=�M ÿ 1� of their
L ! M ! L traffic to any particular local ring and
each such packet uses �L� 1�=2 links. Hence, over T ,
the number of links used by these packets is:

A1 �
XMÿ1

L�PM
�L� 1�

2

1

�M ÿ 1�T

� L�PMT �L� 1�
2

:

2. L! M! G! M! L packets from all �N=L� ÿ 1
other local rings and, arguing as in 1, over T the
number of links used by these packets is:

B1 �
XN=Lÿ1

L��1ÿ PM ÿ PL� �L� 1�
2

1

�N=Lÿ 1�T

� L��1ÿ PM ÿ PL�T �L� 1�
2

:

But, there are �L� 1�T links available over T . Therefore,

combining link usage from Qi traffic with A1 and B1, we

have

UL � L�T L� 1

2
� A1�B1

�L� 1�T
� L�

2
� L�PM

2
� L��1ÿ PM ÿ PL�

2

� L�
2
� L��1ÿ PL�

2
� L��2ÿ PL�

2
:

�3:6�

Note that

�MÿL � �LÿM � L�PM � L��1ÿ PM ÿ PL� � L��1ÿ PL�:
�3:7�

UM : There are two sources of traffic going onto each

intermediate ring: 1) up from all M local rings attached to it,

through each QLÿM , and 2) down from the global ring,

through QGÿM . Since both L ! M ! L and L ! M ! G

! M! L traffic classes use �M � 1�=2 links, the number of

links used by the first traffic source 1) over T is:

A2 � LM��PM � �1ÿ PM ÿ PL��T �M � 1�
2

� LM��1ÿ PL�T �M � 1�
2

:

The second traffic source (2) is the L ! M ! G ! M

! L traffic from other intermediate rings; there are Gÿ 1

of them and each one sends 1=�Gÿ 1� of its global traffic

to each other intermediate ring. Each such packet uses

�M ÿ 1�=2 links. Hence, over T , the number of links used by
the second traffic source (2) is:

B2 �
XGÿ1

LM��1ÿ PM ÿ PL� �M � 1�
2

1

�Gÿ 1�T

� LM�T �1ÿ PM ÿ PL� �M � 1�
2

:

But, there are �M � 1�T links available over T . Therefore,
combining A2 and B2, we have:

UM � A2�B2

�M � 1�T �
LM��1ÿ PL�

2
� LM��1ÿ PM ÿ PL�

2

� LM�

2
�2ÿ 2PL ÿ PM�:

�3:8�
Also note that

�GÿM � �MÿG � LM��1ÿ PM ÿ PL�: �3:9�
UG: Over T there are N��1ÿ PM ÿ PL�T packets that

follow the L! M! G! M! L path, each of which uses
G=2 links; but GT links are available, thus

UG � N��1ÿ PL ÿ PM�
2

: �3:10�

3.6 Derivation of Average Queue Lengths

Now, we need average queue lengths, Q, everywhere, for
both H2 and H3 systems.

H2:
Qi: Slot access time at a local station will be 0 if the

upstream link buffer is empty at the time the packet arrives
at the head of the line (HOL) position. Service in the first
link traversed is counted in the UL component of (3.1)
because, technically, as soon as the HOL entry starts to get
service in the first link, it can be considered that it has been
dropped into the empty upstream link buffer.

If p is the probability that a slot is full AND continuing
past the current point, then slot access time for the HOL
message packet is:

s �4
X1
j�1

pj�1ÿ p�j � p

1ÿ p :

Now, applying Little's Law, we get Qi �W�, where W is
the average waiting time in the queue. When a new packet
arrives, it must wait s time units for each item ahead of it
and then wait s more units for its own service. Because of
the memoryless property of the stochastic process, we have
W � s� sQi. Therefore,

Qi � �s� sQi��

so Qi �
s�

1ÿ s� ; for s � p

1ÿ p : �3:11�

The probability that a slot is full is UL. The probability that it
is continuing past the current point can be shown to be
Lÿ�1�P �

L by a detailed consideration of the possible source
and destination of each packet that appears in the input side
link buffer of a local station. Therefore,
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p � UL Lÿ �1� P �
L

: �3:12�

QLÿG�i�: Similar to the local station queue Qi, the

average queue length of the upper-going FIFO in an

interring switch is:

QLÿG�i� �
s�LÿG

1ÿ s�LÿG for s � pLÿG
1ÿ pLÿG ; �3:13�

where

pLÿG � UG Gÿ 2

G
: �3:14�

QGÿL�i�: The average queue length of the downward-

going FIFO in an interring switch is

QGÿL�i� � s�GÿL
1ÿ s�GÿL ; for s � pGÿL

1ÿ pGÿL ; �3:15�

where

pGÿL � PL�
2

�3:16�

because the only traffic continuing on the local ring through

the interface switch is local traffic.

H3: Packet destination localities are given in terms of the

probabilities PL, PM , and PG, where PG � 1ÿ PL ÿ PM .

The average length of the input queue, Qi, is the same as

in (3.11), with p � UL Lÿ�1�PL�
L .

For the other four queues, the average lengths QLÿM�i�,

QMÿL�i�, QMÿG�i�, and QGÿM�i�, have expressions similar to

(3.13), with traffic rate factors �LÿM , �MÿL, �MÿG, and �GÿM ,

respectively. The p factors are

pLÿM � UM
M ÿ �1� PM

PM�PG�
M

" #
for QLÿM�i�

pMÿL � L�PL
2

for QMÿL�i�

pMÿG � UG Gÿ 2

G
for QMÿG�i�

and pGÿM � LM�PM
2

for QGÿM�i�:

3.7 Expected Packet Delay

The expressions for ring utilizations, traffic rates, and

average queue lengths, developed in Sections 3.5 and 3.6,

can now be used in the general model, described in

Section 3.4, to derive expressions for the expected message

delay in both the 2-level and 3-level ring structures.

The required sequence of substitutions is as follows in

converting the global expression (3.1) for TH2 into an

explicit expression involving only the structural parameters

N;L and G � N=L and the traffic parameters � and P : First,

substitute from (3.3) for UL into (3.12) for p and then

substitute this explicit expression for p into (3.11) to obtain

an explicit expression for Qi. Similarly, use (3.4), (3.14),

(3.5), and (3.13) to obtain an explicit expression for QLÿG�i�

and use (3.16), (3.5), and (3.15) to obtain an explicit

expression for QGÿL�i�. Then, use these three average queue

length expressions, along with (3.3) and (3.4) for UL and UG

in (3.1) to derive an explicit expression for TH2.
After performing a number of algebraic simplifications,

we have

TH2 � T1 � PT2 � �1ÿ P ��T3 � T4 � T5� � 1; �3:17�
where

T1 � X

1ÿX�1� �� for X � �
2
�2ÿ P ��Lÿ �1� P ��

T2 � L� 1

2

T3 �
Y �NL ÿ 2�

2ÿ �1� Y �Y �NL ÿ 2� for Y � L��1ÿ P �

T4 � PL�

2ÿ PL��1� L��1ÿ P ��
T5 � 2� �L� 1� � N

2L
:

In this form, T1 represents average waiting time in the

local (source) station interface queue, Qi; T2 represents

average path length for a local packet; T3 represents average

waiting time in QLÿG�i� for a remote packet moving up from

a (source) local ring to the global ring; T4 represents average

waiting time in QGÿL�i� for a remote packet moving down

from the global ring to a (destination) local ring; and T5

represents average path length for a remote packet. The

final ª1º term in the TH2 expression represents the time step

needed to move a packet from the ring buffer at the

destination station into the station interface, as indicated in

Fig. 2.
A similar sequence of substitutions (using (3.6), (3.8), and

(3.10) for ring utilizations, expressions similar to (3.11) and

(3.13) for average queue lengths along with corresponding p

factors, and (3.7) and (3.13) for packet rates at crossovers)

and algebraic rearrangements and simplifications can be

used to derive the following expression for expected packet

delay in 3-level ring structures. The final result is:

TH3 � T6 � PLT7 � PM�T8 � T9 � T10�
� PG�T8 � T9 � T11 � T12 � T13� � 1;

�3:18�

where
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T6 � PZ

1ÿ Z�1� �� for Z � �
2
�2ÿ PL��Lÿ �1� PL��

T7 � L� 1

2

T8 � 1

�1=pLÿM� ÿ �1� �LÿM�

with pLÿM � UM
M ÿ �1� PM

PM�PG�
M

" #
;

UM � LM��2PG � PM�
2

; and

�LÿM � L��1ÿ PL�
T9 � L�PL

2ÿ L�PL�1� L��1ÿ PL��
T10 � �L� 1� �M � 1

2
� 2

T11 � �PG�N ÿ 2LM�
2ÿ �1� LM�PG��PG�N ÿ 2LM�

T12 � LM�PM
2ÿ LM�PM�1� LM�PG�

T13 � �L� 1� � �M � 1� � N

2LM
� 4:

As with the TH2 expression (3.17), each of the terms in

(3.18) for TH3 has an interpretation that is directly related to

the network. Briefly, T6 represents local station queuing

delay; T7, T10, and T13 represent path lengths for local,

intermediate, and global packets respectively; T8 and T9

represent the up-queue and down-queue delays in switches

between local rings and intermediate rings; and T11 and T12

represent up and down queuing delays between inter-

mediate rings and the global ring.

4 VALIDATION OF THE ANALYTICAL MODELS VIA

SIMULATIONS

In this section, we validate our analytical model through
extensive simulations. In the simulation study reported in
[12], an event-driven simulator was used to study 2-level
and 3-level hierarchical ring systems. All the simulation
results presented here have very small 95 percent con-
fidence intervals and, so, these intervals are not shown.

In Fig. 4, results for an H2 system are plotted to show
expected packet delay as a function of � and locality. Since
the global ring saturates faster than any other ring in the
system, we also included its utilization. We were not able to
compare the case of P � 0:2 and � > 0:004 because the
system entered saturation soon after that point. Never-
theless, it is clear from the figure that our model is very
accurate with the exception of two points where errors of
8:3 percent and 16:7 percent occur at global ring utilizations
of 82 percent and 92 percent, respectively. This discrepancy
can be explained as a result of our model's inability to
capture the ªtrain effectsº (see Section 3.2) at the near-
saturated global ring conditions.

Fig. 5 shows a comparison between our model and the
simulations for an H3 system. As with the case of H2, our
model agrees very well with the simulation, with the worst
error being 7:7 percent at a global ring utilization of
81 percent.

Our final comparison between model and simulation is
shown in Fig. 6 for three H3 configurations, again revealing
very good agreement except at high global ring utilization
levels.

The more important point brought out by Fig. 6,
however, relates to the relationship between average packet
delay performance and network configuration at different
traffic levels. Consider the following: Assume a distribution
of message packet destinations that is characterized by the
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application, not related to network configuration. For

example, in the uniform distribution, all processor cluster

nodes are equally likely as the destination of a message

packet. This presents the most demanding case for any

multiprocessor network. There is no locality that can be

exploited.
Fig. 6 shows such a case. System size N is close to 400 for

all three configurations. As the configurations (L, M, G)

vary, PL, PM , and PG must also vary to properly reflect a

uniform message packet destination distribution.
The figure reveals that, for light traffic (� � 0:001), the

�L;M;G� � �6; 6; 11� configuration provides a lower aver-

age packet delay than the �10; 10; 4� configuration; while, for

heavy traffic (� � 0:005 and global ring utilizations up-

wards of 75 percent), the opposite is true. In general, we

have shown earlier [6] that the configuration leading to the

lowest maximum distance between any pair of nodes (the
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minimum diameter network) has L, M, and G sizes in
proportions 1 : 1 : 2. This is consistent with the �6; 6; 11�
configuration having the lowest average delay in the light
traffic (and, thus, low contention) case. Correspondingly, in
[14], an independent detailed simulation study of H3
systems showed that good configurations for the heavy
uniform traffic case all had relatively small global rings. In
particular, they derived �L;M;G� � �6; 3; 3� for a particular
N � 54 network and �12; 3; 3� for an N � 108 network. This
tendency is qualitatively similar to our result that �10; 10; 4�
is better than �6; 6; 11� for the heavy traffic case.

We will expand on this use of the model in configuration
design in the next section.

5 OPTIMAL CONFIGURATIONS AND BOTTLENECKS

One very important issue in the design of hierarchical ring
systems is that of configuration. Our analytical model can
predict expected packet delay accurately. It can now be
used to answer the logical question: What is the best
configuration for the hierarchical ring network to minimize
the average delay, given a particular application-based
traffic pattern and system size? A quick answer to this
question can be very helpful in enabling the system
architect/designer to make sensible design decisions. The
answer to the question may be found by deriving optimal
values for L in H2 and L and M in H3 that minimize TH2

and TH3, respectively.
The expressions for TH2 and TH3 are closed form

functions of N , L, M, and traffic, which is uniquely defined
by values of � and locality (P , PL, and PM ). Therefore, if one
has some knowledge of the density (�) and pattern (locality)
of the traffic which the future system will likely be subject
to, then, for a given system size (N), it is possible to find
values of L (for H2) and L and M (for H3) that minimize
TH2 and TH3, respectively, for given values of � and
application-based traffic locality. In this section, we
show how (3.17) and (3.18) can be used to find
optimal values of L and M. All 3D plots in this

section were generated using the Maple-V software
[2]. The design optimization question, as we have
posed it, only makes sense if we are able to show
how the physical network locality parameters PL,
PM , and PG (� 1ÿ PL ÿ PM ), are functionally related
to N , L, M, and G � N=LM for a given applica-
tion-based locality specification. As an example, we
will deal with the uniform message packet destina-
tion case here. This is simply the case in which all
other N ÿ 1 nodes are equally likely as destinations
from any particular source node. This traffic dis-
tribution is reflected in the following functional
relationships: In H2, P � �Lÿ 1�=�N ÿ 1�, and, in
H3, PL � �Lÿ 1�=�N ÿ 1�, PM � �M ÿ 1�L=�N ÿ 1�, and
PG � 1ÿ PL ÿ PM � �Gÿ 1�LM=�N ÿ 1�. These substitu-
tions are made in TH2 and TH3 before plotting the Maple-V
surfaces.

Fig. 7 shows a 3D plot of TH2 as a function of L and �
while the traffic pattern is uniform and N � 500. In this
figure, traffic density � ranges from 0:0005, representing
light traffic, to 0:004, representing the heavier traffic. As can
be seen in the figure, there is an optimum of L for each �
value. For light traffic (� � 0:0005), L is optimal near 16,
shifting to larger values as � increases, with L being optimal
near 28 for � � 0:004.

In Figs. 8 and 9, we plot TH3 as a function of L and M for
� � 0:002 and � � 0:004, respectively, while keeping the
traffic pattern uniform and N � 500. As expected, for each �
value, there is a pair of optimal L and M values. In fact, for
� � 0:002, the optimal values for L and M are 6 and 7,
respectively; whereas, for � � 0:004, values of 9 and 10 for L
and M, respectively, minimize TH3.

A general rule-of-thumb can be concluded from the
results of Sections 4 and 5 for the uniform traffic case: As
the traffic intensity rate � moves from light to heavy, the
proportional ring sizes for optimal network configurations
shift from 1:2 in H2 and 1:1:2 in H3 to 2:1 in H2 and 2:2:1
in H3.
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Fig. 7. 3D plot for H2 delay with N � 500 and uniform message packet destination distributions.



5.1 Global Ring Bottleneck

It is clear from numerical examples derived from either the
analytical models or simulations that the global ring
saturates first when there is low locality in the message
traffic. For a uniform message packet distribution, Fig. 6
shows that choosing a ring size configuration with the
global ring relatively smaller than the local and intermedi-
ate rings leads to lower utilization of the global ring and
lower overall average packet delay. Put another way, the
optimal configuration allows a higher traffic rate (more
throughput) before saturation occurs.

Since a relatively small global ring represents a propor-
tionally very small component of the hardware implemen-
tation cost of a full network, it is feasible to consider
increasing its bandwidth. In [14], the authors propose
doubling the global ring bandwidth. This can be achieved in
one of two waysÐdoubling the physical width of the links

or doubling the clock rate and adding a (pipeline) buffer in
each linkÐas discussed in [14].

It is very easy to change the analytic queuing model to
account for a double-bandwidth global ring. We will not
give details here, but will state some numerical results.

For the uniform traffic case, an N � 90 H3 system with
the configuration �L;M;G� � �6; 5; 3� and a double-band-
width global ring has a packet delay versus � perfor-
mance that is very close to that of an N � 75 system with
the configuration �L;M;G� � �5; 5; 3� and a regular global
ring. As another example, an N � 108 H3 system with an
�L;M;G� � �6; 6; 3� configuration and a double-bandwidth
global ring has a performance comparable to a regular
N � 90 system with an �L;M;G� � �6; 5; 3� configuration.

One way to view these results is that doubling the global
ring bandwidth in these two cases allows an increase of
20 percent in system size, N , and total packet throughput,

HAMACHER AND JIANG: HIERARCHICAL RING NETWORK CONFIGURATION AND PERFORMANCE MODELING 11
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N�, for the same packet delay versus � performance, as � is
varied over a wide operational range.

6 CONCLUDING REMARKS

Network configuration, that is, appropriate choices for the
size of local, intermediate, and global rings, can be
quickly and easily estimated by using the queuing models
developed here, without resorting to time-consuming
simulations, assuming that minimizing average message
delay is the important criterion. We gave an example of
such a design study in Section 5. As we noted, network
optimization is only meaningful relative to a specified
traffic intensity and message destination distribution that
is determined by the application. In Section 5, we used a
uniform distribution, which is easy to incorporate into the
model. For more general application-based distributions,
such as those described in [9], we have shown in [10]
how to incorporate them into a simple model that is,
however, only valid for very light traffic (no significant
contention at crossover switches). We are currently
studying how to incorporate more general distribution
specifications into the queuing models, enabling wider
use of the models in network design and optimization.
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